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ABSTRACT Images of starfields collected by a projective camera are useful for a variety of scientific and
engineering purposes. This utility is exemplified by star trackers, which are amongst the most commonly
used sensors for determining the attitude of modern spacecraft. While the literature on star identification
and star-based attitude determination is extensive, most algorithms are developed in an ad hoc manner.
This work provides a comprehensive and systematic framework for invariant-based star identification and
shows most past star identification algorithms to be special cases within this framework. The new star
identification framework is found to motivate new problems in attitude determination and sensor self-
calibration. Specifically, new algorithms are presented for simultaneous attitude determination and camera
calibration for a generic wide field-of-view sensor using a single starfield image. In the special case where
camera focal length is the only unknown calibration parameter, attitude determination performance of the
new algorithm is indiscernible from a perfectly calibrated camera.

INDEX TERMS Asterisms, attitude determination, invariant theory, pattern recognition, spacecraft naviga-
tion, star identification, star trackers, total least squares, Wahba’s problem.

I. INTRODUCTION
There are a variety of situations where it is necessary to
autonomously recognize an asterism (i.e., a star pattern) in
a digital image. This occurs when solving the lost-in-space
attitude determination problem with star trackers [1], [2],
when registering scientific astronomical images [3], and in
other applications. The present manuscript is motivated by
the spacecraft attitude determination application, which has
seen numerous star identification algorithms proposed since
the 1970s [4], [5].

For an asterism to be recognizable in a single image, there
must be some attribute of the pattern that is always recov-
erable from only its appearance in the image. This attribute
could be related to geometric or photometric properties of
the asterism. While both are used, difficulty with accurately
measuring the photometric properties of stars with low-cost
sensors make it desirable to recognize asterisms with the
pattern geometry alone. The usual approach is to find some
descriptive attributes of the pattern that are invariant to
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attitude (and, perhaps, camera calibration) so that they may
be computed ahead of time and stored in an onboard catalog.
Then, when an image is collected aboard a spacecraft at an
unknown attitude (and, perhaps, with an unknown calibra-
tion), these descriptive asterism attributes may be computed
from the image and directly compared against the precom-
puted catalog.

There have been a great variety of asterism descriptors
proposed over the years. These descriptors, however, are
not as different from one another as they may first seem.
Moreover, in many cases, the different descriptors solve
slightly different pattern recognition problems—often with-
out a clear discussion of this important fact. Therefore, fol-
lowing the philosophical approach of Refs. [6] and [7], this
work provides a theoretical framework for developing invari-
ant descriptors for asterisms as seen in an image from a
projective camera. Popular existing asterism descriptors used
for star identification are shown to be example cases within
this framework.

Analysis of the geometry reveals that there are (at least)
four fundamental classes of optical system forwhich invariant
asterism descriptors may be built: generic calibrated camera,
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narrowfield-of-view (FOV) calibrated camera, generic uncal-
ibrated camera, narrow FOV uncalibrated camera. Good
descriptor options already exist for some of these cases
and this manuscript describes novel descriptors for others.
Of note, there have been other attempts to construct attitude
invariant descriptors for generic (wide FOV) uncalibrated
cameras (e.g., [8], [9])—but, as will be shown, these are not
formally invariant for the generic problem.

Invariant asterism descriptors are the mathematical con-
struct around which practical star identification algorithms
are built. By themselves, these descriptors are analytically
exact and numerical simulations provide only modest addi-
tional insight. However, to match an observed descriptor
to its corresponding catalog entry in practice requires us
to consider the interplay between (1) the stability of these
descriptors in the presence of measurement noise, (2) the
makeup of the full star catalog along with a scheme for
choosing which star asterisms to index, and (3) the data
structure used to mechanize the real-time index search on
a digital computer. A specific star identification algorithm
represents a specific choice for each of these three tasks.
Numerical simulations and live-sky experiments between dif-
ferent algorithms are important here, though simple changes
to any choice in the pipeline can significantly affect over-
all performance—often making a fair comparison between
competing algorithms difficult. Numerical comparisons of
some existing algorithms may be found elsewhere [4], [5],
[10]. The contribution of this manuscript is not the devel-
opment of new star identification algorithms, but a better
theoretical framework for understanding how the vast major-
ity of these algorithms actually function. Such a framework
provides a valuable tool for spacecraft navigators that seek
a more mathematically rigorous (as opposed to a heuristic)
approach for developing and evaluating star identification
algorithms.

Once observed stars have been matched to a catalog of
known stars, many good algorithms exist for attitude determi-
nation with a calibrated camera [11]–[13]. These algorithms
may usually be posed as a solution to Wahba’s Problem
[14]. When the camera is poorly calibrated, there are some
algorithms for narrow FOV cameras (e.g., [15]) and some for
wide FOV cameras (e.g., [9])—but these both assume some
knowledge (though it may be poor) of the focal length. These
algorithms commonly assume square pixels and that the other
three calibration terms (detector skewness and coordinates
of the principal point) are known. This work relaxes all of
these assumptions and presents a novel method for attitude
determination with a generic uncalibrated camera (regardless
of FOV). Further, in the case when only the focal length is
unknown (or, more precisely, when the ratio of focal length
to pixel pitch dx = f /µx is unknown), the general case
collapses to an elegant and simple-to-implement solution.
While the contribution of this manuscript in the area of star
identification is a theoretical framework, the contribution in
the area of attitude determination and self-calibration is a set
of novel algorithms. The performance of these algorithms are

verified with numerical simulations and compared to some of
the most popular algorithms in use today.

II. GEOMETRY OF STAR OBSERVATIONS WITH A
PROJECTIVE CAMERA
Most modern star catalogs (e.g., Hipparcos [16], [17],
Gaia [18], [19]) describe the direction to star by a pair
of angles (e.g., right ascension and declination) in the
International Celestial Reference Frame (ICRF) [20]–[22].
These pairs of angles may also be interpreted as a unit
vector,

ei =

cos δi cosαicos δi sinαi
sin δi

 (1)

where αi is the right ascension and δi is the declination.
Effects such as stellar aberration, parallax, and proper motion
[23], [24] are neglected for simplicity of the present discus-
sion, though they may be added without any effect on the
subsequent discussions. Note that the unit vector ei represents
a direction (a line) passing through the origin and, therefore,
is described by a point in P2. The reader interested in more
details on the properties of projective space (e.g., P2,P3,Pn)
is directed to Ref. [25] and Ref. [26].

Now, consider a projective camera that observes a set of
stars. Let T be the attitude transformation matrix (passive
interpretation of a rotation [27]) that transforms the ICRF star
direction ei into the same star direction as expressed in the
camera sensor frame ai,

ai = Tei (2)

The reader is reminded that T is a 3 × 3 proper orthogonal
matrix [det(T ) = +1 and TTT = I3×3], which will be of
importance later. Like ei, the unit vector ai describes a point
in P2.

An ideal projective camera is described by the pinhole
camera model (see Fig. 1). Assuming the camera’s z-axis
is along the optical axis and is positive going out of the
camera, the location x = [xi, yi]T where the direction ai =
[Xi,Yi,Zi]T pierces the image plane (a fictitious plane in
front of the camera’s optical center) may be found by similar
triangles,

xi =
xi
1
=
Xi
Zi

and yi =
yi
1
=
Yi
Zi

(3)

When the image plane is placed at unit depth (as it is here),
the resulting image plane coordinates are sometimes referred
to as focal-length normalized coordinates.

It is usually simpler to work in homogeneous coordinates.
In projective space (i.e., in P2), it is observed that ai and kai
represent the same point. Therefore, since ai represents the
line connecting the camera’s center (i.e., origin of camera sen-
sor frame and apparent pinhole location) to the star, it pierces
the image plane (i.e., the z = 1 plane) at x̄i = [xi, yi, 1]T .
Consequently, written in terms of projective geometry, the
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FIGURE 1. Illustration of camera frame, an image plane at unit depth, and
star projection geometry with the pinhole camera model (perspective
projection).

pinhole camera model is nothing more than

x̄i =
ai
kT ai

∝ ai (4)

where kT = [0 0 1].
The star observations are generally recorded in a 2D digital

image as captured by a detector on the camera’s focal plane.
This may equivalently be described by discretization on the
image plane. Using the conventions of [28], let the projective
camera’s+z axis be along the optical axis (camera boresight)
and pointing out of the camera. When looking out the camera
(at an image) let the+x axis be to the right (increasing column
count in image) and the +y axis be down (increasing row
count in image). Therefore, if pixel coordinates are counted
from the upper left-hand corner of the image, define the
camera calibration matrix as

K =

dx α up
0 dy vp
0 0 1

 (5)

where dx = f /µx is the ratio of camera focal length to pixel
pitch in the x direction (dy is the same thing in the y direction),
α is the detector skewness, and [up, vp] is the pixel location
where the optical axis intersects the image (usually near the
center of the image). The camera calibrationmatrix is nothing
more than a change of coordinates (an affine transformation).
Specifically, it transforms from units of length into image
pixel coordinates. That is,uivi

1

 =
dx α up
0 dy vp
0 0 1

xiyi
1

 = Kx̄i (6)

where ui is the pixel column number and vi is the pixel row
number. Integer values of [ui, vi] correspond to pixel centers.
Therefore, letting ūi = [ui, vi, 1]T and substituting Eq. (4)

into Eq. (6), we quickly arrive at the result

ūi ∝ Kai (7)

and, since ai = Tei from Eq. (2),

ūi ∝ KTei (8)

The matrix KT is a 3 × 3 matrix with eight independent
parameters (five from K and three from T ). It now becomes

FIGURE 2. The same five stars (points on the celestial sphere) as viewed
by two different camera image planes.

clear that Eq. (8) represents a homography. Therefore, defin-
ing the homography matrix H as

H ∝ KT (9)

we arrive at

ūi ∝ Hei (10)

It is observed, therefore, that the homography matrix H is
only defined to an unknown scale—specifically, it is a 3 ×
3 matrix having nine elements, but with only eight degrees
of freedom. This interpretation of the star imaging problem
(Fig. 2) allows for the straightforward deployment of results
from algebraic geometry to the star identification and attitude
determination problem.

III. ASTERISM DESCRIPTORS
To recognize an asterism (i.e., star pattern) using only the
pixel coordinates of the stars in an image, we require a means
of describing the pattern geometry that remains unchanged
under the action of a projective camera at unknown atti-
tude. This is achieved by computing algebraic quantities that
are (1) functions of only the observed star coordinates, (2)
invariant under changes in camera attitude, and (3) have
different numerical values for each asterism. The collection
of these algebraic quantities (referred to here simply as invari-
ants) may be used to construct asterism descriptors. The
proper mathematical framework for addressing this problem
is invariant theory [29], [30].

Constructing invariants requires the consideration of both
the algebraic variety and the group acting on that algebraic
variety. From Eq. (1), it is observed that algebraic variety
describing a star direction ei is simply a point in P2. There-
fore, letting V be the variety of a d-tuple of star directions,
we find that V ∼= (P2)d has dimension 2d .
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Different assumptions about the camera give rise to dif-
ferent group actions on V . These different group actions,
in turn, give rise to different invariants and different asterism
descriptors.What follows is a discussion of the most common
scenarios and the some of the most straightforward descrip-
tors that can be developed for each.

A. GENERIC CALIBRATED CAMERAS
For a generic well-calibrated camera (either wide or narrow
FOV), it is simple to recover the star directions in the camera
frame, each of which is a point in P2. These star directions
may be represented as unit vectors or, equivalently, as points
on the celestial (unit) sphere. To make this explicit, the
required computations are now briefly reviewed.

Given a star observed at pixel location [ui, vi], we find the
corresponding image plane coordinates [xi, yi] by inverting
Eq. (6) using the known calibration matrix K ,

x̄i = K−1ūi (11)

Making note of the structure of K in Eq. (5), it is possible to
efficiently compute K−1 using the analytic inverse [31]

K−1 =


1
dx

−α

dxdy

αvp − dyup
dxdy

0
1
dy

−vp
dy

0 0 1

 (12)

Moreover, considering Eq. (4), Eq. (7), and the fact that ai is
a unit vector,

ai =
x̄i
‖x̄i‖
=

K−1ūi
‖K−1ūi‖

(13)

Thus, it is simple to obtain a unit vector ai from the observed
star pixel coordinates ūi = [ui, vi, 1]T when the camera is
calibrated (i.e., when K and K−1 are known).
When the measurements are unit vectors, the model and

the observations are related to each other by the action of
the three-dimensional special orthogonal group, SO(3). Thus,
since a d-tuple of stars has dimension 2d and SO(3) has
dimension 3, there are a total of 2d−3 independent invariants
for d ≥ 2 stars in a calibrated camera image.
For a pair of stars (d = 2), there is one invariant (4−3 = 1).

This single invariant is nothing more than the inter-star angle,
which follows from the observation that the angle between
two unit vectors is the same regardless of the frame in which
the unit vectors are expressed. That is, using Eq. (2),

cos θij = aTi aj = eTi T
TTej = eTi ej (14)

where θij is the inter-star angle between star i and star j.
While not an especially deep geometric insight, the invari-
ance of inter-star angle under the action of SO(3) is of
immense practical use. Indeed, the inter-star angle is one of
the most popular invariants used for describing an asterism.
The inter-star angle is the fundamental invariant for some
of the earliest published works on imaged-based start track-
ers for attitude determination [32], [33] and has since been

used in a number of especially influential star identification
pipelines [34], [35].

1) INVARIANTS FOR ASTERISMS OF THREE OR MORE STARS
For a triad of stars (d = 3), there are three independent
invariants (6 − 3 = 3). Building on the invariant for a pair
of stars, one solution is to use the three inter-star angles.
The three inter-star angles are all independent for a triad.
Note, however, that only a subset of the inter-star angles are
independent for asterisms of four or more stars (d ≥ 4); e.g.,
there are

(4
2

)
= 6 possible inter-star angles for d = 4 stars,

only five (8− 3 = 5) of which are independent.
For an asterism of d ≥ 3 stars, there exist other algebraic

(or geometric) quantities that are invariant under the action of
SO(3)—though these other invariants are necessarily depen-
dent on the inter-star angles. This must be the case because
we may always find 2d − 3 independent inter-star angles and
there only exist 2d − 3 independent invariants (thus, there
are no remaining independent invariants to be had). These
other invariants are sometimes useful, since theymay bemore
numerically stable in the presence of measurement noise or
camera calibration error.

As an example, one alternative invariant for a triad of stars
is to use the three dihedral angles of the spherical triangle
(e.g., as is suggested in Refs. [9] and [34]). This is illustrated
in Fig. 3. There are a fewways to compute the dihedral angles
of a star triad using measurements from a calibrated camera
or data from a star catalog. One way, which makes explicit the
relaionship between the dihedral angles and inter-star angles,
is to apply the spherical law of cosines to find

cos2i =
cos θjk − cos θij cos θki

sin θij sin θki
(15)

cos2j =
cos θki − cos θjk cos θij

sin θjk sin θij
(16)

cos2k =
cos θij − cos θki cos θjk

sin θki sin θjk
(17)

Since θij, θjk , θki are invariant, it follows that 2i,2j,2k are
also invariant. Note, however, that while 2i,2j,2k form a
complete set of invariants and are independent from each
other, they are rational functions of (and, therefore, dependent
on) θij, θjk , θki. In either case—θij, θjk , θki or 2i,2j,2k—
there are only three independent invariants. The different
sets of invariants are nothing more than different numeric
representations of the same geometry. Moreover, both rep-
resentations contain the exact same amount of information
about the underlying asterism geometry.

A more direct way to compute the dihedral angles is to first
recognize that the normal to the plane spanned by observa-
tions ai and aj is in the direction of ai × aj. Therefore, the
dihedral angles may be computed directly from the measure-
ments or the catalog according to

cos2i=

(
ai × aj

)T
(ai × ak)

‖ai × aj‖ ‖ai × ak‖
=

(
ei × ej

)T
(ei × ek)

‖ei × ej‖ ‖ei × ek‖
(18)
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FIGURE 3. Illustration of spherical geometry showing inter-star angles
(θ12, θ23, θ31) and dihedral angles (21,22,23).

cos2j=

(
aj × ak

)T (aj × ai)
‖aj × ak‖ ‖aj × ai‖

=

(
ej × ek

)T (ej × ei)
‖ej × ek‖ ‖ej × ei‖

(19)

cos2k =
(ak × ai)T

(
ak × aj

)
‖ak × ai‖ ‖ak × aj‖

=
(ek × ei)T

(
ek × ej

)
‖ek × ei‖ ‖ek × ej‖

(20)

We clearly obtain the exact same values for 2i,2j,2k for
any attitude T , again showing that these quantities are invari-
ant under the action of SO(3).

Finally, it is possible to mix the invariants θij, θjk , θki and
2i,2j,2k so long as no more than three are used. For
example, Liebe [34] used an asterism descriptor comprised of
the three independent invariants θij, θki,2i. It is also possible
to choose a different number of stars and construct larger sets
of independent invariants. For example, Toloei, et al., [10]
construct a descriptor using combinations of inter-star angles
and dihedral angles amongst a set of five stars. However,
although three different five-star descriptors are presented in
Ref. [10], none of their proposed descriptors have the seven
(10 − 3 = 7) independent invariants expected for a five-star
asterism. This is noteworthy since five-star descriptors of less
than seven invariants leave helpful information unused, while
five-star descriptors of more than seven invariants include
redundant information that does not enhance descriptiveness.
This highlights the importance of the insights gained by a
rigorous accounting of the independent invariants that exist
for any given scenario.

2) PERMUTATION AND PROJECTIVE INVARIANTS FOR A
CALIBRATED CAMERA
The invariant sets θij, θjk , θki and2i,2j,2k introduced above
are permutation dependent.With only three stars, the observa-
tion indices may always be arranged in a consistent direction
(clockwise or counterclockwise) such that only three options
exist. That is, given three stars, the indices may be cyclically
permuted to obtain (1,2,3), (2,3,1), or (3,1,2). The invariant
descriptors of inter-star angle or dihedral angle will give

different numerical values for each permutation. This is not
inherently bad, since star identification and attitude determi-
nation ultimately require disambiguation of the star indices—
however, it may not be desirable to search the catalog three
times (once for each permutation) or to triple the size of the
catalog (so it contains the values for each permutation).
One solution to this problem is to write asterism descriptors

that are invariant to the ordering of the indices. There are a
few ways this may be done. One option, as suggested by Cole
and Crassidis [36], is to use the three unit vectors a1, a2, a3
(or e1, e2, e3) to construct the area and polar moment of
the triangle formed by their tips. These two quantities are
clearly independent of the ordering of the unit vectors. There
is, however, an additional (third) invariant that is possible
since three unit vectors have three invariants under the action
of SO(3).
Another option is to employ the method of

Christian et al. [30], where the cyclic permutation of the
indices is interpreted as the action of the group Z/3Z.
This permits three ordered invariants—which applies to both
(θij, θjk , θki) and (2i,2j,2k )—to be cyclically permuted
without changing the invariant descriptor. While the inter-
ested reader is directed to Ref. [30] for the derivation, the
final result to make the 3-tuple (x, y, z) permutation invariant
is

F1(x, y, z) = x + y+ z (21)

F2(x, y, z) = γ
[
2(x3 + y3 + z3)+ 12xyz (22)

−3(x2y+ y2x + y2z+ z2y+ z2x + x2z)
]

F3(x, y, z) = −3
√
3γ (x − y)(y− z)(z− x) (23)

where

γ =
[
x2 + y2 + z2 − (xy+ yz+ zx)

]−1
(24)

The reader may easily verify that this produces the same
(F1,F2,F3) for (x, y, z), (y, z, x), and (z, x, y). To our knowl-
edge, Eqs. (21)–(23) have not been applied to the star identi-
fication problem before.

Although permutation invariants allow for matching an
observed asterism to the catalog without considering the
specific index assignments within that asterism, disambigua-
tion of the indices must still occur to verify a hypothesized
observation-to-catalog match.

3) REMARKS ON POORLY CALIBRATED CAMERA
In the case of a poorly calibrated camera, we may choose
to either (1) exploit what calibration information may be
available or (2) treat the camera as completely uncalibrated.
This section focuses exclusively on the former, while the
latter is discussed in Section III-C.

For a poorly calibrated camera, we may still convert the
pixel coordinates of star centroids in an image into their
corresponding unit vectors using Eq. (13)—though these
unit vectors may be of lower quality when compared to a
well-calibrated camera. Nonetheless, all of the results from
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Section III-A still apply here and we find there to be 2d − 3
invariants described by inter-star angles, dihedral angles,
or some other quantity that is an algebraic function of these
invariant angles. The fundamental challenge here is the stabil-
ity of these invariants under perturbations to elements within
the camera calibration matrix K .
The poorly calibrated camera scenario most plausibly

occurs within the context of space exploration when an earlier
calibration (e.g., a pre-flight calibration) is degraded due to
environmental conditions (e.g., launch vibrations, thermal
strain). As discussed in Ref. [28], it is standard practice to
fix the principal point coordinates [up, vp]. This is done since
small errors in [up, vp] are indistinguishable from small errors
in sensor alignment. Assuming the pixels remain square (they
usually do), we also find dx = dy and α = 0. Thus, the ratio of
focal length to pixel pitch (dx = f /µx) is the most important
term to account for when considering an old and degraded
calibration. It is advisable to work on dx instead of f and µx
since neither f norµx are observable in practice (and it is only
the ratio dx that matters).

It was suggested by Leake, Arnas, and Mortari in
Ref. [9] that the star triad dihedral angles 2i,2j,2k from
Eqs. (15)–(17) are less sensitive to errors in focal length
than the inter-star angles. This is generally true, though two
points of clarification are required. First, the sensitivity is
dependent on the ratio dx = f /µx and not simply focal
length, as perturbations in the assumed value of the pixel
pitchµx alter the solution just as much as perturbations in the
focal length f . Second, while the dihedral angles are indeed
less sensitive to variations dx = f /µx , they are often more
sensitive to errors in measured star location. This is easily
demonstrated through a numerical simulation. Consider, for
example, a camera with a 20 deg FOV and a 2, 048× 2, 048
pixel FPA—corresponding to a camera having dx = 5, 807.4.
Now, using this camera, suppose we view a random section of
sky populated with stars from the Hipparcos star catalog [16],
[17]. This produces a synthetic image with the apparent star
pattern shown in Fig. 4. Let us now construct an example star
triad using the stars circled in red. We consider three cases
using this example star triad:

1) Perfect knowledge of dx and a star centroiding error of
0.1 pixel.

2) An error of 0.1% in dx and perfect knowledge of star
centroid locations.

3) An error of 0.1% in dx and a star centroiding error of
0.1 pixel.

A 10,000-run Monte Carlo simulation was performed for
each of these cases, with the results summarized in Table 1.
We clearly see that the inter-star angles are more stable in
Case 1 (when errors in star centroiding dominate) and that the
dihedral angles are more stable in Case 2 (when errors in dx
dominate). Case 3 shows that it is possible for the stability of
inter-star angles and dihedral angles to be comparable when
there is uncertainty in both measured star centroids and in
dx , though oftentimes one or the other dominates in practice.

TABLE 1. Numerical simulation on the stability of star triad invariants.
Results are for a 10,000-run Monte Carlo study using the three example
stars circled in red from Fig. 4.

FIGURE 4. Illustration of synthetic star pattern from Hipparcos star
catalog for a 20 deg FOV camera. All visible stars are show with a black ×.
An example star triad is highlighted with red circles.

These results are consistent with the numerical experiments
reported in Ref. [9], though our analysis provides a more
direct explanation of why certain cases demonstrate better
matching performance than others.

B. CALIBRATED CAMERA WITH A NARROW
FIELD-OF-VIEW (FOV)
When the camera FOV is narrow (a few degrees or less), the
z-component of each star observation in the camera frame
(ai) is nearly one. In this case, the apparent location of each
star in an image may often be approximated by the so-called
weak perspective projection model (i.e., scaled orthographic
projection). If the camera is calibrated, then the scaling is
known. Therefore, since the tangent plane to the celestial
sphere is parallel to the image plane, the apparent asterism
pattern only varies by a Euclidean transformation (translation
and rotation). The reader is reminded that this approximation
is never exactly true—even for a perfect pinhole camera.

Therefore, assuming a narrow FOV camera, asterisms are
transformed by the action of the 2D Euclidean group, E(2).
The 2D Euclidean group has dimension 3. Thus, since a
d-tuple of stars has dimension 2d , there are a total of 2d − 3
independent invariants for d ≥ 2 stars in a calibrated narrow
FOV image. For a pair of stars (d = 2) the unique invariant is
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the distance in the image (the length) between the two stars.
For three stars, there exist three (6 − 3 = 3) invariants, with
the most natural being the three inter-star distances in the
image. The inter-star distances in an image have become a
very popular invariant for constructing asterism descriptors,
being used in a variety of star identification pipelines [37].
Another popular option is to align the pattern with two refer-
ence stars (e.g., one star as the origin with the other star defin-
ing the first coordinate direction) and use the transformed
coordinates of the stars as the descriptor [38].

Observe now that there are 2d − 3 independent invariants
for both the generic calibrated camera and the narrow FOV
calibrated camera. Thus, no additional information (either
exact or approximate) is gained by restricting the problem
to a narrow FOV to allow for asterisms to be treated as
planar point patterns that only undergo simple Euclidean
transformations. Moreover, if the camera is well-enough cal-
ibrated to make the distances on the focal plane reliable, it is
well-enough calibrated to produce the unit vectors {ai}di=1.
Invariants built on the unit vector are exact for a projective
camera, whereas the distances are only approximately invari-
ant. Considering these observations, we find no compelling
reason to ever make the narrow FOV assumption (i.e., the
assumption of star patterns only undergoing 2D Euclidean
transformations in the image) the a when building an asterism
descriptor.

C. GENERIC UNCALIBRATED CAMERAS
For a generic uncalibrated camera (either wide or narrow
FOV), the projection of stars onto an image is governed by
Eq. (10). That is, the transformation is described by the action
of the projective general linear group, PGL(3), which has
dimension 8. Thus, since a d-tuple of stars has dimension
2d and PGL(3) has dimension 8, there are a total of 2d − 8
independent invariants for d ≥ 5 stars in an uncalibrated
camera image.

There appears to be some confusion in the existing litera-
ture on the construction of asterism descriptors for an uncali-
brated camera. A number of descriptors have been proposed,
but few of them are formally invariant under PGL(3). The
fundamental problem is repeated attempts to apply the invari-
ants (or, modificaitons of the invariants) arising from action of
SO(3) on unit vectors to the case of 2D images formed by the
action of PGL(3). Unfortunately, these are different problems
and their invariants are not interchangeable. Some of the
most popular descriptors are now reviewed and are shown to
not be invariant for an uncalibrated wide FOV camera under
perturbations in either attitude or in camera calibration. This
provides motivation for a different approach.

Based on the influential work of Samaan, Mortari, and
Junkins [15], it has been widely suggested [8], [39] that the
two independent interior angles of the apparent triangle in
an image can be used to describe a star triad for an uncal-
ibrated camera (see Fig. 5). It is immediately evident that
these interior angles are not invariant, since no invariants
exist for asterisms containing less than five stars. This may

FIGURE 5. Illustration of interior angles for planar star triangle as it
appears in an image. The interior angles (φi , φj , φk ) and the triangle edge
lengths (bij ,bjk ,bki ) are not invariant to general changes in attitude or
camera calibration.

FIGURE 6. For a wide FOV camera, thee interior angles to a star triad
change as the pattern moves across the image.

be verified by a simple numerical simulation. Consider a
triad of stars forming an equilateral triangle on the celestial
sphere, with each star being 2 deg away from the triangle
center [and, therefore, the stars being about 3.46 deg apart
from each other; i.e. θij = 3.46 deg using Eq. (14)]. When
centered along the camera optical axis, this three-star astrism
projects to an equilateral triangle in the image. Rotating the
camera so the optical axis is an angle φ from the star triad
center (positive in the direcion away from star i), we obtain
the image triangle interior angles shown in Fig. 6. These
angles are clearly not constant, thus the interior angles are
not attitude invariant [nor are they invariant under PGL(3)].
Considering these drawbacks of existing asterism descriptors
for uncalibrated cameras, there is a need to explore alternate
approaches.

1) INVARIANTS FROM DETERMINANTS
The projective invariants for an asterism of five stars may be
computed using the well-known invariant for five coplanar
points [40]. Specifically, making use of Eq. (10), observe that

I1 =
det([ū2 ū3 ū1]) det([ū4 ū5 ū1])
det([ū2 ū4 ū1]) det([ū3 ū5 ū1])

=
det(H[e2 e3 e1]) det(H[e4 e5 e1])
det(H[e2 e4 e1]) det(H[e3 e5 e1])

=
det(H)2

det(H)2
det([e2 e3 e1]) det([e4 e5 e1])
det([e2 e4 e1]) det([e3 e5 e1])
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=
det([e2 e3 e1]) det([e4 e5 e1])
det([e2 e4 e1]) det([e3 e5 e1])

(25)

Hence, I1 may be computed from the observed star image
coordinates {ūi}5i=1 or from the star catalog ICRF unit vectors
{ei}5i=1 and the same value is always computed regardless of
H (i.e., we compute the same value I1 for any camera attitude
and for any camera calibration parameters). There are two
independent invariants of this form that may be computed
as rational functions of the data (either observations or cata-
log). The determinant-based invariant above clearly holds for
any reasonable permutation of the five points. For example,
the following two point combinations produce independent
invariants

I1 =
det([ū2 ū3 ū1]) det([ū4 ū5 ū1])
det([ū2 ū4 ū1]) det([ū3 ū5 ū1])

=
det([e2 e3 e1]) det([e4 e5 e1])
det([e2 e4 e1]) det([e3 e5 e1])

(26)

and

I2 =
det([ū1 ū3 ū2]) det([ū4 ū5 ū2])
det([ū1 ū4 ū2]) det([ū3 ū5 ū2])

=
det([e1 e3 e2]) det([e4 e5 e2])
det([e1 e4 e2]) det([e3 e5 e2])

(27)

Since I1 and I2 are independent and a pattern of five stars
has only two independent invariants, it follows that any other
projective invariant one may conceive for a five-star asterism
must be dependent on I1 and I2. We may gain further insight
by considering these invariants within the context of a cross
ratio.

2) INVARIANTS FROM THE CROSS RATIO
It is well-known that four points along a line produce a
projective invariant in form of the cross ratio [41]. Making
use of the fact that points are dual to lines inP2 [25], it follows
that four lines through a common point also form an invariant
cross ratio.

Therefore, consider five points. Choose four points and
then construct the four lines from these that pass through the
fifth point. The cross-ratio of these lines is invariant under
the action of PGL(3). To make this explicit, recall that in
homogeneous coordinates the line `ij formed by the join of
points ūi and ūj is

`ij ∝ ūi × ūj (28)

where a point w̄ on line `ij satisfies the constratint `Tij w̄ =
0. Thus, choosing star ū1 as the reference point, we may
compute the cross ratio Cr(`12, `13, `14, `15) and see that it
is constant. There are a variety of ways to compute the cross
ratio, though the simplest is by use of determinants. In this
case, it may ultimately be shown that

Cr(`12, `13, `14, `15) =
det([ū2 ū3 ū1]) det([ū4 ū5 ū1])
det([ū2 ū4 ū1]) det([ū3 ū5 ū1])

(29)

which is exactly the same as Eq. (26). Choosing a different
point (other than ū1) as the referencewill produce an indepen-
dent invariant. Thus, we also note that the determinant-based
invariants of Eqs. (26) and (27) may be viewed as particular
cross-ratios.

3) INVARIANTS BY MAPPING TO A CANONICAL FRAME
An alternate approach is to choose four stars and to find
the homography that maps them to a canonical frame; e.g.,
the unit square defined by the corner points [0,0], [0,1],
[1,0], [1,1]. Four star observations in an image, with no three
belonging to a common line, uniquely define this transfor-
mation. The resulting homography may then be used to map
additional stars (e.g, a fifth or sixth star) into this same trans-
formed space. Since the action of PGL(3) itself is defined by a
homography, this procedure will always map the coordinates
of the additional stars in an image to the same place in the
transformed space—hence, the transformed coordinates of
these ‘‘extra’’ stars may be interpreted as invariants of the
pattern. This procedure was suggested in both Ref. [40] and
Ref. [42] as an invariant for a pattern of points in P2, and
has subsequently been used in other applications [43]. To our
knowledge, this approach has not yet been applied to star
identification.

4) PERMUTATION AND PROJECTIVE INVARIANTS FOR AN
UNCALIBRATED CAMERA
The invariants for an asterism of five stars discussed so far are
dependent on the ordering of the five stars. Moreover, unlike
the case of three stars, it is not generally possible to use a
simple clockwise/counterclockwise convention to distinguish
between patterns that are mirror images of one another. Thus,
each five-star asterism possesses a total of 5! = 120 possible
permutations, giving rise to 30 different invariant values (five
sets of six, 5×6 = 30). One way to address this problem is to
develop invariants that are insensitive to the arbitrary labeling
of the stars in an observed asterism—this will produce a
set of five possible invariant values, only two of which are
independent.

Projective and permutation (p2) invariants under PGL(3)
for a set of five points in P2 has been studied extensively
[44], [45]. The concept may be straightforwardly developed
from the results of Section III-C2. Suppose we arbitrarily
label the points with indices 1 to 5, choose point 1 as
the reference point, and then compute a cross ratio τ =
Cr(`12, `13, `14, `15) from Eq. (29). It is well known that the
4! = 24 permutations of four lines (corresponding here to the
lines we obtain from the 24 possible permutations of points
2,3,4,5) produce six different cross ratio values [41]

τ, τ−1, 1− τ, (1− τ )−1, τ (τ − 1)−1, τ−1(τ − 1) (30)

Moreover, there exists a rational function of the cross ratio—
the so-called j-invariant—that is the same when any of the
six cross ratio values from Eq. (30) are used. The classical
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j-invariant is given by [46]

J (τ ) =
(τ 2 − τ + 1)3

τ 2(τ − 1)2
(31)

which the reader may verify produces the same value J if
any of the six cross ratios from Eq. (30) are used as the
input argument. This, however, does not produce a bounded
value for J (τ ). Therefore, following Ref. [44], it is sometimes
convenient to write the p2 invariant

J ′(τ ) =
2τ 6 − 6τ 5 + 9τ 4 − 8τ 3 + 9τ 2 − 6τ + 2
τ 6 − 3τ 5 + 3τ 4 − τ 3 + 3τ 2 − 3τ + 1

(32)

which is both bounded (J ′ : R→ [2.0, 2.8]) and permutation
invariant. Once again, the reader may verify that the same
value for J ′ is obtained if any of the six cross ratios from
Eq. (30) are used as the input argument.

For a set of five points, it follows that we may compute five
different j- or p2 invariants from Eq. (31) or Eq. (32)—one
using each of the five points as the reference point for forming
the four lines used in the cross ratio. While five possible p2-
invariant values may be computed, only two of these five are
independent.

The primary difficulty with the p2 (or j-) invariants is which
of the five values to use as the descriptor. The authors of Ref.
[45] suggest to use all five p2 invariants (sort them and place
in a vector), though this approach is not space-optimal as it
contains three dependent values (since only two of the five are
independent). In principle, it is possible to pick any two of the
five entries as the descriptor, but this does not provide robust
noise performance due to the way the cross ratio values are
mapped to J (τ ) or J ′(τ ). A related phenomenonwas also seen
in the problem of crater identification in Ref. [30]. At this
point, it remains unclear if p2 invariants are a wise choice
for creating asterism descriptors in practice. This is an area
worthy of further study.

D. UNCALIBRATED CAMERAS WITH A NARROW
FIELD-OF-VIEW (FOV)
When the camera FOV is narrow (a few degress or less),
the image formation may be approximated by a scaled
orthograpic projection (similar to Sec. III-B). However,
unlike the case of the calibrated camera, the scaling is
unknown when the camera is uncalibrated. Thus, instead of
a Eucledian transformation, the apparent asterism varies by
a similarity transformation (translation, rotation, scaling) in
any given uncalibrated image from a narrow FOV camera.
The reader is again reminded that this approximation is never
exactly true—even for a perfect pinhole camera.

Therefore, for a narrow FOV camera, asterisms are trans-
formed by the action of S(2) (2D similarity group). A 2D
similarity transformation has dimension 4. Thus, since a d-
tuple of stars has dimension 2d , there are a total of 2d − 4
independent invariants for d ≥ 2 stars in an uncalibrated
camera image. For a triad of stars there are two (6 − 4 = 2)
independent invariants. The two independent interior angles
of a triangle used in Ref. [15] are an example. It is really only

in this special case where the proposed descriptor of Ref. [15]
is strictly valid.

For a triad of stars with two independent invariants, there
are other notable examples of descriptors beyond the influen-
tial work of Ref. [15] that are invariant to similarity transfor-
mations. Of note is the much earlier work of Groth [47] that
describes a triad of stars using one interior star angle (φi from
Fig. 5) and the ratio of two triangle edge lengths (ri = bij/bki,
with bij and bij from Fig. 5)

It is also observed that the popular four-star descriptor from
Ref. [3] for the astrometric registration of scientific images
also falls into this category—which is well justified given
the very narrow FOV of telescopes used for astronomical
research. In the case of Ref. [3], a similarity transformation
is applied to a four-star asterism’s image pattern such that the
two stars furthest apart from one another map to the points
[0, 0] and [1, 1]. The coordinates of the remaining two stars
in this canonical frame are taken as the pattern’s descriptor.
This is conceptually identical to the approach discussed in
Section III-C3, but the mapping to the canonical frame can
now be computed with only two points since the similarity
transform only has dimension 4. Further, since there are
2d − 4 independent invaraints for point patterns under S(2),
it is observed that this four-element descriptor is consistent
with the 8−4 = 4 invariants expected for a four-star asterism
(i.e., a star quad).

IV. MATCHING ASTERISM DESCRIPTORS TO A STAR
CATALOG
Regardless of the assumed camera type (generic calibrated,
narrow FOV calibrated, generic uncalibrated, narrow FOV
uncalibrated) or the specific invariants chosen for that camera
type, we obtain a set of numerical values (the invariants) from
the observed asterism that must be matched to corresponding
values from a star catalog. This type of invariant-based index-
ing problem is not unique to star identification and occurs
widely in other application domains [7], [42], [48], [49].

The fundamental idea behind invariant-based matching
is that catalog asterisms and measured image asterisms are
mapped into a common index space where direct comparison
is always possible (see Fig. 7). For the case of star identifica-
tion, each star in the catalog space and image space is a point
in P2. Defining G to be the number of independent invariants
(e.g., G = 2d − 3 for asterisms of d stars as viewed by a
calibrated camera; see Table 2), each asterismmay bemapped
to a single point inRG. One simple way to describe this point
in index space is with aG×1 vector formed by concatenation
of the G independent invariants in a specified order. The
vast majority of past star identification algorithms are simply
different schemes to find the closest catalog points to a query
point (formed by the observed asterism in an image) within
the index space, though few of these algorithms make the
abstraction to index space explicit.

When viewed using the index space abstraction, most suc-
cessful star identification algorithms have the same overall
framework. First, stars are grouped into asterisms (containing
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TABLE 2. Number of independent invariants for an asterism of d stars.

FIGURE 7. Mapping of entries from a catalog of known star asterisms and
from a measured image asterism into a common index space.
Measurement noise requires us to search a small region of the index
space to find all potential matches from the catalog.

two or more stars) and invariants are computed using data
from the star catalog and placed into an index. This task is per-
formed offline and infrequently (perhaps only once). Later,
an image is captured and the same invariants are computed.
These invariants are used to query the index and produce
a small list of feasible matches for the observed asterisms.
These match hypotheses are then verified using additional
information by additional checks.

While the conceptual framework is the same, practical
challenges with implementing the above steps lead to a
number of different (and equally reasonable) ways of per-
forming robust star identification. The majority of these
differences arise from how one chooses to balance the com-
peting priorities of asterism uniqueness, index size, and index
query speed. Different choices for the invariants discussed
in Section III lead to even more variations on this common
theme. It should come as no surprise, therefore, that so many
different star identification algorithms have been published
over the last 50 years [4], [5].

Asterisms containing more stars (large d) are more unique.
This improving uniqueness occurs since each asterism is a
point in index space and more stars increases the dimen-
sion of the index space (large d → large G). In gen-
eral (not just for star identification), the number of feasible
index matches for any given query decreases exponentially
with an increase in G [48]. This would suggest forming
asterisms of many stars, since increasing d would increase
the likelihood that an observed asterism produces only one
feasible match in the index. Moreover, for a sufficiently
large G there is no need for subsequent match verifica-
tion since the likelihood of a false match occurring (i.e.,
having a randomly occurring nearby point in index space)
becomes vanishingly small in a very high dimensional index
space.

The direct matching of asterisms containing many stars
(large d) is often impractical. For a star catalog containing
M stars, the worst case number of asterisms is

(M
d

)
. Since

it is always the case that M � d , the number of asterisms
grows exponentially as d increases. Thus, using asterisms of
more stars leads to an exponential growth in index size and
the problem quickly becomes intractable.

The intractability of catalog size is almost always
addressed using a two-part strategy. The first part is to not
consider all possible

(M
d

)
asterisms. Presuming the star iden-

tification is to be performed on a digital image from a pro-
jective camera, the sensor FOV is limited and there is no
need to consider asterisms whose angular extent is larger
than the camera FOV. For example, consider two of the
most popular contemporary star identification methods: the
Pyramid approach [35] and the so-called ‘‘Astrometry.net’’
approach [3]. Pyramid creates an index of inter-star angles
corresponding to two-star asterisms, with the index limited
to only star pairs whose angular separation is less than a
maximum threshold (usually taken as the camera FOV).
Astrometry.net uses a similarity transformation to create a
four-dimensional descriptor (what they call a ‘‘geometric
hash code’’) corresponding to a four-star asterism (a star
quad), with the index limited by tiling the celestial sphere
using HEALPix [50]. HEALPix tiles are chosen to be about
1/3 the size of an image and only the brightest stars in each
tile are kept. Then a specified number of four-star asterisms
smaller than a specified size are generated for each HEALPix
tile (using the brightest stars first). In both cases (Pyramid
and Astrometry.net) the index building procedure produces
substantially fewer than

(M
d

)
entries. Other star identification

pipelines use other approaches, though the end goal manag-
ing index size while maintaining good coverage of possible
asterisms is essentially the same.

The second part of the usual strategy for dealing with a
large asterism index is to query the index using efficient data
structures.While the practical constraints of the first part does
slow the exponential growth of index size with increasing
d , larger asterisms still produce a larger index—oftentimes
too large to permit brute force matching. Fast matching to
the index is essential since this task is often performed many
times before a match is verified. If an image contains N
observed stars, there are

(N
d

)
asterisms that can be built from

these stars. With d ! permutations of star assignments for each
asterism, there are a total of up to d !

(N
d

)
= N !/(N − d)!

possibilities that must be considered. The average time to find
a solution can sometimes be improved by not dwelling on
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certain star observations (whichmay be false returns or exces-
sively noisy) when checking these combinations and there
are a number of deterministic pattern shifting algorithms for
doing this [51].

There are a variety of data structures that may be used
to accelerate real-time matching, including a k-d tree [52],
R-tree [53], an n-d k-vector [54], or others [49], [55]. As an
example, consider again the popular Pyramid and Astrome-
try.net pipelines. The original Pryramid approach [35] selects
three observed stars and computes the three corresponding
inter-star angles. For each inter-star angle, a separate index
search is performed using 1-d k-vector [56], [57] to find
feasible corresponding star pairs from the catalog. The results
are combined to see if there is a unique set of star correspon-
dences that amongst the index returns. Thus, Pyramid is an
example of a case where searching is done one dimension
at a time (rather than all at once)—though recent improve-
ments have resulted in the n-d k-vector that would allow for
a three-dimensional index query [54]. The Astrometry.net
approach [3] uses a four-dimensional descriptor which is
directly matched with a single query of a four-dimensional
k-d tree. Some other star identification algorithms also use
k-vectors (e.g., [15], [37], [58], [59]) or k-d trees (e.g., [60]),
while others use completely different data structures.

The compromise between asterism uniqueness (which
is better for a larger d) and index size (which is better
for a smaller d) generally drives solutions star identifica-
tion pipelines towards the smallest possible d . This usually
requires match hypotheses be verified since the dimension
of G is not high enough to keep the likelihood of a false
match below an acceptable threshold. The Pyramid approach
[35] achieves this verification by checking the three inter-star
angles (only two of which are independent) between the
three stars forming the triangle match hypothesis and a fourth
star—these four stars from the so-called pyramid from which
this algorithm derives its name. The Astrometry.net approach
[3] achieves this verification by using the match hypothesis
to compute the attitude, reprojecting catalog stars onto the
image, and making additional star correspondences until a
Bayes factor metric exceeds a conservative threshold.

V. ATTITUDE DETERMINATION
The star identification procedure described in Sec. IV allows
for the matching of stars observed in an image with known
stars in a catalog. These corresponding lists of observed and
catalog stars may be used to determine the attitude of the
camera when the image was captured. The simplest case is a
calibrated camera and this situation is discussed first.We then
consider the case of a fully uncalibrated camera, followed by
the special case when only the ratio if focal length to pixel
pitch (dx = f /µx) is unknown.

A. CALIBRATED CAMERA
When the camera is calibrated, the star locations in the
image may be converted directly to unit vector directions
as discussed in Section III-A. In this case, the attitude

determination problem is to find the proper orthogonal matrix
T that solves Wahba’s problem [14],

min
T∈SO(3)

L(T ) =
1
2

n∑
i=1

wi‖ai − Tei‖2 (33)

where wi > 0 is the weight for the ith measurement. Though,
there are a variety of solutions to this problem [13], this
work briefly reviews the solution with the singular value
decomposition (SVD). That the SVD provided a solution to
Wahba’s problem was immediately apparent [61] and was
quite mature by the late 1980s [12].

The most compact derivation, and the one we prefer,
is to rewrite Wahba’s problem as an orthogonal Procrustes
problem [62]—which has a known solution with the SVD.
If the ICRF star directions and measured star directions are
arranged as columns in the matrices E and A, respectively,

E =
[
e1 . . . en

]
and A =

[
a1 . . . an

]
(34)

then, from Eq. (2), it follows that

A = TE (35)

Moreover, defining, a diagonal weight matrix W = W
1
2W

1
2

as
W = diag(w1, . . . ,wn) (36)

W
1
2 = diag(

√
w1, . . . ,

√
wn) (37)

we may rewrite the Wahba problem from Eq. (33) as

min
T∈SO(3)

L(T ) =
1
2
‖AW

1
2 − TEW

1
2 ‖

2
F

where ‖ · ‖F is the matrix Frobenius norm. The matrix opti-
mization problem on the right-hand side is an orthogonal Pro-
crustes problem—which arises in many applied mathematics
problems [62]—and was famously solved in the mid-1960s
[63].1 The solution to the orthogonal Procrustes problem is
to compute the matrix B

B =
(
AW

1
2

) (
EW

1
2

)T
= AWET =

n∑
i=1

wiaieTi (38)

and then compute the SVD B = USVT . From here, the
optimal solution for the attitude transformation matrix T is

T̂ = U

1 0 0
0 1 0
0 0 det(U)det(V )

VT (39)

The term det(U)det(V ) is necessary to ensure that the atti-
tude transformation matrix is proper orthogonal [i.e., that
det(T ) = +1] and describes a right-handed coordinate sys-
tem [12].

This result is well-known and is repeated here to (1) better
highlight the orthogonal Procrustes problem interpretation
of the SVD-based solution and (2) to provide a point of
contrast/comparison for attitude determination with an uncal-
ibrated camera (which also uses the SVD).

1There are earlier solutions to this problem, such as Green’s solution
developed in 1952 [64], but Schönemann’s SVD-based approach from [63]
is elegant, robust, and the most widely used today.
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B. UNCALIBRATED CAMERA (THE GENERIC CASE)
The appearance of an asterism in an image is related to
the catalog (or the asterism’s appearance in another image)
through a homography. This is a direct result of Eq. (10).

Therefore, given the homogrpahy from Eq. (10), let the
contributing matrix/vector entries be given byuivi

1

 ∝
h11 h12 h13
h21 h22 h23
h31 h32 h33

xiyi
zi

 (40)

Further, remove the scale ambiguity (different for each star)
by introducing the unknown scalar si such that Eq. (10)
becomes an equality relation

siūi = Hei (41)

The scalar si is different for each star observation and may be
computed as

si = kTHei (42)

where kT = [0 0 1]. Ideally, the loss function we would like
to solve is the maximum likelihood estimate (MLE) given by

min
H∈PGL(3)

L(H) =
1
2

n∑
i=1

δuTi R
−1
i δui (43)

where

δui = ũi −
SHei
kTHei

and where ũTi = [ũi, ṽi] is the measured image coordinate of
the ith star, S = [I2 02×1], and Ri is the 2 × 2 covariance
matrix describing the star centroiding error in the image. Let
the elements of the measurement covariance Ri be given by

Ri =
[
σ 2
ui σuvi
σuvi σ 2

vi

]
(44)

This loss function is desirable since it minimizes the residuals
of the reprojection of the stars in the image, which is where
the measurements are made. The difficulty is that this is
a nonlinear optimization problem that requires iteration to
solve.

That si [see Eq. (42)] is different for each star and also
depends on H is problematic. It may be eliminated from
the problem using the so-called Direct Linear Transform
(DLT) [25]. For this problem, the DLT is accomplished by
taking the cross-product of both sides of Eq. (41) with the
star image coordinates ūi,

si [ūi×] ūi = [ūi×]Hei = 03×1 (45)

where [ · ×] is the skew symmetric cross-product matrix such
that [a×]b = a× b. To isolate the elements of H in an easily
solvable form, rewrite the non-trivial (middle) term with a
Kronecker product,

[ūi×]Hei =
(
eTi ⊗ [ūi×]

)
vec(H)

=

(
[ūi×]⊗ eTi

)
vec(HT ) (46)

where⊗ is the Kronocker product operator. The 3×9 matrix
acting on vec(HT ) may be expanded as

[ūi×]⊗ eTi =

 0 −eTi vieTi
eTi 0 −uieTi
−vieTi uieTi 0

 (47)

Noting that [ūi×] is rank 2, only two rows of [ūi×]⊗ eTi are
independent. Thus, using only the first two rows[

01×3 −eTi vieTi
eTi 01×3 −uieTi

]
h = 02×1 (48)

where h is given by

h = vec(HT )

=
[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]T (49)

Observing that the right-hand side is zero, the second row
may be multiplied by −1 and the rows swapped to produce
the equivalent (and more convenient) expression[

−eTi 01×3 uieTi
01×3 −eTi vieTi

]
h = Dih = 02×1 (50)

and whereDi is a 2×9 of rank 2. When measurements of star
coordinates in the image are noisy, [ũi, ṽi], this constraint is
not exactly satisfied and we obtain[

−eTi 01×3 ũieTi
01×3 −eTi ṽieTi

]
h = D̃ih = ε (51)

where D̃i is the noisy version of Di.

1) THE DIRECT LINEAR TRANSFORM (DLT) SOLUTION FOR H
This motivates an alternate loss function to solve forH based
on minimization of the DLT residuals,

min
H∈PGL(3)

L(H) =
1
2

n∑
i=1

εT ε (52)

Substitution from Eq. (51) leads to

min
H∈PGL(3)

L(H) =
1
2

n∑
i=1

hT D̃
T
i D̃ih (53)

For an asterism of n stars, the optimal estimate of the
homography using the DLT loss function may be found by
taking the first differential of Eq. (53) and setting the result
to zero

n∑
i=1

hT D̃
T
i D̃i = 01×9 (54)

which is equivalent to(
n∑
i=1

D̃
T
i D̃i

)
h = 09×1 (55)
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Therefore, it is evident that h lies in the null space of
∑

D̃
T
i D̃i.

Unfortunately, the numerical conditioning of
∑

D̃
T
i D̃i is

sometimes poor. Therefore, define the matrix D̃

D̃ =

D̃1
...

D̃n

 (56)

such that

n∑
i=1

D̃
T
i D̃i = D̃

T
D̃ (57)

Since the null space of D̃
T
D̃ is the same as the null space of D̃,

superior numerical conditioning may be achieved by solving
the linear system

D̃h = 02n×1 (58)

which produces the same result for h as Eq. (55). In a
noise-free scenario with n ≥ 4, the 2n × 9 matrix D̃ = D
is rank 8 with a 1D null space defined by h. In the presence
of noise and with n ≥ 5, the matrix D̃ will generally be
rank 9 and we may find h through singular value decomposi-
tion, USVT

= D̃, with h being the column of V correspond-
ing to the smallest singluar value. Therefore, the 9×1 vector h
(which has arbitrary scale) may be found directly from image-
to-catalog star correspondences and fully defines the 3 × 3
homography matrix H (which also has arbitrary scale).
Despite being better than

∑
D̃
T
i D̃i, the numerical condi-

tioning of D̃ can be still quite poor for a high-resolution focal
plane array. This is a common problemwithDLT solutions for
the homography matrix. Therefore, making use of Hartley’s
normalization scheme from Ref. [65], consider the transfor-
mation

ū′i = Mūi (59)

where M is a chosen such that the centroid of {ū′i}
n
i=1 is the

origin and the mean distance is
√
2. The new homography

matrix is H ′ = MH and

siū′i = MHei = H ′ei (60)

Therefore, better numerical performance is generally
achieved by solving the problem

D̃
′
h′ = 02n×1 (61)

where the solution h′ = vec(H ′T ) may be rearranged to find
H ′. Then, the homography is given by

H = M−1H ′ (62)

This approach generally provides superior performance as
compared to solving the problem without normalization.

2) THE TOTAL LEAST SQUARES (TLS) SOLUTION FOR H
Equation (51) represents a total least squares (TLS) model
[66] and it is not self-evident that the DLT solution will
necessarily provide the statistically optimal estimate of the
homography matrix. Therefore, we now develop the statisti-
cally rigorous TLS solution.

To proceed it is useful to rewrite the homography constraint
from Eq. (50) as

Dih = (hT ⊗ I2)d i = 02×1 (63)

where h = vec(HT ) from Eq. (49) and where d i is the 18×1
vector

d i =



ei ⊗
[
−1
0

]

ei ⊗
[
0
−1

]

ei ⊗
[
vi
ui

]


(64)

Likewise, also define d̃ i and d̂ i as:

d̃ i =



ei ⊗
[
−1
0

]

ei ⊗
[
0
−1

]

ei ⊗
[
ṽi
ũi

]


, d̂ i =



ei ⊗
[
−1
0

]

ei ⊗
[
0
−1

]

ei ⊗
[
v̂i
ûi

]


(65)

The covariance of d̃ i is given by

Rd i =
[
012×12 012×6
06×12 eieTi ⊗ Ri

]
(66)

where Ri is from Eq (44). Note that Rdi has rank 2 because
rank(eieTi ⊗Ri) = rank(eieTi )× rank(Ri). Thus, the TLS loss
function is given by

L(d̂ i) =
1
2

n∑
i=1

(d̃ i − d̂ i)TR−1di (d̃ i − d̂ i),

subject to (ĥ
T
⊗ I2)d̂ i = 02×1, i = 1, 2, . . . , n

(67)

The constrained loss function is rewritten into an uncon-
strained one by determining a solution for d̂ i and substituting
its result back into Eq. (67). To accomplish this task, the
constraint is appended to the loss function using Lagrange
multipliers,

L(d̂ i) =
n∑
i=1

λTi (ĥ
T
⊗ I2)d̂ i +

1
2
(d̃ i − d̂ i)TR−1di (d̃ i − d̂ i)

(68)
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where each λi is a 2×1 Lagrangemultiplier. Taking the partial
of Eq. (68) with respect to each d̂ i leads to the following n
necessary conditions:

R−1di d̂ i − R
−1
di d̃ i + (ĥ⊗ I2)λi = 09×1 (69)

Left multiplying Eq. (69) by (ĥ
T
⊗I2)Rdi , using the constraint

(ĥ
T
⊗ I2)d̂ j = 02×1, and solving for λi gives

λi = Q−1i (ĥ
T
⊗ I2)d̃ i (70)

where

Qi ≡ (ĥ
T
⊗ I2)Rdi (ĥ⊗ I2) (71)

Substituting Eq. (70) into Eq. (69) leads to

d̂ i =
[
I18 − Rdi (ĥ⊗ I2)Q−1i (ĥ

T
⊗ I2)

]
d̃ i (72)

Further substituting Eq. (72) into Eq. (67) now gives the
unconstrained loss function

L(ĥ) =
1
2

n∑
i=1

d̃
T
i (ĥ⊗ I2)Q−1i (ĥ

T
⊗ I2)d̃ i (73)

which is now only a function of the unknown ĥ. The reader
is reminded that h has an unknown scale and, as expected
we observe that L(ĥ) = L(αĥ) for all α 6= 0. The most
common solution is to choose ‖ĥ‖ = 1, but other choices are
equally valid. Note that even though Rdi is a singular matrix,
the 2×2 matrix Qi is generally non-singular. Oftentimes, the
solution using Eq. (58) or the approximate solution discussed
below may be adequate, making the formal minimization of
Eq. (73) unnecessary. When an exact solution to the loss
function in Eq. (73) is required, one may use the iterative
solution provided in Appendix B of Ref. [67].

3) AN APPROXIMATE NON-ITERATIVE TLS SOLUTION FOR H
An approximate non-iterative solution for ĥmay be found by
assuming that the covariance for each row of the matrix D̃ is
the same. This is nearly true in many practical cases and the
details are now shown.

For many cameras and image processing techniques, it is
reasonable to assume that star centroiding errors are uncorre-
lated in the u and v directions: σuvi = 0. Moreover, under the
assumption that centroiding errors in the u and v directions are
the same, we find that σ 2

≈ σ 2
ui ≈ σ 2

vi . These assumptions
lead to the approximation of the star centroid covariance from
Eq. (44) as Ri ≈ σ 2I2.
For cameras with a narrow FOV, all the star observations

are clustered in the same approximate direction. In this case,
we find that

R̄e ≈ σ 2
uieie

T
i ≈ σ

2
vieie

T
i , i = 1, . . . , n (74)

where R̄e is

R̄e ≡
σ 2

n

n∑
i=1

eieTi (75)

Therefore, to a good approximation, the covariance for every
row of the matrix D̃ is about the same and is given by the
constant matrix

R̄D ≡
[
06×6 06×3
03×6 R̄e

]
(76)

Now, partition the matrix D̃ into two columns,

D̃ =


D̃1

D̃2
...

D̃n

 ≡ [01 02
]

(77)

where 01 is a matrix made up of the first six columns of
D̃, and 02 is a matrix made up of the last three columns
of D̃. Assuming a high-quality star catalog (as compared to
star tracker measurement noise), we assume the elements of
01 are known perfectly. It is also assumed that each row of
02 has covariance given by R̄e. This is consistent with the
assumption that each row of D̃ has a covariance given by
R̄D from Eq. (76). This now corresponds to the element-wise
uncorrelated and stationary TLS problem [66]. The property
of having some elements of D̃ known perfectly while others
containing errors is known as the generalized TLS (GTLS)
problem, and a computationally efficient and numerically
reliable non-iterative algorithm to solve the GTLS problem
is shown in Ref. [68]. This algorithm is preferred over others
because R̄e may be nearly singular, especially for small field-
of-view cameras.

4) FINDING K AND T FROM THE HOMOGRAPHY H
Given an estimate of H (e.g., from the DLT or GTLS solu-
tion), it is necessary to split H into K and T if the objective
is attitude determination. It was suggested in Ref. [69] that
such a task requires three starfield images, but this is not
true. The fully generic calibration may be performed with
only a single image. To see this, we may employ a mod-
ification of Zhang’s classic self-calibration technique with
a planar pattern [70]. Since the present problem is one of
viewing star directions (not a plane) and of attitude estimation
(and not pose estimation), the framework can be modified
with little effort to obtain simultaneous self-calibration and
attitude estimation with a single image. The details are now
discussed.

To begin, partition the attitude transformation matrix and
homography matrix by columns as

T =
[
t1 t2 t3

]
and H =

[
h1 h2 h3

]
(78)

such that we may rewrite Eq. (9) as

H =
[
h1 h2 h3

]
= ωK

[
t1 t2 t3

]
(79)

where ω 6= 0 describes the arbitrary scale of H . Therefore,
for each column,

hi = ωKt i, i = 1, 2, 3 (80)
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or, since K is always full rank,

t i =
1
ω
K−1hi, i = 1, 2, 3 (81)

The attitude transformation is an orthonormal matrix, leading
to six constraints on the vectors t1, t2, t3. The first three
constraints ensure that the columns are orthogonal: tTi t j = 0
for i 6= j. Therefore,

tTi t j = hTi K
−TK−1hj = 0 (82)

To compact notation, defineB = K−TK−1 as the 3×3matrix

B = K−TK−1 =

b11 b12 b13
b12 b22 b23
b13 b23 b33

 (83)

Consequently, the constraint of Eq. (82) may be rewritten as

tTi t j = hTi Bhj = 0→
(
hj ⊗ hi

)T vec(B) = 0 (84)

where ⊗ is the Kronocker product. Note that B is a 3 × 3
symmetric matrix, such that vec(B) has only six indepen-
dent elements. Therefore, define the 6 × 1 vector b =
[b11, b12, b22, b13, b23, b33]T , such that(

hj ⊗ hi
)T vec(B) = 0 → vTij b = 0 (85)

where

vij =


h1jh1i

h1jh2i + h2jh1i
h2jh2i

h1jh3i + h3jh1i
h2jh3i + h3jh2i

h3jh3i

 (86)

This leads to three expressions for the unique combinations
of h1,h2,h3,

vT12b = 0

vT13b = 0

vT23b = 0 (87)

Likewise, there are three more constraints to ensure that the
columns of T are unit vectors: tTi t i = 1. This yields

tTi t i =
1
ω2 h

T
i K
−TK−1hi = 1 (88)

hTi Bhi = ω
2 (89)

To remove the dependence on ω, column inner products may
be compared to one another

hTi Bhi = ω
2
= hTj Bhj (90)

or, equivalently,

(hi ⊗ hi)T vec(B) =
(
hj ⊗ hj

)T vec(B) (91)[
(hi ⊗ hi)−

(
hj ⊗ hj

)]T vec(B) = 0 (92)(
vii − vjj

)T b = 0 (93)

This produces three more expressions for the unique combi-
nations of h1,h2,h3,

(v11 − v22)T b = 0

(v11 − v33)T b = 0

(v22 − v33)T b = 0 (94)

The six constraints may be stacked into a linear system

vT12
vT13
vT23

(v11 − v22)T

(v11 − v33)T

(v22 − v33)T


b ≡ Vhb = 06×1 (95)

which may be solved for b (to an unknown scale) in
either the least squares sense or the TLS sense. In most
practical cases, the optimal value of b may be found by
finding (or approximating) the null space of Vh via a
SVD. The procedure is identical to the SVD-based solution
for Eq. (58).

To formally handle the measurement statistics, however,
requires minimization of the TLS loss function for the esti-
mate of b, denoted by b̂. Development follows along the lines
leading to Eq. (73), with the present problem taking the form

L(b̂) =
1
2
vecT (VT

h )(I6 ⊗ b̂)Q−1h (I6 ⊗ b̂
T
)vec(VT

h ) (96)

where

Qh ≡ (I6 ⊗ b̂
T
)Pv(I6 ⊗ b̂) (97)

and Pv is the error-covariance of vec(VT
h ), which is shown

later [see Eq. (117)]. Equation (96) may also have several
local minimums, which can be mitigated by applying the
constraint ‖b̂‖ = 1. It is rare that we find the TLS solution
to be meaningfully different than the simpler SVD-based
solution.

The five independent values of the estimate b̂ may be
used to find the five standard camera calibration parameters
dx , dy, α, up, vp. This may be done by rewriting b̂ as B̂ and
returning to the original equation,

B = ηK−TK−1 (98)

where the new unknown η represents the ambiguous
scale. Recovering the five camera calibration parameters
that comprise K when given only an estimate of B was
first accomplished by Zhang [70] and these results may
be used here without modification. Therefore, after some
tedious algebra (left as an exercise to the reader), we find
that

vp =
b12b13 − b11b23
b11b22 − b212

(99a)

η = b33 −
1
b11

[
b213 + vp (b12b13 − b11b23)

]
(99b)
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dx =
√
η

b11
(99c)

dy =

√
ηb11

b11b22 − b212
(99d)

α = −
1
η
b12d2x dy (99e)

up =
αvp
dy
−
b13d2x
η

(99f)

With the five elements of K known,

ωT = K−1H (100)

which is rearranged to find

ωKT
= THT (101)

where ω and T are the only unknowns. It is easy to solve for
ω by taking the determinant of both sides

ω3 det(K) = det(T ) det(H) (102)

and, since det(T ) = 1, we find

ω =
3

√
det(H)
det(K)

(103)

Moreover, since det(K) = dxdy > 0, we observe that

sign[ω] = sign[det(H)] (104)

such that

ω = sign[det(H)] ‖ω‖ (105)

Keeping track of the sign is important since the scalingω 6= 0
is arbitrary and it could change the sign of H as compared to
KT [see Eq. (79)]. However, as will soon become apparent,
actual computation of ω is never required.
Proceed, therefore, by constructing the orthogonal Pro-

crustes problem loss function from the equality in Eq. (101),

min
T∈SO(3)

L(T ) =
1
2
‖ωKT

− THT
‖
2
F (106)

Following the usual approach, compute the intermediate
matrix

G = ωKTH (107)

and then find the singular value decomposition

G = U(‖ω‖S)VT (108)

The optimal solution for T is once again given by [exact same
form as in Eq. (39)]

T̂ = U

1 0 0
0 1 0
0 0 det(U)det(V )

VT (109)

where the term det(U)det(V ) guarantees that the attitude
transformation matrix is a proper orthogonal matrix [i.e.,
that det(T ) = +1] and describes a right-handed coordinate

system. We almost always find det(U)det(V ) = +1 in prac-
tice due to the structure of K , though explicit computation
of det(U)det(V ) is required to formally guarantee that T̂ is
proper orthogonal.

To avoid needing to compute ω, define the matrix G′

G′ = sign[det(H)]KTH (110)

such that G = ‖ω‖G′. Therefore, letting the SVD of G′ be

G′ = USVT (111)

we observe that

G = ‖ω‖G′ = ‖ω‖USVT
= U(‖ω‖S)VT (112)

which is exactly the same as Eq. (108). Thus, we may com-
pute the SVD of the intermediate matrixG′ instead ofG since
the SVD of both produces the sameU andV—and, therefore,
both produce the same attitude estimate T̂ in Eq. (109).
Computing the SVD ofG′ from Eq. (110) instead of the SVD
of G from Eq. (107) allows us to avoid computing ω from
Eq. (103).

5) ERROR COVARIANCE FOR CALIBRATION PARAMETERS
Analytic construction of the error-covariance expressions for
all parameters is straightforward but tedious. The key results
are summarized here, with detailed partial derivatives shown
in the appendix. Details of these computations are left as an
exercise to the reader.

The objective here is to derive analytic expressions for
the error-covaraince of the five calibration parameters shown
in Eq. (99). This is accomplished by first determining the
error-covariances of h, Vh, and b. Equation (73) is related
to the negative log-likelihood. Thus, the error-covariance
of h to within first-order can be shown to be given
by [67]

Ph ≡ cov{h} =

(
n∑
i=1

DTi Q
−1
i Di

)−1
(113)

where Di is from Eq. (50) and Qi is from Eq. (71), with both
being evaluated evaluated using the true values of [ui, vi] and
h. However, the measurements or estimates must be used in
practice to compute Ph, which leads to second-order error
effects.

The derivation of Pv ≡ cov{vec(Vh)} is accomplished
using a standard covariance transformation, given by taking
partials of the quantities within Vh from Eq. (95). We briefly
observe that χ2 terms are also present [which should be evi-
dent from Eq. (86)], but these terms are ignored because they
are typically much smaller in magnitude than the first-order
Gaussian terms.

Note that h is defined as vec(HT ) while the columns
of H are used to define hi and hj in Eq. (85). Thus,
the error-covariance of vec(H) is required. This is given
by

P̄h ≡ cov{vec(H)} = K̄
T
3,3PhK̄3,3 (114)
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where K̄3,3 is 9× 9 commutation matrix [71], given by

K̄3,3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


(115)

where we also observe that K̄
−1
3,3 = K̄

T
3,3. Now, partition the

9×9 matrix P̄h as computed from Eq. (114) into 3×3 matrix
sub-blocks:

P̄h =

P̄h11 P̄h12 P̄h13
P̄
T
h12 P̄h22 P̄h23

P̄
T
h13 P̄

T
h23 P̄h33

 (116)

The nine sub-blocks of P̄h may be used to compute the
elements of the 36 × 36 matrix Pv ≡ cov{vec(Vh)}. These
may be found analytically using the equations provided in
the appendix. For convenience, the matrix Pv is partitioned
into into 36 elements (each being its own 6× 6 matrix, with
only 21 being unique) as follows:

Pv ≡



Pv11 Pv12 Pv13 Pv14 Pv15 Pv16
PTv12 Pv22 Pv23 Pv24 Pv25 Pv26
PTv13 PTv23 Pv33 Pv34 Pv35 Pv36
PTv14 PTv24 PTv34 Pv44 Pv45 Pv46
PTv15 PTv25 PTv35 PTv45 Pv55 Pv56
PTv16 PTv26 PTv36 PTv46 PTv56 Pv66

 (117)

Closed-form expressions for the 21 unique elements are
shown in the appendix.
The error-covariance of b now can be derived in a similar

way that the error-covariance of h has been derived

Pb ≡ cov{b}

=

{
VT
h

[
(I6 ⊗ bT )Pv(I6 ⊗ b)

]−1
Vh

}−1
(118)

where Vh is as defined in Eq. (95).
The remaining step is to transform Pb into the covariance

of the five calibration parameters, Pc. Therefore, proceed by
defining the calibration parameter vector xc as

xc ≡ [dx α dy up vp]T (119)

The error-covariance of xc is given by

Pc ≡ cov{xc} =
(
∂xc
∂b

)
Pb

(
∂xc
∂b

)T
(120)

The 30 partials making up the 5 × 6 matrix ∂xc/∂b may be
computed analytically and are shown in the appendix.

C. UNCALIBRATED CAMERA (ONLY UNKNOWN FOCAL
LENGTH)
In many cases, it is not desirable to estimate all five of the
camera calibration parameters. The principal point coordi-
nates are poorly observable and highly correlated with the
attitude estimate [28]. Consequently, the usual approach is
to fix the principal point coordinate and treat this as a sen-
sor misalignment (bias state in the navigation filter). For
well-built focal plane arrays, it is also generally reasonable
to assume the pixels are square (dx = dy) and that the
pixel columns are orthogonal to the pixel rows (no skewness,
α = 0). In this case, only the ratio of the focal length to pixel
pitch is unknown.

1) LEAST SQUARES SOLUTION
The overall approach is identical to the general uncali-
brated case, but some important simplifications may bemade.
Specifically, first observe that B simplifies to

B = K−TK−1 =
1
d2x

 1 0 −up
0 1 −vp
−up −vp d2x + u

2
p + v

2
p


(121)

where everything is known except dx . Therefore, using the
same definition of b as before,

b =
1
d2x



1
0
1
−up
−vp

d2x + u
2
p + v

2
p

 (122)

Then, using Eq. (86),

vTij b =
1
d2x

[
h1jh1i + h2jh2i

−
(
h1jh3i + h3jh1i

)
up −

(
h2jh3i + h3jh2i

)
vp

+ h3jh3i
(
d2x + u

2
p + v

2
p

)]
= 0 (123)

which may be rearranged to

h3jh3i c =
(
h1jh3i + h3jh1i

)
up

+
(
h2jh3i + h3jh2i

)
vp − h1jh1i − h2jh2i (124)

where we have introduced the intermediate variable c

c = d2x + u
2
p + v

2
p (125)

Letting the right-hand side be yij

yij =
(
h1jh3i + h3jh1i

)
up +

(
h2jh3i + h3jh2i

)
vp

− h1jh1i − h2jh2i (126)
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Therefore, stack the same six relationships as in Eq. (95) but
where c is the only unknown,

h32h31
h33h31
h33h32

h231 − h
2
32

h231 − h
2
33

h232 − h
2
33

 c =


y12
y13
y23

y11 − y22
y11 − y33
y22 − y33

→ gc = y (127)

whichmay be solved for the scalar c in either the least squares
sense or the TLS sense [67]. Therefore, with c known, the
unknown dx may be found by rearranging Eq. (125),

d̂x =
√
ĉ− u2p − v2p (128)

This solution for dx is exact andmake no assumptions beyond
the pinhole camera model.

2) ERROR COVARIANCE FOR dx

It is possible to analytically compute the error-variance for
d̂x . The details are now shown.
To begin, compute the error-covariance of hgy ≡

vec([g y]), which is given by

Pgy ≡ cov{vec(hgy)} =
[
ZggPhZTgg ZggPhZTyy
ZyyPhZTgg ZyyPhZTyy

]
(129)

The matrix partials Zgg and Zyy are analytic functions of H
and {u}ni=1 are given in the appendix.

Defining the vector zc ≡ [c − 1]T , the error-variance of ĉ
is given by

pc ≡ var{ĉ} = hTh [(z
T
c ⊗ I6)Phy(zc ⊗ I6)]−1hh (130)

It follows from Eq. (128), therefore, that the error-variance of
d̂x is given by

var{d̂x} =
pc

4(c− u2p − v2p)
(131)

where all quantities are evaluated at their respective true value
in theory, but are replaced by their estimates in practice. Note
that the matrix (zTc ⊗ I6)Phy(zc⊗ I6) in Eq. (130) may be sin-
gular. In practice, the pseudo-inverse works well but should
be checked using Monte Carlo simulations. This singular
condition may cause issues in computing the TLS estimates
of c, which may be overcome by using the approach shown in
Ref. [72]. Fortunately, a simple linear least-squares solution
is almost always adequate, but this should be validated for
any important application by a comparison with the more
statistically rigorous TLS solution.

VI. NUMERICAL RESULTS
A. VALIDATION OF INVARIANTS FOR ASTERISM
DESCRIPTORS
The invariance of the asterism descriptors proposed in this
work may be demonstrated with data from a real starfield
image. Therefore, as an example, consider the image shown
in Fig. 8. Using the pixel coordinates of the five labeled

FIGURE 8. Example starfield image collected in August 2019 near Troy,
NY by RPI student Grace Quintero. The image has a 2,048× 2,592 pixel
resolution and the camera has dx = dy = 7,250 (computed from vendor
specifications; calibrated value is different). White dots have been placed
on top of apparent stars to make their locations visible. Five example
stars are chosen at random and are marked with red dots, with a zoom-in
view provided for each.

TABLE 3. Measured star centroid coordinates (subpixel accuracy) in the
image for the five stars marked in red in Fig. 8. Pixel coordinates [ui , vi ]
use are measured from the image upper left-hand corner.

stars (see Table 3,) we may compute some of the invariants
discussed in Section. III.

For the case of a calibrated camera (K known), we may
compute the line-of-sight unit vectors ai to the five ref-
erence stars in Fig. 8 using Eq. (13). These unit vectors
{ai}5i=1 may be used to find a number of different invariants
directly from the image data. For example, using just the
first three stars it is possible to compute the inter-star angles
θ12, θ23, θ31 [see Eq. (14)], the dihedral angles 21,22,23
[see Eqs. (18)–(20)], or the permutation invariants F1,F2,F3
[see Eqs. (21)–(23)]. We could compute these invariants for
different combinations of stars (e.g., any set of 10− 3 = 7
independent inter-star angles for the highlighted five-star
set), but doing so provides no additional insight. Numerical
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TABLE 4. Example asterism invariants for a calibrated camera as
computed from stars 1–3 from example starfield image shown in Fig. 8.

values for these invariants are shown in Table 4, where values
have been computed directly from the Hipparcos catalog (left
column), with K directly from the camera and lens speci-
fications (center column), and with K computed using the
self-calibration algorithm from Section V-B (right column).

A few important observations may now be made. First,
we observe the numerical values for any given invariant is
nearly the same in all three columns. They are not exactly the
same since there is measurement noise associated with the
observed star locations in the real image. This demonstrates
that the quantities listed in Table 4 are indeed invariants, thus
allowing us to query an index built from the star catalog
using the numerical values computed from a calibrated image
of unknown attitude. Second, the analyst could choose any
of these invariants to build a descriptor. However, since an
asterism of d stars has 2d − 3 independent invariants, only
three (6 − 3 = 3) of the invariants in Table 4 can be
simultaneously independent. Third, the reader may verify
to themselves that the invariants F1,F2,F3 are permutation
invariant by substitution into Eqs. (21)–(23). For example,
using the inter-star values form the Hipparcos catalog,

F1(5.4891, 11.9641, 12.2993)

= F1(11.9641, 12.2993, 5.4891)

= F1(12.2993, 5.4891, 11.9641)

= 29.7526

A similar exercise may be performed for F2 and F3.
The same example image (see Fig. 8) may also be used

to validate the invariants for an uncalibrated camera. Here,
we focus on the invariants that use determinants and cross
ratios for a five-star asterism [e.g., Eq. (29)], as these offer
the clearest understanding of the problem. The numerical
values for some of the possible invariants are summarized in
Table 5. Once again, we observe the numerical values of any
given invariant is nearly the same when computed form the
Hipparcos catalog or from the observed star centroids.

Unlike the calibrated camera results, the matrix K is not
known for an uncalibrated camera. As a result, we cannot
compute ai from Eq. (13). We remind the reader that the
invariant values in the right-hand column of Table 5 (labeled
‘‘From Image’’) are computed directly from the star image
coordinates in units of pixels (exactly as they appear in

TABLE 5. Example asterism invariants for an uncalibrated camera as
computed from stars 1–5 from example starfield image shown in Fig. 8.

Table 3). That is, letting ūTi = [ui, vi, 1], we compute the
invariants using Eqs. (26), (27), and (29). Since the invariants
are computed directly from the image coordinates, we may
find them without any a priori calibration knowledge—thus
allowing recognition of a star pattern with an image from an
arbitrary projective camera having an unknown calibration.

The first section of Table 5 lists the six possible invariants
that result from using star #1 in Fig. 8 as the reference star.
As discussed in Section III-C4, while there are 4! = 24
possible permutations of the remaining four points, these
produce only six different invariant values. We observe that
the six numerical values in this example do indeed follow the
classical relations expected fromEq. (30). For example, using
the star-catalog invariant values from Table 5,

I (a)1 = τ = −2.4029

I (b)1 = τ
−1
= −0.4162

I (c)1 = 1− τ = 3.4029

I (d)1 = (1− τ )−1 = 0.2939

I (e)1 = τ (τ − 1)−1 = 0.7061

I (f )1 = τ
−1(τ − 1) = 1.4162

A similar expansion of possibilities could be carried out for
the invariants listed in the second section of Table 5. This is
not done here for the sake of brevity.

Since the six cross-ratio values arising from a particu-
lar choice of reference star are not independent, we may
instead compute a single unique invariant for each case. We
present two possibilities in this manuscript, including J (·) in
Eq. (31) and J ′(·) in Eq. (32). Again using I1 as the example,
we observe that J and J ′ are unchanged by permutations in
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assignment of the non-reference star:

J (I (a)1 ) = J (I (b)1 ) = J (I (c)1 ) = J (I (d)1 )

= J (I (e)1 ) = J (I (f )1 ) = 11.5589

and

J ′(I (a)1 ) = J ′(I (b)1 ) = J ′(I (c)1 ) = J ′(I (d)1 )

= J ′(I (e)1 ) = J ′(I (f )1 ) = 2.3505

Similar resultsmay be shown for I2, I3, I4, I5 and their permu-
tation invariants J2, J3, J4, J5 and J ′2, J

′

3, J
′

4, J
′

5. Computation
of all the remaining possibilities is trivial from the data pro-
vided in Table 3 and Table 5. Such an exercise is left to the
reader.
As with the star triad, the navigation analyst could

construct an asterism descriptor using any combination of
independent invariants from Table 5. There are also other
invariants that could also be used in conjunction with (or in
place of) the invariants Table 5—such as the coordinates of
stars in a canonical frame (see Section III-C3)—so long as the
combination of invariants remain independent. Recall there
are 2d − 8 independent invariants for a generic calibrated
camera, allowing for only a two-element descriptor for a
five-star asterism.

B. VALIDATION OF ATTITUDE DETERMINATION AND
CALIBRATION
The attitude determination algorithms presented in this paper
are validated through a number of numerical studies. We first
show the approximate equivalence between the DLT and
GTLS solution for estimating the homography matrix of an
uncalibrated camera. We then present a comparative study
of the attitude determination and camera self-calibration per-
formance that may be achieved under different conditions
and with different algorithms. All results in this section are
performed on simulated data, since computing meaningful
attitude determination and camera calibration performance
statistics is difficult on real images due a lack of accurate
ground truth knowledge.

1) DLT VS. GTLS FOR AN UNCALIBRATED CAMERA
Two non-iterative algorithms are presented for finding the
homography matrix from a single starfield image, thus allow-
ing for simultaneous camera calibration (all five camera
parameters) and attitude determination. The first method is
the direct linear transform (DLT) presented in Sec. V-B1,
which eliminates iteration by solving an unweighted least
squares problem. The second method is the generalized total
least squares (GTLS) solution presented in Sec. V-B3, which
eliminates iteration by assuming a narrow FOV and that each
row of D has the same covariance.
For most realistic camera configurations, these two meth-

ods produce nearly equivalent estimates ofH . The two meth-
ods, therefore, also produce nearly equivalent estimates of the
five camera calibration parameters and camera attitude. This
may be easily illustrated by a numerical example.

FIGURE 9. Comparison of residuals in h11 and h12 for the DLT estimate
(red ×) and the GTLS estimate (black circles).

Consider a camera with a 20 deg FOV and a
1, 024× 1, 024 pixel focal plane array. Assuming a star
centroiding error of 0.1 pixel, we may compute the
errors in the nine elements of h (assuming the nor-
malization ‖h‖ = 1). A representative scatter plot of
such residuals is shown in Fig. 9 for 100 runs of a
Monte Carlo, where we can see the estimates from the
DLT are indiscernible from the estimate from the GTLS.
This same trend holds for scatter plots of all elements
of H .

This same example scenario may be used to val-
idate the analytic covariance expressions. Specifically,
consider the numerically computed covariance of the
five calibration parameters from 50,000 Monte Carlo
runs

P(num)
c =


0.064 − 0.002 0.001 0.123 − 0.100
−0.002 0.113 0.004 − 0.239 − 0.003
0.001 0.004 0.045 0.053 0.021
0.123 − 0.239 0.053 3.541 0.487
−0.100 − 0.003 0.021 0.487 2.740


The difference in the numerical covariance for DLT and the
GTLS is on the order 10−6 or less (at least three decimal
places past what is reported above). The numerical covari-
ance compares favorably to the analytic covariance computed
using Eq. (120)

P(comp)
c =


0.064 − 0.002 0.001 0.123 − 0.105
−0.002 0.114 0.005 − 0.235 0.001
0.001 0.005 0.045 0.053 0.020
0.123 − 0.235 0.053 3.513 0.488
−0.105 0.001 0.020 0.488 2.788


Other example scenarios and Monte Carlo runs also show
good agreement between analytic and numerical error covari-
ances.
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FIGURE 10. Contours of attitude determination (top row) and calibration performance (bottom three rows) for a variety of camera configurations. Left
column assumes that no calibration information is available (algorithm from Sec. V-B). The middle two columns assume that dx is the only unknown
calibration parameter, with the second column using the algorithm from Sec. V-C and the third column using the algorithm from [15]. The right column
assumes a perfectly calibrated camera and estimates the attitude using the algorithm from [12]. All results show standard deviation for the specified
parameter as computed from a 2,000-run Monte Carlo at each combination of camera FOV and star centroiding error.
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2) CALIBRATION AND ATTITUDE DETERMINATION
PERFORMANCE COMPARISONS
To assess the attitude determination performance, a simple
Monte Carlo analysis was performed where the camera FOV
was varied from 20 deg to 40 deg and the star centroiding
error was varied from 0.1 pixels to 1.0 pixel. At each combi-
nation of FOV and centroiding error, a 2,000-runMonte Carlo
simulation was performed and the results are summarized in
Fig. 10.

The simulation results in Fig. 10 assume a camera with
a 2, 048 × 2, 048 pixel focal plane array (a 4.2 megapixel
image) that is capable of viewing stars of magnitude 5.5 or
brighter. A camera with a different resolution or with a differ-
ent star magnitude threshold will have different performance.
For each run of the Monte Carlo for each design condition,
the camera was randomly pointed with a uniform distribution
around the celestial sphere. Star directions were obtained
from the Hipparcos star catalog.

The results of Fig. 10 are exactly as we would expect. First,
looking at the top row, the best attitude determination perfor-
mance is achievedwith perfect a priori calibration knowledge
and the worst attitude determination performance is achieved
in the absence of any a priori calibration knowledge. The
primary cause of the larger attitude error for a completely
uncalibrated camera is due to the relatively poor observability
of the principal point coordinates [up, vp], which was dis-
cussed extensively in Ref. [28]. If we assume the princi-
pal point coordinates [up, vp] are known, that the pixels are
square (dx = dy), and that the image rows and columns are
perfectly orthogonal (α = 0), then dx is the only unknown
(that is, if only the ratio of the focal length to pixel pitch is
unknown). In this case, themethodwe introduce in Section V-
C marginally outperforms the method proposed by Samaan,
et al., in Ref. [15] in estimating dx (see second row of Fig. 10).
Again looking at the top row of Fig. 10, either method (ours or
fromRef. [15]) is capable of producing attitude determination
performance that is very close to the perfectly calibrated
camera—with the performance of our method being nearly
indistinguishable from that of a perfectly calibrated camera.

VII. CONCLUSION
Digital images of stars collected by projective cameras con-
tain a wealth of information that is useful for many scientific
and engineering applications. In this work, it is shown how
invariant theory may be used to recognize the apparent pat-
tern of stars in an image for a number of important cases:
generic calibrated cameras, narrow field-of-view (FOV) cal-
ibrated cameras, generic uncalibrated cameras, and narrow
FOV uncalibrated cameras. For each case, the number of
independent invariants is enumerated and examples of easily
computable invariants are presented. This provides the reader
with an easy-to-implement guide for recognizing star patterns
(i.e., asterisms) for a wide array of different imaging systems.

With the star identification problem solved, we explore
how matched stars may be used to simultaneously calibrate

a camera and compute the attitude. A compact algorithm is
provided that allows for calibration with a single star image,
in contrast to many past algorithms that require an ensemble
of star images. Building on this framework, a simplified
algorithm is shown for the important (and quite common)
special case where only the ratio of focal length to pixel pitch
(dx = f /µx) is unknown. Our algorithm for simultaneously
finding dx and camera attitude provides virtually the same
attitude determination performance as a perfectly calibrated
camera.

APPENDIX
A. ANALYTIC EXPRESSIONS FOR ELEMENTS OF Pv

It is possible to compute the partial derivatives of Eq. (86) to
analytically find the 36 elements of the covariance matrix Pv
from Eq. (117). To simplify notation, we first introduce the
duplication matrix C to account for the repeated elements in
vec(B) that occur due to the symmetry of B. Letting Cb =
vec(B), it follows that

C ≡



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(132)

Therefore, after performing the requisite calculations, we find
the following analytic expressions for the elements ofPv from
Eq. (117):

Pv11 = CT [(h2 ⊗ I3) (I3 ⊗ h1)
] [P̄h11 P̄h12
P̄
T
h12 P̄h22

]
×
[
(h2 ⊗ I3) (I3 ⊗ h1)

]T C (133a)

Pv12 = CT [(h2 ⊗ I3) (I3 ⊗ h1)
] [P̄h11 P̄h13
P̄
T
h12 P̄h23

]
×
[
(h3 ⊗ I3) (I3 ⊗ h1)

]T C (133b)

Pv13 = CT [(h2 ⊗ I3) (I3 ⊗ h1)
] [P̄h12 P̄h13
P̄h22 P̄h23

]
×
[
(h3 ⊗ I3) (I3 ⊗ h2)

]T C (133c)

Pv14 = CT
{ [

(h2 ⊗ I3) (I3 ⊗ h1)
] [P̄h11
P̄
T
h12

]
× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

−
[
(h2 ⊗ I3) (I3 ⊗ h1)

] [P̄h12
P̄h22

]
× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

}
C (133d)

Pv15 = CT
{ [

(h2 ⊗ I3) (I3 ⊗ h1)
] [P̄h11
P̄
T
h12

]
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× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

−
[
(h2 ⊗ I3) (I3 ⊗ h1)

] [P̄h13
P̄h23

]
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

}
C (133e)

Pv16 = CT
{ [

(h2 ⊗ I3) (I3 ⊗ h1)
] [P̄h12
P̄h22

]
× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

−
[
(h2 ⊗ I3) (I1 ⊗ h1)

] [P̄h13
P̄h22

]
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

}
C (133f)

Pv22 = CT [(h3 ⊗ I3) (I3 ⊗ h1)
] [P̄h11 P̄h13
P̄
T
h13 P̄h33

]
×
[
(h3 ⊗ I3) (I3 ⊗ h1)

]T C (133g)

Pv23 = CT [(h3 ⊗ I3) (I3 ⊗ h1)
] [P̄h12 P̄h13
P̄
T
h23 P̄h33

]
×
[
(h3 ⊗ I3) (I3 ⊗ h2)

]T C (133h)

Pv24 = CT
{ [

(h3 ⊗ I3) (I3 ⊗ h1)
] [P̄h11
P̄
T
h13

]
× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

−
[
(h3 ⊗ I3) (I1 ⊗ h1)

] [P̄h12
P̄
T
h23

]

× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T
}
C (133i)

Pv25 = CT
{ [

(h3 ⊗ I3) (I3 ⊗ h1)
] [P̄h11
P̄
T
h13

]
× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

−
[
(h3 ⊗ I3) (I1 ⊗ h1)

] [P̄h13
P̄h33

]
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

}
C (133j)

Pv26 = CT
{ [

(h3 ⊗ I3) (I3 ⊗ h1)
] [P̄h12
P̄
T
h23

]
× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

−
[
(h3 ⊗ I3) (I1 ⊗ h1)

] [P̄h13
P̄h33

]
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

}
C (133k)

Pv33 = CT [(h3 ⊗ I3) (I3 ⊗ h2)
] [P̄h22 P̄h23
P̄
T
h23 P̄h33

]
×
[
(h3 ⊗ I3) (I3 ⊗ h2)

]T C (133l)

Pv34 = CT
{ [

(h3 ⊗ I3) (I3 ⊗ h2)
] [P̄Th12
P̄hT13

]

× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

−
[
(h3 ⊗ I3) (I1 ⊗ h2)

] [P̄h22
P̄
T
h23

]

× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T
}
C (133m)

Pv35 = CT
{ [

(h3 ⊗ I3) (I3 ⊗ h2)
] [P̄Th12
P̄
T
h13

]
× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

−
[
(h3 ⊗ I3) (I1 ⊗ h2)

] [P̄h23
P̄h33

]
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

}
C (133n)

Pv36 = CT
{ [

(h3 ⊗ I3) (I3 ⊗ h2)
] [P̄h22
P̄
T
h23

]
× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

−
[
(h3 ⊗ I3) (I1 ⊗ h2)

] [P̄h23
P̄h33

]
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

}
C (133o)

Pv44 = CT
{
[(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h11

× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

+ [(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄h22
× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

− [(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h12
× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

−[(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄
T
h12

× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T
}
C (133p)

Pv45 = CT
{
[(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h11

× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

− [(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h13
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

− [(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄
T
h12

× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

+ [(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄h23

× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T
}
C (133q)

Pv46 = CT
{
[(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h12

× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

− [(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h13
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

− [(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄h22
× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T
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+ [(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄h23

× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T
}
C (133r)

Pv55 = CT
{
[(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h11

× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T

+ [(h3 ⊗ I3)+ (I3 ⊗ h3)]P̄h33
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

− [(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h13
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

− [(h3 ⊗ I3)+ (I3 ⊗ h3)]P̄
T
h13

× [(h1 ⊗ I3)+ (I3 ⊗ h1)]T
}
C (133s)

Pv56 = CT
{
[(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h12

× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

− [(h1 ⊗ I3)+ (I3 ⊗ h1)]P̄h13
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

− [(h3 ⊗ I3)+ (I3 ⊗ h3)]P̄
T
h23

× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

+ [(h3 ⊗ I3)+ (I3 ⊗ h3)]P̄h33

× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T
}
C (133t)

Pv66 = CT
{
[(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄h22

× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T

+ [(h3 ⊗ I3)+ (I3 ⊗ h3)]P̄h33
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

− [(h2 ⊗ I3)+ (I3 ⊗ h2)]P̄h23
× [(h3 ⊗ I3)+ (I3 ⊗ h3)]T

− [(h3 ⊗ I3)+ (I3 ⊗ h3)]P̄
T
h23

× [(h2 ⊗ I3)+ (I3 ⊗ h2)]T
}
C (133u)

B. ANALYTIC EXPRESSIONS FOR ELEMENTS OF ∂xc/∂b
Given the relations from Eq. (99), it is possible to compute
the partial derivatives of the calibration parameters xTc =
[dx , α, dy, up, vp] with respect to the elements of B. These
partial derivatives are as follows:

∂vp
∂b11

= −
b23

b11b22 − b212
− b22

b12b13 − b11b23
(b11b22 − b212)

2
(134a)

∂vp
∂b12

=
b13

b11b22 − b212
+ 2b12

b12b13 − b11b23
(b11b22 − b212)

2
(134b)

∂vp
∂b22

= −b11
b12b13 − b11b23
(b11b22 − b212)

2
(134c)

∂vp
∂b13

=
b12

b11b22 − b212
(134d)

∂vp
∂b23

= −
b11

b11b22 − b212
(134e)

∂vp
∂b33

= 0 (134f)

∂η

∂b11
=

1
b11

{
1
b11

[
b213 + vp (b12b13 − b11b23)

]
−
∂vp
∂b11

(b12b13 − b11b23)+ vpb23

}
(135a)

∂η

∂b12
= −

1
b11

[
vpb13 +

∂vp
∂b12

(b12b13 − b11b23)
]

(135b)

∂η

∂b22
= −

1
b11

∂vp
∂b22

(b12b13 − b11b23) (135c)

∂η

∂b13
= −

1
b11

[
2b13 + vpb12 +

∂vp
∂b13

(b12b13 − b11b23)
]

(135d)
∂η

∂b23
=

1
b11

[
vpb11 −

∂vp
∂b23

(b12b13 − b11b23)
]

(135e)

∂η

∂b33
= 1 (135f)

∂dx
∂b11

=
1

2b11

(
η

b11

)−1/2 (
∂η

∂b11
−

η

b11

)
(136a)

∂dx
∂b12

=
1

2b11

(
η

b11

)−1/2
∂η

∂b12
(136b)

∂dx
∂b22

=
1

2b11

(
η

b11

)−1/2
∂η

∂b22
(136c)

∂dx
∂b13

=
1

2b11

(
η

b11

)−1/2
∂η

∂b13
(136d)

∂dx
∂b23

=
1

2b11

(
η

b11

)−1/2
∂η

∂b23
(136e)

∂dx
∂b33

=
1

2b11

(
η

b11

)−1/2
(136f)

∂dy
∂b11

= −
1
2

(
ηb11

b11b22 − b212

)−1/2 [
ηb11b22

(b11b22 − b212)
2

−

∂η
∂b11

b11 + η

b11b22 − b212

]
(137a)

∂dy
∂b12

=
1
2

(
ηb11

b11b22 − b212

)−1/2 [
2ηb11b12

(b11b22 − b212)
2

+
b11

b11b22 − b212

∂η

∂b12

]
(137b)

∂dy
∂b22

= −
1
2

(
ηb11

b11b22 − b212

)−1/2 [
ηb211

(b11b22 − b212)
2

−
b11

b11b22 − b212

∂η

∂b22

]
(137c)

∂dy
∂b13

=
1
2

(
ηb11

b11b22 − b212

)−1/2
b11

b11b22 − b212

∂η

∂b13
(137d)

∂dy
∂b23

=
1
2

(
ηb11

b11b22 − b212

)−1/2
b11

b11b22 − b212

∂η

∂b23
(137e)
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∂dy
∂b33

=
1
2

(
ηb11

b11b22 − b212

)−1/2
b11

b11b22 − b212

∂η

∂b33
(137f)

∂α

∂b11
=

b12dx
η

(
dxdy
η

∂η

∂b11
− 2dx

∂dx
∂b11
− dx

∂dy
∂b11

)
(138a)

∂α

∂b12
=

b12dx
η

(
dxdy
η

∂η

∂b12
− 2dx

∂dx
∂b12
− dx

∂dy
∂b12

)
−

1
η
d2x dy (138b)

∂α

∂b22
=

b12dx
η

(
dxdy
η

∂η

∂b22
− 2dx

∂dx
∂b22
− dx

∂dy
∂b22

)
(138c)

∂α

∂b13
=

b12dx
η

(
dxdy
η

∂η

∂b13
− 2dx

∂dx
∂b13
− dx

∂dy
∂b13

)
(138d)

∂α

∂b23
=

b12dx
η

(
dxdy
η

∂η

∂b23
− 2dx

∂dx
∂b23
− dx

∂dy
∂b23

)
(138e)

∂α

∂b33
=

b12dx
η

(
dxdy
η

∂η

∂b33
− 2dx

∂dx
∂b33
− dx

∂dy
∂b33

)
(138f)

∂up
∂b11

=

∂α
∂b11

vp +
∂vp
∂b11

α

dy
−
αvp
d2y

∂dy
∂b11

− 2
b13dx
η

∂dx
∂b11
+
b13d2x
η2

∂η

∂b11
(139a)

∂up
∂b12

=

∂α
∂b12

vp +
∂vp
∂b12

α

dy
−
αvp
d2y

∂dy
∂b12

− 2
b13dx
η

∂dx
∂b12
+
b13d2x
η2

∂η

∂b12
(139b)

∂up
∂b22

=

∂α
∂b22

vp +
∂vp
∂b22

α

dy
−
αvp
d2y

∂dy
∂b22

− 2
b13dx
η

∂dx
∂b22
+
b13d2x
η2

∂η

∂b22
(139c)

∂up
∂b13

=

∂α
∂b13

vp +
∂vp
∂b13

α

dy
−
αvp
d2y

∂dy
∂b13

− 2
b13dx
η

∂dx
∂b13
+
b13d2x
η2

∂η

∂b13
−
d2x
η

(139d)

∂up
∂b23

=

∂α
∂b23

vp +
∂vp
∂b23

α

dy
−
αvp
d2y

∂dy
∂b23

− 2
b13dx
η

∂dx
∂b23
+
b13d2x
η2

∂η

∂b23
(139e)

∂up
∂b33

=

∂α
∂b33

vp +
∂vp
∂b33

α

dy
−
αvp
d2y

∂dy
∂b33

− 2
b13dx
η

∂dx
∂b33
+
b13d2x
η2

∂η

∂b33
(139f)

∂dx
∂b
=

1
2
√
ηb11

∂η

∂b
−

[√
1
ηb311

0 0 0 0 0
]
(140)

C. ANALYTIC EXPRESSIONS FOR ELEMENTS OF ∂xc/∂b
It is possible to analytically compute the partial derivatives
necessary to find the covariance Pgy from Eq. (129). This
requires computation of two derivatives, the first of which
is ∂y/∂h

Zyy ≡
∂y
∂h
=

[
Zyy11 Zyy12 Zyy13
Zyy21 Zyy22 Zyy33

]

Zyy11 ≡

h32up − h12 h31up − h11 0
h33up − h13 0 h31up − h11

0 h33up − h13 h32up − h12


Zyy12 ≡

h32vp − h22 h31vp − h21 0
h22vp − h23 0 h31vp − h21

0 h33vp − h23 h32vp − h22


Zyy13 ≡

h12up + h22vp h11up + h21vp 0
h22up + h23vp 0 h11up + h21vp

0 h13up + h23vp h12up + h22vp


Zyy21 ≡ 2diag([(h31up − h11) (h32up − h12) (h33up − h13)])

Zyy22 ≡ 2diag([(h31vp − h21) (h32vp − h22) (h33vp − h23)])

Zyy23 ≡ 2diag([(h11up + h21vp) (h12up + h22vp)

(h13vp + h23vp)]) (141a)

The second required derivative is ∂g/∂y,

Zgg ≡
∂g
∂h
=

[
03×3 03×3 Zgg13
03×3 03×3 Zgg33

]

Zgg13 =

h32 h31 0
h33 0 h31
0 h33 h32

 (142a)

Zgg23 = 2

h31 −h32 0
h31 0 −h33
0 h32 −h33

 (142b)
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