
Received January 18, 2021, accepted January 23, 2021, date of publication January 26, 2021, date of current version February 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054755

A Novel Gated Recurrent Unit Network Based
on SVM and Moth-Flame Optimization Algorithm
for Behavior Decision-Making of
Autonomous Vehicles
TAIQIAO YIN 1,2, YING LI 2,3, JIAHAO FAN 2,3, TAN WANG 4, AND YUNXIA SHI 2,3
1College of Software, Jilin University, Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun 130012, China
3College of Computer Science and Technology, Jilin University, Changchun 130012, China
4Space Technology (Jilin) Company Ltd., Jilin 132013, China

Corresponding author: Jiahao Fan (jihanfan@hotmail.com)

This work was supported in part by the Department of Science and Technology of Jilin Province under Grant 20190303135SF, and in part
by the Development and Reform Commission of Jilin Province under Grant 2019C053-13.

ABSTRACT The behavior decision-making algorithm plays an important role in ensuring the safe driving
of autonomous vehicles. However, existing behavior decision-making methods lack the capability to cope
with future motion uncertainty in traffic, because the historical state of vehicles are not considered.
This article proposes a novel driving behavior decision-making method EnMFO-ImGRU based on Gated
Recurrent Unit (GRU) andMoth-Flame Optimization algorithm (MFO). Four improvements are proposed in
EnMFO-ImGRU. First, to consider the driving information of the vehicles on the road, ImGRU is designed
based on a double-layer GRU. Second, to promote decisions accuracy, Support Vector Machine (SVM),
which has good performance in classification problems, replaces the softmax classifier to train the output
of the ImGRU. Third, to promote the classification capability of SVM, MFO is introduced to optimize the
key parameters that affect the performance of SVM. Finally, to promote the optimization capability of MFO,
we propose the Enhanced Moth-Flame Optimization algorithm (EnMFO). A new position updating method
is proposed in EnMFO. The experimental results on the NGSIM dataset show that EnMFO-ImGRU brings
higher accuracy than existing methods for the behavior decision-making results of autonomous vehicles.

INDEX TERMS Autonomous vehicles, behavior decision-making, gated recurrent unit, support vector
machine, moth-flame optimization algorithm.

I. INTRODUCTION
Autonomous vehicles contain environmental awareness mod-
ule [1], behavior decision-makingmodule [2], and path track-
ing module [3], of which behavior decision-making module
ensures that autonomous vehicle behaves like skilled drivers
in traffic flow. Hence, designing and developing behavior
decision-making methods with high accuracy and short time-
consuming is an important part of autonomous vehicles.
Existing behavior decision-making methods are divided into
mathematical modeling methods and deep learning methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pavlos I. Lazaridis .

The mathematical modeling methods establish state tran-
sition models based on logic rules and build vehicle behavior
models by calculating risk indicators. Li et al. [4] designed a
vehicle dynamics model to calculate the position and speed,
and then selected the best trajectory which matched position
and speed. Chen et al. [5] generated decisions by using Finite
State Machine (FSM) to identify the relative positions of
surrounding vehicles. Chae et al. [6] defined the collision
probability by the reachable uncertainty propagation set. Pre-
dicted collision time and safety distance were used to monitor
the lane changing risk. Kim and Kum [7] calculated the prob-
ability distribution model of vehicles’ occupation of lanes
basing on the lateral position and lateral speed of vehicles.
And then, the collision risk was calculated and the collision
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risk map was plotted. Nilsson et al. [8] estimated the safety
factor of lane change to select appropriate traffic clearance
and time instance and solved the loosely coupled convex
quadratic program to locate the desired horizontal and vertical
position of self-vehicle. The mathematical modeling methods
take the potential risks into account, but the proposed models
are limited to specific driving styles.

For deep learning methods, neural networks have shown
excellent capabilities in the areas of feature extraction [9],
object classification [10], and complex scene understand-
ing [11]. Li et al. [12] proposed a decision-making network
(DMN) using two Convolutional Neural Networks (CNNs) to
train speed and corner decisions respectively. Lenz et al. [13]
proposed a Gaussian Mixture Model which follows the
Markov Property to predict vehicle behaviors in specific sce-
narios. Classification strategies were used for intent predic-
tion, such as SVM [14], Multi-Layer Perception [15], Hidden
Markov model [16], [17], and Bayesian Filter [18]. However,
time correlations are not considered. Therefore, Recurrent
Neural Network (RNN) methods, which have advantages
in learning the nonlinear characteristics of time series, are
widely used [19]. Shin et al. [20] used RNN to learn from the
sequential data to predict collision probability. Zou et al. [21]
put the continuous features extracted by CNN as inputs of
RNN and obtained the prediction of lane selection.

Nonetheless, RNN has gradient explosion and gradient
disappearance problems, which are solved in Long and Short-
Term Memory (LSTM). Xie et al. [22] employed Deep
belief network (DBN) and LSTM to generate decisions.
Altché et al. [23] used an LSTM to forecast future vertical
and horizontal trajectories of vehicles in the highway scene.
Kim et al. [24] put vehicles coordinate sequence as the input
of the LSTM and generated the future position probability
of vehicles on the grid graph of road. Dang et al. [25]
dealt with the behavior decision-making task as a regres-
sion problem rather than a classification problem and used
LSTM to predict the time of lane changing. Xin et al. [26]
used two LSTM modules for driver intent recognition and
future trajectory prediction, respectively. Chen et al. [27]
defined a dynamic sliding window for LSTM. The value of
the window determined how much memory information was
brought into current decisions. Valiente et al. [28] consid-
ered the time dependency between the current image frames
and future image frames. Learning multiple sets of images
through LSTM improved the accuracy of corner controlling.
Shi et al. [29] proposed a model of three parallel LSTM and
one LSTM in series. The model extracted features by differ-
ent lanes. Zhang et al. [30] proposed an LSTM optimized
by a Hybrid Retraining Constraint (HRC) training method
to extract features. Scheel et al. [31] proposed a Bidirec-
tional LSTM (Bi-LSTM), which combinedwith an Intelligent
Driver Model (IDM) to predict future positions.

LSTM solves gradient problems, but the fact of too many
parameters leads to high computational complexity. Same as
LSTM, Gated Recurrent Unit (GRU) is proposed to solve the
gradient problems. GRU performs similarly to LSTM but is

computationally cheaper [32]. Benterki et al. [33] combined
an LSTM with a GRU to analyze past trajectories and gener-
ate future trajectories of surrounding vehicles. Fei et al. [34]
designed a GRU-assisted car-following model with driver
time memory (CFDT) to generate decisions. Gu et al. [35]
designed a fusion deep learning (FDL) model. FDL firstly
selected lanes with a high correlation between the lanes to
be predicted and then generated driving commands by GRU.
GRU guarantees accuracy and training speed and overcomes
gradient problems, which means it is suitable for implement-
ing behavior decision-making algorithms.

However, two issues are still not resolved in existing
improvedGRUmethods. First, existing improvedGRUmeth-
ods generally use a separate GRU to extract features of
vehicles. Although the separate GRU performs well in fea-
ture extracting, the separate GRU trains driving features
with constant parameters, network structure, and the num-
ber of neurons. Considering that the driving characteristics
of surrounding vehicles and the driving characteristics of
self-vehicle have different effects on the generated decision,
hence, the capability of existing improved GRU methods to
cope with future motion uncertainty in traffic is weak. Sec-
ond, in existing improved GRU methods, the output of GRU
is connected to a softmax classifier to generate decisions,
resulting in low accuracy. Although SVM performs better
than the softmax classifier in classification problems, the
performance of SVM depends on the kernel function. Hence,
optimizing kernel function parameters with meta-heuristic
optimization algorithms is a widely used way to improve
SVM performance.

For meta-heuristic optimization algorithms, Jiang et al.
at [36] was inspired by the foraging behavior of beetle and
proposed the Beetle Antennae Search (BAS). The beetle
approached the food source according to the comparison of
the odor intensity of the two antennae, and the head of the
beetle was oriented randomly in each iteration, realizing the
three-dimensional optimization. Kennedy and Eberhart [37]
proposed Particle Swarm Optimization (PSO). In PSO, one
bacteria simulated the foraging process through not only its
own experience but also through the experience of other
members. Mirjalili [38] simulated the behavior of moths hov-
ering close to the flame and manually controlled the number
of flames, and proposedMoth-Flame Optimization algorithm
(MFO). Because of excellent robustness and strong exploita-
tion capability,MFO is chosen in our method to combine with
SVM. However, the exploration capability of MFO is weak.

Yu et al. [39] introduced an emulated annealing strat-
egy into MFO to avoid converging too fast and falling into
local optimum solution. However, the fusion of two meta-
inspired optimization strategies leads to a lot of calculations.
Zhao et al. [40] proposed an ameliorated Moth-Flame Opti-
mization (AMFO). AMFO generated flame throughGaussian
mutation to make it easy to solve when falling into local
optimum solution. However, AMFO did not clearly indicate
whether each iteration selects Gaussian mutation or flame
number control mechanism of original MFO.
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To sum up, we propose a novel network architecture
named EnMFO-ImGRU. First, a novel neural network model
called ImGRU is constructed to extract the key features
of surrounding vehicles and self-vehicle, including speed,
acceleration, lane number, vehicle number, steering angle,
horizontal position, and vertical position of each vehicle.
Of which, horizontal position and vertical position contain
the width and length of vehicle. ImGRU consists of two
GRUs calling GRU-Surround and GRU-Self respectively.
GRU-Surround extracts the key features of vehicles from
the left and right lane and the front vehicle, and GRU-Self
extracts the key features of self-vehicle. In this way, ImGRU
trains the key features of surrounding vehicles and self-
vehicle with different parameters, ensuring that correct and
reliable driving decisions are generated. Moreover, at each
time step of ImGRU training, the output of GRU-Surround
and the output of GRU-Self are fused into an internal hidden
state matrix, and then the internal hidden state matrix and
the vehicle features vector are fed to ImGRU at the next
time step. In this way, ImGRU comprehensively considers
the potential actions of surrounding vehicles and the adapt-
ability of self-vehicle, and generates more reasonable and
safe decisions. Second, to improve the accuracy of decisions,
SVM replaces the softmax classifier to generate decisions
by training the output of ImGRU. Third, to improve the
classification capability of SVM, a meta-heuristic optimiza-
tion algorithm is used to optimize key parameters of the
SVM kernel function and tend to choose MFO. However,
MFO suffers from the degenerating of convergence speed
and uncoordinated exploration and exploitation capabilities.
Fourthly, EnMFO is proposed to improve the optimization
capability of MFO. On the one hand, the position updating
formula of MFO is modified in EnMFO to improve the local
exploitation capability, and a new position updating formula
is added in EnMFO to improve the global exploration capa-
bility. In other words, EnMFO uses two position updating
formulas. Therefore, a function whose value decreases as the
number of iterations is proposed. By comparing the value of
the function with a random number, it is determined which
position updating formula is selected in the current iteration.
On the other hand, Levy flight and adaptive weight are intro-
duced in EnMFO. Levy flight uses random disturbances to
make global exploration and local exploitation capabilities
achieve balance, and the adaptive weight makes EnMFO
converge faster and prevents falling into local optimal
solution.

The main contribution of this article is the proposal
of an effective behavior decision-making algorithm for
autonomous vehicles. It contains four innovations to com-
plete the feature extracting module and decision generating
module of the behavior decision-making algorithm:

1) The feature extracting module is designed based on
a double-layer GRU. One layer extracts features of
surrounding vehicles, and the other extracts features of
self-vehicle. In this way, the feasibility of decisions is
improved.

FIGURE 1. The internal structure diagram of a GRU cell at t-th time step.

2) The decision generating module is constructed based
on SVM instead of a softmax classifier. In this way,
the accuracy of decisions is improved.

3) MFO is integrated into the training process of SVM to
improve the performance of SVM in handling decision
classification problem.

4) EnMFO is proposed to improve the optimization capa-
bility of MFO. Firstly, to solve the lack of local
exploitation capability of MFO, a new position updat-
ing method is proposed. Secondly, to solve the problem
that MFO is easy to fall into a local optimal solution,
Levy flight and adaptive weight are introduced into the
new position updating method.

In the rest of the paper, the basic theories of our research
are introduced in section II. Section III describes a novel
method named EnMFO-ImGRU in detail. Then, in section IV,
figures and tables of simulation experimental results show the
performance of EnMFO-ImGRU. Finally, the conclusion and
evaluation of EnMFO-ImGRU are shown in section V.

II. RELATED WORK
In this section, we introduce three parts of basic knowledge,
namely GRU, machine learning classifier SVM, and meta-
heuristic optimization algorithm MFO.

A. GRU
GRU [32] is a deep neural network for problems of sequence
data. Different from the hidden unit structure of traditional
RNN, GRU uses gated unit structures to deal with long-term
dependence problems. GRU retains memory information and
selectively forgets unimportant information, modeling long-
term sequence data. Moreover, the problem of gradient explo-
sion and gradient disappearance is reduced.

Fig. 1 shows the internal structure and variable flow of a
GRU cell.

Same as RNN, GRU uses a parameter called max time step
to split the input matrix into batches. For a certain time step
t , xt is the input vector representing the instant data to be
processed by GRU, and ht−1 is the output of GRU at the last
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time step, which contains previous memorizes. A GRU cell
has a reset gate and an update gate. Reset gate determines
how much previous information to ignore, and update gate
controls the degree of bringing previous memories to the
current state. Reset gated signal rt and update gated signal
zt are calculated as follows.

rt = σ (Wr · [ht−1, xt ]) (1)

zt = σ (Wz · [ht−1, xt ]) (2)

where t means the current time step, Wz means the weight
matrices of the update gate, and Wr means the weight matri-
ces of the reset gate. σ is Sigmoid activation function and is
defined as follows.

σ (x) =
1

1+ e−x
(3)

Reset gate and update gate map the input to a set of [0,1]
vectors as gated signals. The candidate hidden state h∗t is
calculated as follows.

h∗t = tanh (W · [rt × ht−1, xt ]) (4)

where W means the weight matrix, tanh is the activation
function and is defined as follows.

tanh(x) =
ex − e−x

ex + e−x
(5)

ht is the output and is calculated based on selective reten-
tion of ht−1 and selective forgetting h∗t as follows.

ht = (1− zt)× ht−1 + zt × h∗t (6)

B. SVM
SVM is a linear classifier defined on the feature space, which
makes the largest interval between the positive and negative
samples [41]. For a set of training input samples as follows.{

(x1, y1) ,
(
x2,y2

)
, . . . , (xk , yk)

}
, x ∈ Rn, y ∈ R (7)

where x indicates the feature of the sample, y indicates the
category of the sample, n indicates the dimensions of the
feature vector, and k indicates the amounts of samples.
A linear method is described as follows.

f (x) = ωT x + b (8)

where ω is the normal vector, which determines the direction
of the hyperplane, and b is the displacement term, the distance
between the hyperplane and the sample point.

To ensure that the hyperplane makes the max interval
between positive and negative samples, some constraints
are imposed to handle abnormal samples. The problem is
expressed as a convex quadratic programming problem as
follows.

minimize :
1
2
‖ω‖2 + C

k∑
i=1

(
ξi + ξ

∗
i
)
> 0

subject to
{
yi − ωxi−b≤ε+ξi
ωx+b−yi≤ε+ξ∗i

i = 1, . . . , n, ξi ≥ 0,

ξ∗i ≥ 0
(9)

where ε represents the prediction results deviation from the
actual target yi. ξi and ξ∗i are elastic error variables. C is the
penalty coefficient that determines the tolerance for errors.

For linear inseparable problems, kernel function method is
introduced into SVM to map the non-linear samples to high-
dimensional space as follows.

maximize : W
(
α, α∗

)
= −

1
2

n∑
ij=1

(
αi − α

∗
i
) (
αj − α

∗
j

)
K
(
xixj

)
subject to


n∑
i=1

(
αi − α

∗
i
)
= 0

0 ≤ αi, α∗i ≤ C

i = 1, . . . , n

(10)

where α means a Lagrangian multiplier estimated by
quadratic programmingmethods [42],K

(
xixj

)
is kernel func-

tion. The settlement to the optimization task of dual variables
is defined as follows.

α∗ = (α∗1 , α
∗

2 , · · · , α
∗
N )

T (11)

The function which calculates the classification decisions
results is defined as follows.

f (x) = sign

(
n∑
i=1

(αi − α∗i )K (xixj)+ b

)
(12)

where sign is a linear symbolic function whose value is either
1 or −1. sign is defined as follows.

sign (X) =

{
1, X ≥ 0
−1, X < 0

(13)

In this way, the non-linearly separable problem is mapped
to a high-dimensional space and transformed into a linearly
separable problem.

C. MFO
Mirjalili proposed the biological heuristic optimization algo-
rithmMFO in 2015 [38]. InMFO, eachmoth updates position
around the flame searching for a better solution. A logarith-
mic spiral curve is introduced to define the position updating
method as follows.

S
(
Mi,Fj

)
= Di · ebt · cos (2π t)+ Fj (14)

where Di is the distance between the position coordinates of
j-th flame and the position coordinates of i-th moth, b is a
constant which is used to define the shape of a logarithmic
spiral, and t is a random number in [−1,1]. Fj represents the
position coordinates of j-th flame.
Di is calculated as follows.

Di =
∣∣Fj −Mi

∣∣ (15)

whereMi represents the position coordinates of i-th moth.
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FIGURE 2. Architectural diagram of EnMFO-ImGRU. The input is firstly
split into two parts, respectively representing the state of surrounding
vehicles and self-vehicle in the past T time steps. ImGRU extracts features
and then EnMFO-SVM generates decisions.

To balance global exploration and local exploitation capa-
bility, MFO utilizes a flame reduction mechanism. Themech-
anism is defined as follows.

flame_no = round
(
N − t ×

N − 1
T

)
(16)

where t indicates the current number of iterations, T indicates
the upper limit of the number of iterations, and N indicates
the amounts of flames.

III. METHODOLOGY
Fig. 2 shows the structure of EnMFO-ImGRU, which is pro-
posed based on GRU, SVM, and MFO. In part A, ImGRU
is designed basing on GRU to extract key features of vehi-
cles in the traffic flow. In part B, SVM with radial basis
function (RBF) kernel is combined with ImGRU to generate
driving decisions. In part C, the enhanced MFO (EnMFO) is
introduced into SVM training to optimize parameters of RBF
kernel function.

A. ImGRU
Fig. 3 shows the situation of multiple lanes and multiple
traffic participants on the road. Two factors affect the driving
decisions of self-vehicle. On the one hand, decisions of self-
vehicle are greatly influenced by the behavior of surrounding
vehicles in five positions, including front and rear vehicles
from left and right lanes and the front vehicle. On the other
hand, the driving state of self-vehicle in the past short period
of time determines the adaptability of self-vehicle to deci-
sions generated by EnMFO-ImGRU. Therefore, ImGRU is
designed based on GRU-Surround and GRU-Self, which are
two parallel GRU cells. ImGRUuses different parameters and

FIGURE 3. Surrounding vehicles on the road that affect decisions of
self-vehicle. The input of ImGRU contains the state of the front and rear
vehicles from left and right lanes, and the front vehicle and self-vehicle.

FIGURE 4. The diagram of ImGRU expanded upon T time steps. The input
of ImGRU represents the state of vehicles, the output of ImGRU
represents real-time feature extracting results.

weight matrices to extract features of surrounding vehicles
and self-vehicle.

Fig. 4 shows the structure of ImGRU expanded by time
step. XT is the input of ImGRU and H_SelfT is the output
of ImGRU. T indicates the max time step of ImGRU. The
max time step is a key parameter of ImGRU, which deter-
mines how much previous inputs are related to the current
input. XT represents the driving state matrix of surrounding
vehicles in the past T time and is split into T parts in time-
sequential order. The driving state includes vehicle ID, lane
number, speed, acceleration, lateral position, longitudinal
position, and steering angle. Width and length of vehicles
are considered into lateral and longitudinal position. At the
t-th time step, ImGRU performs feature extraction on Xt .
H_Merget−1 is a hidden state matrix, which represents the
feature extraction result of the ImGRU cell at the t-1-th time
step.

In ImGRU cell, Xt is firstly split into Xt1 and Xt2, and then
Xt1 and Xt2 are fed to GRU-Surround and GRU-Self, respec-
tively. At the t-th time step, H_Surrt is the feature extraction
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result of GRU-Surround and H_Selft is the feature extracting
result of GRU-Self. As the iteration progresses, the parame-
ters and weight matrices of GRU-Self and GRU-Surround are
continuously adjusted to preserve long-term memories.

Moreover, GRU-Surround and GRU-Self are not only two
parallel unrelated GRU cells. Considering that the state of
surrounding vehicles influences driving decisions of the self-
vehicle, H_Merget is formed by concatenating H_Surrt to
H_Selft and is fed to GRU-Self as input at the t + 1-th time
step.

To sum up, ImGRU contains two parts GRU-Self
and GRU-Surround for feature extracting. GRU-Self
extracts feature by long-term memories of GRU-Self and
GRU-Surround. GRU-Surround assists GRU-Self to generate
accurate and reasonable feature extracting results. In this way,
the generated driving decisions ensure self-vehicle avoids
surrounding vehicles and smoothly deals with uncertainty in
traffic.

B. SVM WITH RBF KERNEL FUNCTION
SVM with RBF kernel function is introduced into
EnMFO-ImGRU as the decision generating module. C and
γ are two key parameters in SVM training process.
The penalty coefficient C indicates the tolerance to errors

and determines the generalization ability of SVM. An inap-
propriate value of C leads to overfitting or underfitting.
Kernel function performs high-dimensional mapping on

low-dimensional samples, and γ determines the number of
support vectors in the new feature high-dimensional space,
and affects training speed. TheRBF kernel function is showed
as follows.

K
(
xi, xj

)
= exp

(
−γ

∥∥xi − xj∥∥2), γ > 0, i 6= j (17)

where xi and xj are arbitrary different samples point in feature
space.

C. EnMFO-SVM
Traditional methods find the values of C and γ with the
grid search method. However, it is difficult to define the
search step size. A small search step leads to a local optimum
solution, and a large search step brings poor development
capability. Hence, the enhanced MFO (EnMFO) is applied
to optimize C and γ . Each moth means a set of solutions to
C and γ .
MFO assumes a superellipse in all directions of each flame.

It ensures that the next position one moth may reach is inside
the space. (14) shows that the optimization process of MFO
depends on the flame position and spiral trajectory, and (16)
reduces the number of flames with iteration. Thus, earlier
in the iteration, moths update position more affected by the
spiral trajectory. Later in the iteration, as the number of
flames decreases, moths update position largely depends on
the flame position.

To balance the influence of spiral track and number of
flames on position updating of moths, an adaptive weightω is

FIGURE 5. When L is set to 100, the trend chart of ω.

added to the logarithmic spiral curve.ω decreases as the moth
approaching the optimal solution, leading to enhance ability
to search the space near the optimal solution.

After introducing the adaptive weight, the position updat-
ing method is defined as follows.

S(Mi,Fj) = Di · ebt · cos(2π t)+ ω · Fj (18)

where ω is defined as follows.

ω = sin(
π · l
2 · L

) (19)

where l is the current iteration number, and L is the upper
limit of the number of iterations.

The graph of ω is presented in Fig. 5. The ordinate repre-
sents the value of ω and the abscissa represents the number
of iterations.

Combining (19) and Fig. 5, it can be seen that ω increases
as l increases. When l is equal to L, ω is close to 1. Position
of the flame becomes more important for the moth updating
position with iteration.

In order to avoid falling into local optimum solution,
searching agents follow Levy flight during the position
updating process of EnMFO. Levy flight is a non-Gaussian
stochastic process with steps following Levy distribution,
which is defined as follows.

Levy(s) ∼ |s|−1−β , 0 < β ≤ 2 (20)

where β is an index and s is the step size of Levy flight. s is
calculated as follows.

s =
µ

|υ|
1
β

, µ ∼ N (0, σ 2
µ), υ ∼ N (0, σ 2

υ ) (21)

where u and v follow a normal distribution as follows.

σµ =

0(1+ β) · sin(
πβ
2 )

β · 0( 1+β2 ) · 2
β−1
2


1
β

, συ = 1 (22)

where 0 is the standard gamma function. According to (18)
and (20), the position updating method of moths S

(
Mi,Fj

)
is

modified as follows.

S
(
Mi,Fj

)
= Di · ebt · cos (2π t) · Levy (s)+ ω · Fj (23)

VOLUME 9, 2021 20415



T. Yin et al.: Novel GRU Network Based on SVM and MFO Algorithm for Behavior Decision-Making of Autonomous Vehicles

FIGURE 6. When L is set to 100, the trend chart of λ(l).

However, MFO possesses the capability of global explo-
ration but lacks local exploitation capabilities for develop-
ing search space. Thus, another position updating method is
defined as follows.

S
(
Mi,Fj

)
= Di · ε · Levy (s)+ ω · Fj (24)

where ε is a random number between 0 and 1. (24) makes
moths move in the shortest distance to the best position along
a certain direction.

To balance the capability of global exploration and local
exploitation capability, λ (l) is designed to determine whether
(23) or (24) is selected during each iteration. λ (l) decreases
with iteration and is defined as follows.

λ(l) =
3− e

l
L+1

2
(25)

where l is the current iteration number, and L is the upper
limit of the number of iterations.

The graph of λ (l) is presented in Fig. 6.
As shown in Fig. 6, λ (l) decreases steadily as the iteration

progresses. In the early stage, EnMFO performs more global
optimization, and local optimization is gradually increased as
with iteration.

The final method of position updating of EnMFO is sum-
marized as follows.

S(Mi,Fj) =


Di · ebt · cos(2π t) · Levy(s)+ ω · Fj,

random ≤ λ(l)
Di · ε · Levy(s)+ ω · Fj, random > λ(l)

(26)

Accuracy of the classification results of SVM is used as the
value of fitness function and is defined as follows.

T =
right
total

× 100% (27)

where right represents the number of samples with correct
classification results, and total represents the amount of all
samples.

Fig. 7 shows the flowchart of EnMFO.

FIGURE 7. The flowchart of EnMFO.

IV. THE OVERALL PROCESS OF THE EnMFO-ImGRU
Fig. 8 shows the flowchart of EnMFO-ImGRU. First,
EnMFO-ImGRU preprocesses the collected data and splits
state matrices of surrounding vehicles and self-vehicle. Sec-
ond, ImGRU performs feature extracting on input data. Next,
EnMFO-SVM randomly initializes the positions of moths,
which represent a set of SVM parameters C and γ . Then, dur-
ing the iteration of SVM, the accuracy of classification results
is used as the fitness function of EnMFO to optimize C and γ .
In this way, optimal parameters C and γ are obtained. Finally,
EnMFO-ImGRU generates behavior decision-making results
in the form of one-hot vector.

V. EXPERIMENTS AND ANALYSIS
In this section, the NGSIM dataset is used to validate the
performance of EnMFO-ImGRU.
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FIGURE 8. The flowchart of EnMFO-ImGRU.

The task of data set preprocessing and task of
EnMFO-ImGRU training are performed by PyCharm Com-
munity Edition 2019.3 and MATLAB R2016a in the environ-
ment of windows10 on laptop PC Intel Core i7-7700HQCPU,
NVIDIAGeForce GTX 1050 Ti GPU, 2.8GHz processor, and
16GB memory.

TABLE 1. Data attributes of the preprocessed NGSIM.

A. DATASET AND PROCESSING
TheNGSIM dataset includes trajectories of vehicles traveling
on the freeway between the Ventura Avenue and the Cavanga
Avenue exit ramp south of the US 101 freeway in Los Ange-
les, California [43]. This data set has three data subsets, all
of which are collected within 15 minutes, and the sampling
interval is 0.1s.

Instead of using a real vehicle model, the public traffic
flow dataset NGSIM is used to train EnMFO-ImGRU on the
simulation model to verify effectiveness and reliability of
EnMFO-ImGRU.

NGSIM does not contain vehicle steering angle informa-
tion. Horizontal and vertical coordinates of three consecutive
moments of the vehicle are used to calculate the steering
angle [29]. The steering angle is calculated as follows.

α = arctan
(
xt − xt−3
yt − yt−3

)
×

180
π

(28)

where x and y are horizontal and vertical positions of the
calculated vehicle at an instant, and t is the real-time sampling
time point. The sampling interval is set to 3.

The attributes of the preprocessed NGSIM are shown
in Table. 1, all of which have an impact on driving decisions.

B. PARAMETERS SETTING
NGSIM dataset provides continuous instantaneous data at
0.1s intervals. Hence, the max time step of ImGRU is set to
20, which means that the memories in the past 2 seconds are
referenced to generate decisions.

According to NGSIM, the behavior of vehicles is divided
into three realities: left-turn lane changing, right-turn lane
changing, and lane-keeping. In particular, some slight oscilla-
tions in the graph indicate that the vehicle adjusts driving style
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TABLE 2. Parameter steeings.

according to the road condition and keep driving straight in
the original lane rather than changing lanes.

EnMFO-ImGRU was completed in the environment of
TensorFlow 1.1.3 and Keras 1.3.0. Table. 2 introduces the
parameter settings.

C. COMPARISON OF RESULTS
In this section, two tasks are completed. First, the perfor-
mance of EnMFO-ImGRU on the NGSIM dataset is evalu-
ated. Then, the accuracy of the results of EnMFO-ImGRU is
compared with other methods.

For EnMFO-ImGRU, a training set of 48000 pieces of
data and a testing set of 3600 pieces of data are provided.
Among them, the data ratio of vehicles performing left-turn
lane changing, right-turn lane changing, and lane-keeping is
1:1:1. To evaluate the performance of generated decisions,
accuracy of decision result is used as an indicator.

Fig. 9 shows the processing results of RNN, LSTM, GRU,
and ImGRU behavior decision-making models on NGSIM.
The maximum number of iterations of the three methods
is set to 120. When methods are iterated between 1 and
20, the accuracy of the results of four models increase as
iterations progress, but still low. When methods are iterated
between 21 and 40, accuracy of ImGRU method increases
slowly and reaches the highest value of the four methods.
Accuracy of other three methods still increase fast. When
methods are iterated between 41 and 90, the accuracy of RNN

FIGURE 9. RNN, LSTM, GRU and ImGRU behavior decision-making
accuracy curve graph within 120 iterations.

FIGURE 10. GRU, ImGRU, ImGRU-SVM, ImGRU-MFO-SVM and
EnMFO-ImGRU behavior decision-making accuracy curve graph
within 120 iterations.

and GRU are relatively stable. For LSTM, the fact of too
many parameters causes the result accuracy to increase faster
than RNNmethod and GRUmethod. For ImGRU, in the later
stage of iterations, the accuracy of result fluctuates little and
tend to be stable. When methods are iterated between 91 and
120, the accuracy of the results of the three network models
stable at their maximum value. When methods are iterations
equals 120, the RNN network obtains an accuracy of 72.16%,
the LSTM network obtains an accuracy of 81.94%, the GRU
network obtains an accuracy of 85.89%, and the ImGRU net-
work obtains an accuracy of 89.78. Simulation experimental
results show the advantage of our proposed EnMFO-ImGRU
in building models based on GRU rather than LSTM and
RNN. GRU brings a higher accuracy than RNN and LSTM,
and the result accuracy of GRU reaches and dynamically
maintains the maximum value faster than RNN and LSTM.
In addition, accuracy of ImGRU increases faster in the earlier
stage of iteration and is higher than other methods during
the whole iteration process, which confirms the excellent
performance of ImGRU as the feature extraction module.

Fig. 10 shows the processing results of GRU, ImGRU,
ImGRU-SVM, ImGRU-MFO-SVM, and EnMFO-ImGRU
within 120 iterations on NGSIM. When methods are iterated
between 1 and 20, the results accuracy of the five network
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models increases rapidly, but the overall accuracy is low.
Compared with GRU and ImGRU, the accuracy of the other
three networks with SVM increased faster, indicating that
SVM performs better than softmax in terms of training speed
and result accuracy. When methods are iterated between
21 and 60, result accuracy of GRU, ImGRU, ImGRU-SVM,
and ImGRU-MFO-SVM are gradually approaching their
maximum value, but the speed of accuracy improvement
is slow. Softmax classifier in GRU and ImGRU is a fully
connected layer with softmax activation function. Therefore,
later in the iteration, the accuracy of GRU and ImGRU reach
the maximum but are still lower than models with SVM. For
ImGRU-SVM and ImGRU-MFO-SVM, the training time in
each iteration is longer than the training time of GRU and
ImGRU because the process of training SVM and adjust-
ing parameters are more complicated. Hence, ImGRU-SVM
and ImGRU-MFO-SVM do not reach their maximum value
of accuracy when the number of iterations equals 60. The
accuracy of EnMFO-ImGRU results fluctuates steadily at
a high level, which shows that EnMFO-ImGRU performs
well in both the accuracy of generating results and the
speed of accuracy increasing. When methods are iterated
between 61 and 120, the accuracy of the five network
models fluctuates steadily near the highest value. When
the number of iterations equals 120, the accuracy of GRU
reaches 85.89%, the accuracy of ImGRU reaches 89.78%,
the accuracy of ImGRU-SVM reaches 95.19%, the accuracy
of ImGRU-MFO-SVM reaches 96.03%, and the accuracy of
EnMFO-ImGRU reaches 97.79%.

When comparing the groups of comparative simulation
experiments in Fig. 10, the superiority of EnMFO-ImGRU
improvement points is verified. First, the growth trends of
ImGRU network and GRU network are similar, but the
accuracy of ImGRU is higher than that of GRU during the
entire iteration. When the number of iterations equals 120,
the accuracy of ImGRU is 3.89% higher than that of GRU.
The comparative experiment of GRU and ImGRU proves the
superiority of using ImGRU as the feature extracting module.
Second, the accuracy of ImGRU-SVM is 5.41% higher than
that of ImGRU when the number of iterations equals 120.
The comparative experiment of ImGRU and ImGRU-SVM
proves the superiority of using SVM instead of softmax
classifier. Third, the accuracy of ImGRU-MFO-SVM is
2.04% higher than that of ImGRU-SVM when the num-
ber of iterations equals 120. And in the early stage of
the iteration, the accuracy increased faster. The compara-
tive experiment of ImGRU-SVM and ImGRU-MFO-SVM
proves the superiority of the improvements that using MFO
to optimize SVM parameters C and γ . Fourth, the accu-
racy of EnMFO-ImGRU increases fastest among all models.
Accuracy of EnMFO-ImGRU quickly reaches close to the
maximum value earlier in the iteration, and the accuracy is
0.66% higher than ImGRU-MFO-SVM when the number of
iterations equals 120. Although the improvement in accuracy
is not obvious, 97.89% is a sufficiently high accuracy value.
In general, five GRU based methods bring low accuracy and

TABLE 3. The number of iterations for several methods to achieve the
highest accuracy.

high speed of accuracy increasing in the initial stage of the
iteration. In the middle of the iteration, the accuracy of results
is improved with iterations, but the speed of improvement
turns slow. In the later stage of the iteration, the accuracy
of results no longer increase with iterations, but dynami-
cally stabilize at the maximum value. Accuracy of results of
five methods stabilized at their maximum value. In a word,
EnMFO-ImGRU obtains higher accuracy in fewer iterations.

GRU network solves the gradient problem of RNN.
Moreover, GRU solves the problem of the huge amount
of calculation caused by too many parameters of LSTM,
improving the speed of feature extracting. Result accuracy of
GRU-based network increases faster than that of RNN-based
network and LSTM-based network. In addition, compared
with softmax classifier, methods that use SVM for decision
generating models perform better in terms of result accuracy.
SVM reduces the number of iterations and improves accu-
racy. EnMFO-ImGRU brings high result accuracy and speed
of accuracy increasing on dealing with behavior decision-
making methods.

Table. 3 shows the accuracy of the results of various net-
works on the NGSIM dataset and the number of iterations
required to obtain the highest accuracy.Within 120 iterations,
RNN obtained an accuracy of 72.34% at the 109th iteration,
LSTM obtained an accuracy of 81.97% at the 117th itera-
tion, GRU obtained an accuracy of 85.89% at the 119th iter-
ation, ImGRU obtained an accuracy of 89.78% at the 116th
iteration, ImGRU-SVM obtained an accuracy of 97.50% at
the 120th iteration, ImGRU-MFO-SVMobtained an accuracy
of 98.29% at the 84th iteration, EnMFO-ImGRU obtained
an accuracy of 99.27% at the 78th iteration. The results in
the first, second, and third lines confirm the superiority of
our modeling based on GRU instead of LSTM and RNN.
The results in the third and fourth lines confirm that ImGRU
improves the accuracy of the decisions. The results in the
fourth and fifth lines confirm that SVM brings higher accu-
racy than softmax classifier. The results in the fifth and sixth
lines confirm that the introduction of MFO improves the per-
formance of SVM. Moreover, using MFO to provide optimal
parameters for SVM also reduce the number of iterations of
ImGRU and maintain a high accuracy. The results in the last
two lines confirm the superiority of the proposed EnMFO.

Table. 4 shows the results of EnMFO-ImGRU and several
behavior decision-making methods on the NGSIM dataset.
EnMFO-ImGRU obtains 97.79% accuracy at 120 iterations,
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TABLE 4. The overall accuracy (%) of other algorithms.

which has 4.79% improvement over GOA-ImLSTMmethod,
26.19% improvement over Bayes-BPNN method, 2.63%
improvement over DBN method, 22.89% improvement over
MLP method, 10.89% improvement over Clustering-based
MLP method, 6.56% improvement over HMM method, and
9.60% improvement over Bi-LSTM method. Comparative
simulation experimental results show that the accuracy of the
generated decisions results of EnMFO-ImGRU has excellent
performance among the listed methods in Table. 4.

D. DISCUSSION
In this section, all improvement point of EnMFO-ImGRU
are compared and finally compared EnMFO-ImGRU with
existing behavior decision-making methods. The overall
accuracy of generated behavior decision-making is used as
an indicator. Simulation experimental results showed that
EnMFO-ImGRU outperforms existing behavior decision-
making methods.

The work of EnMFO-ImGRU is divided into a feature
extracting module and a decision generating module. Four
innovations were introduced into EnMFO-ImGRU.

Firstly, ImGRU, a double-layer GRU, is proposed and used
as the feature extracting module. One layer of GRU extracts
features of self-vehicle, and the other extracts features of sur-
rounding vehicles. In each iteration, feature extraction results
of the twoGRUs are combined. In this way, ImGRUgenerates
reasonable feature extraction results. Hence, it could be seen
from Fig. 9 that building a feature extracting module based
on GRU is better than RNN and LSTM.

Secondly, SVM is used instead of softmax as the deci-
sion generating module. Because the performance of SVM
is better than softmax on classification tasks, the accuracy
of decisions is improved. The comparative experiment of
ImGRU and ImGRU-SVM in Fig. 10 shows that a decision
generating module based on SVM brings higher accuracy
than that based on softmax.

Thirdly, MFO is integrated into the training process of
SVM. Because the performance of SVM largely depends
on the setting of parameters, the performance of SVM
is improved in this way. The comparative experiment of
ImGRU-SVM and ImGRU-MFO-SVM in Fig. 10 and Table.
3 shows that MFO reduces the number of iterations of SVM
and improves accuracy.

Fourthly, EnMFO is proposed based on MFO. A new posi-
tion updating method is defined to promote the optimization

capability of MFO. The new position updating method fol-
lows adapted weight and Levy flight to avoid EnMFO
falling into local optimal solution. As shown in Fig. 10,
because EnMFO is not easy to fall into local optimum solu-
tion and EnMFO converges faster than MFO, the accuracy
of EnMFO-ImGRU dynamically stable at maximum when
the number of iterations is less than 20, while the accu-
racy of ImGRU-MFO-SVM dynamically stable at maximum
when the number of iterations is over 40. Accuracy of
EnMFO-ImGRU is higher than accuracy of ImGRU-MFO-
SVMduring the whole iteration, which confirms that EnMFO
performs better than MFO.

Despite the good performance, EnMFO-ImGRU still has
limitations. First, compared with softmax classifier, the
training process of SVM has high time complexity. Sec-
ond, later in the iteration, the accuracy of EnMFO-ImGRU
fluctuated around 98%, and the accuracy showed dynamic
stability. In other words, with iterations, the accuracy may
be lower than the maximum value reached before. In addi-
tion, advanced information such as driving habits and vehicle
model is not contained in the feature extracting results.

VI. CONCLUSION
Generating safe and feasible decisions for autonomous vehi-
cles is a challenging task due to future motion uncertainty in
traffic. To confront that challenge, in this article, we presented
an efficient network architecture named EnMFO-ImGRU.
First, ImGRU was designed and used for separately training
surrounding vehicles and self-vehicles as a feature extracting
module. Second, an model based on SVM with RBF kernel
function was used as decision generating module instead
of softmax classifier. Third, EnMFO was proposed to opti-
mize key parameters during the SVM training process, which
increased classification accuracy and reduced the number of
iterations. Excellent global exploration capability and local
exploitation capability of EnMFO made the process of opti-
mizing SVM parameters converge quickly without falling
into the local optimal solution. Different from many state-
of-the-art works, our method used the time correlation of
GRU to solve behavior decision-making problems in traffic,
increasing the accuracy of results while reducing training
time.

Compared with state-of-the-art behavior decision-making
methods, EnMFO-ImGRU achieves better performance on
the NGSIM dataset. In future work, the type of vehicles,
the length of the vehicles, and the driving habits of different
types of vehicles may be added to the feature extracting
module.
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