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ABSTRACT The ever-evolving mesoscopic scale optical imaging systems facilitate the new discoveries
in the neuroscience research. They excel at providing a complete view of the long projections of a single
neuron across the whole brain. Although the preparation protocols and the optical imaging systems are
rapidly evolving, there are still some noise and artifacts interfering downstream data processing and analysis
due to the defects in the imaging system or during the sample preparation. A specific denoising procedure is
usually developed for one optical imaging system as a post-processing measure. However, the development
of the optical imaging systems usually follows in an incremental manner. It would be better to adapt the
denoising model to the new optical imaging system than training a denoising model from scratch. In this
paper, the proposed learning schema and practice learn a new denoising model for a new optical imaging
system based on the existing denoise models and bootstrap a denoising model without the ground-truth
denoising labels. We achieve this through a CycleGAN based model and the fact that the optical imaging
systems usually produce images both from the signal area and the fixture area. The experiments show that our
proposed procedure can provide a comparable denoising performance against other state-of-the-art denoising
methods for several optical neuroimaging datasets.

INDEX TERMS CycleGAN, denoising, mesoscopic optical imaging.

I. INTRODUCTION
The mesoscopic scale optical imaging systems can capture
images of the neuronal fibers, which may expand across a
large part of the brain [1]. In this paper, we focus on the
image denoising for the micro optical sectioning tomogra-
phy (MOST) and its followup works [2], [3]. The imaging
process and the result is illustrated in Fig. 1. The imaging
system has several options to use different optical imaging
devices to take the image after a slice is sectioned away on the
top of the sample, including the structured illumination (SI)
imaging system [4], and the time delay integration (TDI)
imaging sytem [5]. The brain is usually embedded in the
fixture compound to maintain its shape and the image of the
slice will contain both the fixture area and the signal area,
which is the brain slice region. The MOST imaging result is
a series of 2D slices that display the optical acquired images

The associate editor coordinating the review of this manuscript and
approving it for publication was Yu Zhang.

from a model animal brain and a 3D reconstructed dataset
describes the neurons morphologically.

It can provide concrete morphological evidence about the
spatial distribution of a specific neuron type across the whole
brain and the projection pattern between brain regions and
nuclei [6], [7]. Due to the sample preparation process and the
optical imaging system defects, it is necessary to enhance the
results from the imaging systems through a denoising proce-
dure. The denoised images will benefit the downstream data
processing and analysis for the neuroscience research, such
as the soma detection, the neuron tracing, and the projection
pattern recognition [8]. However, the denoised neuroimag-
ing datasets are generally not available for the supervised
learning based denoising models because of the intimidating
cost of the human labeling. The fixed feature-based denois-
ing methods may help here when the cleaned images are
not available [9], [10], but the tuning of the model for a
slightly modified system are prone to be difficult and the
result may diverge from what the neuroscientists expect [11].
Moreover, the optical imaging system is usually under a fast
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FIGURE 1. The SI and TDI optical imaging system used in MOST.

continuous development. This requires the denoising proce-
dure to adapt to a new system without the manually labeled
data if possible in order to provide a normalized dataset for the
downstream analysis and to verify the new system’s capacity.
This is necessary even when the size of the available dataset
is limited [12]–[14]. Moreover, the imaging result is also
highly dependent on the labeling protocol used for the sample
preparation. The staining methods are often related to the
background noise level, the labeled neuron structure, and the
brain vessel structure. The denoising procedures supporting
different staining methods require an approach to transfer the
already trained denoising model to a new model for the other
staining method.

The image denoising has been studies for decades from
different prespectives and is a key part of the MOST image
processing pipeline. Classic methods start with applying vari-
eties of image filters to the images to recover the pixels from
their neighbours [15]. Following the image filters approach,
more structured priors are constructed for the image denois-
ing, either in the spatial space or the transform domain.
These include nonlinear total variation based methods [16],
collaborative filtering in transform-domain [17], and sparse
reconstruction based methods [18]. As the booming deep
learning research expands its territory in compute vision and
natural language processing, denoising using deep neural
network is intensively studied as well. One discussion bridge
the classic method and the deep network based approach is
shown in [9]. Another work uses networks with an extensive
depth to denoise the image [19], [20]. The noise models
beyond the Gaussian noise are also tested against the deep
network model [21]. Dearling with more structured noise
presented in the images is studied as well [22], [23]. In
general, the supervised approach inevitably requires the avail-
able clean image set. On the other hand, the unsupervised
deep denoising models usually exploit the relation within the
noisy images itself and try to recover the underlying clean
image. While denoising with deep learning mainly focuses
on using the neural network to approximate the true clean
images from the noisy ones and directly applying it to the
MOST datamay ignore some useful properties of the imaging
process.

Although removing noise in the image seems to be a reduc-
tion process, image denoising is also an image reconstruction
process where the noisy input image is the low quality input
and the denoised one is the high quality recovered output.
This is related to the generative model, such as the gener-
ative adversarial network (GAN) [24] and the conditional
GAN [25]. In the GAN model, a generative model generates
an instance in the target space, and a discriminative model
tests the distance between the generated instances and the
real samples [26]. There are works applying the GAN model
for the medical imaging analysis [27], [28], and the image
translation even without paired images using CycleGAN is
studied as well [29]. Using the CycleGAN model is attrac-
tive in our application where the neuroscientists use mul-
tiple imaging system to observe the same brain tissue and
they wish to convert the result images from one system to
another to either verify the validation of the imaging system
or use the downstream processing pipeline choice at their
disposal. The CycleGAN model can convert images between
different domains and fulfill these requirements from
neuroscientists.

In this paper, we introduce an image denoising approach
built for the MOST system relying on the optical imaging
result and learn the models for the SI and TDI imaging
systems using the CycleGAN approach. The contribution of
the proposed work is in two folds, it includes:

1) The proposed model makes use of the signal area and
fixture area, where both are usually captured simultane-
ously in one imaging process. It demonstrates the pos-
sibility to train a denoising model without in-domain
high-quality images but using noise only images.

2) The experiments also shows it is possible to use a
CycleGAN based denoising model for another optical
imaging system based on an existing model using only
the new noisy images.

The paper is organized as the following. We discuss the
possibility of using fixture area to bootstrap a denoising
model in section II-A, then lay out a CycleGAN based
model to build a new denoising model using an existing
one in section II-B. In the experiment section, we first test
the denoising backbone against synthetic noisy images in
section III-C. Then the bootstrap process with images from
fixture area is performed and verified in section III-D. Finally,
a CycleGAN basedmodel is built for a new optical auqusition
system in section III-E. The discussion about this paper and
possible extension is in section IV.

II. PROPOSED METHOD
Our proposed denoising solution consists of two parts. We
first bootstrap a general denoising model based on the set of
some clean natural images and a noisy version synthesized by
combining the clean natural images and the images from the
fixture area. The backbone of the denoising model is a mod-
ified DnUNet model [30]. Once a denoising model trained
for one image acquisition modality is available, another
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denoising model for the other optical system can be obtained
through a CycleGAN learning strategy.

Sec. II-A introduces the bootstrap procedure for the denois-
ing model training without the in-domain labels and Sec. II-B
presents the training of a denosing model for another imaging
modality by a CycleGAN approach.

A. BOOTSTRAP THE DENOISING MODEL WITHOUT THE
GROUND TRUTH
One difficulty in the optical neuroimaging denoising is that
the high-quality ground truth images are not always available
for training the denoising model. Meanwhile, the MOST
system can capture the images of a brain tissue slice with both
the fixture area and the signal area, as shown in Fig. 1. The
part of the image outside the brain boundary and the areas
without the brain structural signal inside the brain boundary
will have the background additive noise only. Thus this set of
images is used as the samples of the background noise. Here
εi, where i = 1, . . . ,Nε , is one of the cropped image from the
area outside the brain boundary or without structural signal,
Nε is the number of noisy images available. Meanwhile we
can crop Nim images Iim,i, i = 1, . . . ,Nim with the same size
from the high quality clean image set. Then the noisy image
Yi for the supervised denoising training can be an overlay of
the noise image εi and Iim,i, as shown in Equ. (1)

Yi = Iim,i + αbεi, (1)

where αb is the noise strength coefficient. It may be necessary
to truncate the Yi in the cases that the numerical summation
overflows. The goal of this denoising model is to train the
model fb(·), such that Iim,i is retrieved, i.e. fb(Yi) ' Iim,i.
The clean image set in the experiment section for Iim,,i is the
natural scene images from [31].

The denoising backbone model is a modified UNet
model [30] denoted as DnUNet. The model takes the noisy
version Yi and try to recover the clean Iim,i. The structure
of the model is illustrated in Fig. 2. Through the model,
the input image undergoes a few max-poolings and upconvo-
lutions to generate the denoised image though the multi-scale
resolution steps. The depth of the first convolution layer is
64, it doubles after every max-pooling layer and reduces in
half after every upconvolution layer. The batch normalization
layer is inserted after the convolutional layer to provide a
smoother training process. The activation function used in the
network is leaky rectified linear unit (LReLU). The feature
maps at the same resolution before the pooling layer directly
concatenate with the feature maps immediate after the upcon-
volution layer. The original input is added to the network out-
put to form the final result, this allows the network only learns
to extract the noise from the input, rather than the content of
the image. The mean-squared-error (MSE) is used as the cost
function. This network structure with the multi-resolution
and the skip-link allows a good feature representation while
maintaining the original spatial resolution.

Although there will be discrepancy between the natu-
ral scene images and the optical neuron images, we try to

improve the performance of fb(·) based on DnUNet by tuning
the model through a noise2noise process [32]. In this case,
one signal image Iim,i generates several noisy images Yi,j by
adding to several pure noise image εj with the same weight
αb. The DnUNet based model then takes a randomly chosen
pair (Yi,j,Yi,j′ ) as the input and the target image. Due the fact
that Ej(Yi,j) = Iim,i holds assuming Ejεj = 0, the model is
expected to output a sharper result than applying the DnUNet
model directly over (Yi, Iim,i).

B. LEARN A DENOISING MODEL FOR OTHER IMAGING
MODALITY
Although the denoising model obtained in Sec. II-A is often
competent for the task on the imaging system it is trained
for, it is also valuable if denoising model can adapt to a new
imaging system assuming the underlying imaging target is
the same. This is often the case in the optical neuroimaging
systems, where the fluorescent signal is mainly determined
by the target brain structure and the labeling strategy. While
the difference in the optical imaging systems introduces a
variety of noise pattern due to different imaging principals.
The noise pattern may also be different because of an imaging
system with a different configuration. All these varieties lead
to the expectation of the denoising model can adapt to the
new domain. While the transfer learning may provide a new
denoising model for the new imaging system, neuroscientist
may also want to see the target recognized by the two denois-
ing system is the same and the conversion between the image
output from these two imaging systems may provide some
suggestion that the denoised images are indeed two aspects
of the same brain tissue. Thus rather than obtaining the new
denoising model by the transfer learning approach to fine
tune the existing denoising model to adapt the new imaging
system, using a CycleGAN structure allows us to have the
ability to convert images from the two imaging systems to
each other.

To adapt the denoising model to a new imaging system,
we can use the CycleGAN based architecture, which transfers
the style between the source domain and the target domain by
forming a ring network with two symmetric GANs as shown
in Fig. 3.While CycleGAN’s greatest advantage is that it does
not require paired data, it will only work well if the image
content of the source domain is similar to that of the target
domain. This is the case for the optical neuroimaging system
in general, where the neuron structures are the image acqusi-
tion target and the imaging systems just capture its property
from the different modalities. The diagram shown in Fig. 3 is
an example of a quick migration of the denoising results from
an SI system to a TDI system. Firstly, the DnUNet trained
on the simulation noise dataset as described in section II-A
is used to denoise the signal images of SI system, and a set
of the denoised SI signal images is obtained. This process is
denoted as the solid arrow line in Fig. 3. Then, the denoised SI
signal images go through the DnUNet backbone to generate
the noisy TDI style images; together with the original noisy
TDI images, a discriminator is trained to form a GAN with
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FIGURE 2. DnUNet denoising backbone model based on UNet.

FIGURE 3. Learn a denoising model in TDI noise domain based on the
denoising model for SI.

the DnUNet backbone. As now, both the generated noisy TDI
images and its corresponding denoised images are available,
thus a specific denoising model can be trained for the new
TDI system. To close the CycleGAN loop, we also repeat
the second step to build a GANmodel to convert the denoised
TDI images back to the noisy SI images. The object function
to train the two GANs in one loop is shown in Equ. (2)

MSE(GSI (GTDI (SIc)), SIc)

+MSE(GTDI (GSI (TDIn)),TDIn), (2)

where GSI is the generative model to convert the noisy TDI
images to the clean SI images, GTDI is the generative model
to convert the clean SI images to the noisy TDI images. SIc is
the clean SI image dataset and TDIn is the noisy TDI image
dataset. MSE(·) is the mean-squared-error loss. This second
round training is denoted as the dashed arrow line in Fig. 3.
The network used in building the GAN, denoted as UGAN

is shown in Fig. 4. The generative network (G) for converting
the clean image to the noisy image in the other modality is the
sameDnUNet used in previous section. The discriminator (D)
part has a combination of the convolution layers and the last

FIGURE 4. The GAN model to convert a clean image to another noisy
image in the other modality.

two fully connected layers. The convolution layer uses both
the batch normalization and the leaky ReLU activation unit.
The first 3 convolution layers use 64 3 × 3 filters, while the
remaining 3 convolution layers use 128f 3 × 3 filters. The
fully connected layers use the Tanh function as the activation
function. The proposed GAN model is a mix-max game
with the Wasserstein cost. The GAN model converting the
denoised SI images to the noisy TDI images alike is shown
in (3). The other GAN model is built alike in the denoised
TDI images to the noisy SI images direction.

min
G

max
D

ETDIn,G(SIC )W (D(G(SIc)),TDIn) (3)

where W (·, ·) is the Wasserstein cost, SIc is the denoised
images from SI imaging system, TDIn is the raw noisy images
from the TDI imaging system. The cost is averaged across the
training set.

III. EXPERIMENT
In this experiment section, the experiment result for the
model bootstrap step and the denoising GAN step of the
proposed approach are presented and compare the denoising
performance against other baseline methods. We first test
the DnUNet model on a set of synthetic dataset and check
the result visually to verify the capability of the model in
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Sec. III-C. Then we present the noisy fixture area images
from the SI imaging system, generate the image pairs for the
DnUNet training and bootstrap the denoising model without
the clean images in Sec. III-D. At last, the CycleGAN model
is built to obtain a denoising model for the TDI system based
on the denoising model for the SI system in Sec. III-E.

A. DATA ACQUISITION
There are several images dataset used in the training and
the prediction of the proposed denoising model. The image
dataset for bootstrapping the denoising system is the natural
scene dataset [31]. A total of 2688 images from the dataset is
used in the training. The SI imaging system used in theMOST
system serves as the baseline optical imaging system [33].
The data collected is from a PV-cre line mouse with an AAV
GFP injection site in the M1 region. The imaging resolution
is 0.32µm per pixel along both the x- and y-axis and 1µm
per pixel along the z-axis. The imaging process takes around
one week continuously. The whole SI image dataset contains
around 5000 slices and the size of the raw data is around
10 terabytes. The target imaging system is the optical TDI
system also used in the MOST system. The specification of
the TDI system is similar to those found in the SI system.
The imaging resolution of the TDI system is also 0.32µm
per pixel along both the x- and y-axis and 1µm per pixel
along the z-axis. 10µm slices are combined into one image by
average and the combined images are used in the following
experiment. As from the data source description above, the
only high-quality images used in this work are the natural
scene images.

B. DATA PREPARATION
To capture both the global and the local features found in the
mesoscopic optical images, the input size for the convolu-
tional neural network is set to be 256 pixels by 256 pixels.
All the input images are cropped randomly from the original
images for training. The input for the denoising model during
the prediction is cropped to the same size and arranged in a
grid manner to recover a denoised whole slice. A subset 2000
images of the natural scene images bootstraps the process.
The cropped images from the baseline and the target system
are randomly divided for 10 fold cross-validation, among
which 8 folds are for training, 1 fold is for validation, and
1 fold is for testing. There are 512 images from the baseline
system (SI) and 512 images from the target system (TDI) set
aside as the test set. The metrics reported below are collected
over the test set. The image dataset is also augmented when
used in training. The data augmentation methods include the
horizontal flip and a x-y axis independent random zooming
by 5%.

C. RESULTS ON SYNTHETIC DATA
We first test our models over a set of synthetic noisy images.
The backbone model used here is the DnUNet model illus-
trated in Fig. 2. The model is compared against other base-
line algorithms for different noise type, as shown in Fig. 5

FIGURE 5. Some denoising examples of the DnUNet and the baseline
algorithms on the synthetic noisy images.

FIGURE 6. Noisy images from the natural scene dataset and the SI fixture
area.

The natural images used in this experiment are the set
of 2000 samples as described in Sec. III-B. Three example
images are shown in Fig. 5. The first column is the clean
image from the dataset; the second column is the synthetic
noisy image following the Gaussian distributed noise, Pois-
son distributed noise, and salt-and-pepper noise; the proposed
DnUNet results are in the third column and the baseline
results for other three algorithms are shown in the last col-
umn. Over this synthetic experiment, we observe that the
DnUNet has a better visual reconstruction of the details found
in the ground truth. The drawback of the DnCNN and the
noise2noise method is that their results have a block effect
where the intensity is not uniform across the blocks, which
can be observed in the road part of the last image on the first
row and third row. BM3D, as a regional filter based method,
it is harder for it to use the prior knowledge to recover the
details using only the local information.

D. BOOTSTRAP THE BASELINE DENOISING MODEL
The high-quality natural scene images are combined with the
noisy images from the SI fixture areas described in Equ. 1
to form the training dataset. The result of the combination
with different αb is shown in Fig. 6. The images at the
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TABLE 1. The PSNR of the 10 natural images with noisy fixture area overlay.

TABLE 2. The SSIM of the 10 natural images with noisy fixture area overlay.

first row show the noisy image from the fixture area. The
images at the second row show the original images from the
natural scene dataset. Images at the bottom row are the result
of the combination of images from the first two rows. The
figure shows that the noisy images have a regional-specific
noise and a global noise pattern. This often arises when the
whole brain slice is composed by overlapping tiles or the
imaging system uses some non-uniform lighting and imag-
ing for optical super-resolution, like the SI system. Another
observation is that the intensity of the noisy images from the
fixture area is not uniform and the learned denoising model
should try to normalize it.

The denoisingmodel performance for the SI system trained
on the noisy images generated from the previous step is
shown in Fig. 7. The value of the noise image weight αb
is shown along the x-axis, the first plot shows the PSNR
score, and the second plot shows the SSIM score. The two
scores are calculated for the baseline algorithms, including
BM3D, DnCNN, and noise2noise. The vertical bar at each
data point shows the relative scale for the score variance
over the test dataset. Both the scores decrease as the noise
strength increases as expected. From the result, we also can
see that there is a performance gap between unsupervised
algorithms and supervised algorithms. The performance gap
is about 10dB for the PSNR score. The unsupervised denois-
ing algorithms often seek the exception of the training images
given a specific distribution assumption, while the supervised
denoising ones strive to build up the mapping between the
clean images and the noisy images. Among the supervised
denoising models, our proposed DnUNet and GAN based
algorithms also works well.

FIGURE 7. Denoising model performance for the SI system.

We also list the individual PSNR and SSIM score for the
first 10 images in Tbl. 1 and Tbl. 2. The tables present the
score under a different noise strength for each proposed and
baseline algorithms. The first row of the header is the noise
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FIGURE 8. Image result at each phase of the CycleGAN architecture.

FIGURE 9. Denoising performance of SI denoising model on the TDI images.

strength and the second row of the header lists the algorithms.
The list complements the information obtained from Fig. 7,
that the performance gap between the supervised methods
and the unsupervised methods is there not only over the

dataset, but it is also true for each image.We also see UGAN’s
performance is relatively better than the proposed DnUNet’s.
This may suggest that more constraints from the CycleGAN
helps the model to find the true clean image.

23630 VOLUME 9, 2021



T. Zhu et al.: Denoising Across Data Acquisition Modalities for Mesoscopic Scale Optical Neuroimaging

E. DENOISING ACROSS MODALITIES WITH CYCLEGAN
We then present the denoising result during each phase of the
CycleGAN architecture in Fig. 8. Images at the first row show
the denoised image from the SI system, which is the system
with a trained denoising model. The second row shows the
corresponding generated TDI noise images of the first row
with the help of the fixture area from TDI images, which is
used to train the denoising model for the TDI system. The
third row shows some original images from the TDI system.
The fourth row shows the denoised image corresponding to
the third row with the denoising model for TDI. Each larger
yellow box shows the details of the smaller yellow box in the
images. Although the PSNR and SSIM scores for this case are
not available due to the fact that there is no ground truth clean
images from the TDI system, we can still see the improved
image quality of the denoised TDI images on the bottom row.

We also want to present the performance of the denoising
model trained for the SI system on the TDI data in Fig. 9. This
should demonstrate that, in the end, it is necessary to learn a
new denoising model for a new imaging system. The images
on the first row show the result of some competitive methods
on the noisy natural scene images with their PSNR score.
Images on the second row show the denoised result for the SI
system through each method, which are trained for the SI sys-
tem. Images on the last row show the same denoising model
applied to the TDI system, except the CycleGAN approach.
The result suggests that the denoising model for one imaging
modality may not generalize well on a new imaging system.
Thus we can choose to use CycleGAN alike architecture to
transfer the denoising model to the new imaging modality

IV. CONCLUSION
In this work, we proposed a CycleGAN based model to
achieve the image denoising for the optical imaging sys-
tem without the ground truth label across multiple imaging
modalities. It takes advantage of the signal area and the fixture
area of the whole brain slice to bootstrap a denoising model
for one of the imaging modality. Then we build a GAN
loop to convert the clean images in one modality to some
noisy images in the other modality and denoise the converted
noisy images to produce the clean images. This allows the
strong prior knowledge from the other modality to guide the
denoising model training procedure in the current modality.

The experimental results suggest that the proposed model
outperforms several cutting edge methods for the denoising
task. It demonstrates the possibility to train a denoisingmodel
for a new imaging system, when the clean-noisy image pair
is not available for the new imaging system. The work also
demonstrates the brain tissue consistency underlying mul-
tiple imaging modalities can help the optical neuroimaging
analysis pipeline to migrate to a new system quickly without
waiting for the human clean image labeling.

The work presented in the paper is also related with the
domain adaption, where the vision model trained in one
domain can be tuned to fit the similar purpose for the images
from another domain. This is the case for our application

where the denoising model trained for the original SI system
needs to adapt to the new TDI system. However, the neuro-
scientists not only needs a new denoising model for the new
imaging system, they would also be glad if there is a model
can convert the new images back to the existing domain
in order to either validate the new imaging system or use
the existing downstream processing pipeline. The CycleGAN
approach, usually recognized as an image translation task,
can also convert the images between domains in a symmetric
style for the neuroscientists.

One unexplored cost in building the CycleGAN based
denoisingmodels is the model efficiency. The approach intro-
duced in this work has more parameters and more multiplica-
tion operations than the baseline algorithms. The denoising
procedure usually sits ahead of the following optical neu-
roimaging data processing pipeline and a small model with a
limited prediction timeframe would benefit the downstream
jobs. The other future work that may improve the denoising
performance further is to embed the denoising model into the
whole optical neuroimaging data processing pipeline. As the
pipeline is usually governed by the expert labelling dataset,
the denoising model embedded in the whole pipeline will be
guided by the labels in addition to the GAN loop described in
this work and may improve its own performance because of
this extra information.
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