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ABSTRACT In the context of cluster analysis and graph partitioning, many external evaluation measures
have been proposed in the literature to compare two partitions of the same set. This makes the task of
selecting the most appropriate measure for a given situation a challenge for the end user. However, this
issue is overlooked in the literature. Researchers tend to follow tradition and use the standard measures
of their field, although they often became standard only because previous researchers started consistently
using them. In this work, we propose a new empirical evaluation framework to solve this issue, and help the
end user selecting an appropriate measure for their application. For a collection of candidate measures, it
first consists in describing their behavior by computing them for a generated dataset of partitions, obtained
by applying a set of predefined parametric partition transformations. Second, our framework performs a
regression analysis to characterize the measures in terms of how they are affected by these parameters and
transformations. This allows both describing and comparing the measures. Our approach is not tied to any
specific measure or application, so it can be applied to any situation. We illustrate its relevance by applying
it to a selection of standard measures, and show how it can be put in practice through two concrete use cases.

INDEX TERMS Cluster analysis, community detection, external evaluation measures, regression.

I. INTRODUCTION

The problem of comparing two partitions of the same set
occurs in a number of situations, the most widespread being
probably the assessment of clustering (or cluster analysis)
and community detection (or graph partitioning) results. In
this context, one has computed the clusters of a dataset, or
the community structure of a network. This result takes the
form of a partition of the set of data points or of set of nodes,
respectively. One then wants to compare this estimation with
some ground-truth also taking the form of a partition. Alterna-
tively, one has computed several such estimations, and wants
to compare them to each other.

This comparison is traditionally performed through some
measure able to quantify the similarity between two such
partitions. In the context of cluster analysis, these are called
external measures, as they allow comparing the output of
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the clustering method to an independent solution (generally
the ground truth). In the rest of this article, we will simply
call them measures, as there is no possible confusion in
our context. Examples of such measures include Adjusted
Rand Index (ARI) [1], Normalized Mutual Information [2]
and so on. There are many ways to formalize what one
means by ‘“‘similar”’, resulting in the proposition of a very
large number of measures over the years [3], [4]. In turn,
this situation inevitably leads to the publication of a num-
ber of surveys aiming at reviewing and comparing all these
measures [5].

In the literature, authors proposing new external measures
follow a relatively standard workflow. First, they list some
mathematical properties which they deem desirable in such
measures, e.g. not being sensitive to the number of clusters
k [6]-[8]. They then show that existing measures do not
possess these properties. Finally, they solve this issue by
proposing a new measure having these properties, or modi-
fying an existing one to this end.
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There are mainly two ways to check whether a measure
has a given property. The most robust approach is to proceed
analytically, through a mathematical proof (e.g. [9]). How-
ever, this task requires certain skills, and can be difficult or
even impossible depending on the considered measure and
property. Moreover, the proof is generally not transposable
to other measures and properties, which makes it a one-shot
effort. This is why the second approach, which is empiri-
cal, is much more frequent in the literature (e.g. [7], [10]).
It consists in applying some predefined transformations to
certain partitions, both designed in a way that is related to
the property of interest, and to study how the measure reacts
to these perturbations by using it to compare those partitions.
For instance, to assess the sensitivity to k, one could increase
the number of clusters in the transformed partition, and check
how this affects the measure values.

Each application case is likely to bring its own constraints
and requirements, so there is no such thing as a “best”
measure that would fit all situations. One trait considered
as positive in one case could very well be perceived as a
drawback in another. However, due to the profusion of avail-
able measures, selecting the most appropriate one for a given
situation is a challenge for the end user. As mentioned before,
some survey articles try to compare them, but they focus
only a small number of measures [5] and/or properties [11].
More importantly, the comparisons they perform are specific
to these measures and properties [5], preventing the end user
from including additional measures or properties in the com-
parison. In practice, the problem of selecting an appropriate
measure to compare partitions is generally overlooked, and
researchers tend to follow tradition and use the measures
frequently appearing in the literature of their field.

In this work, we propose a new framework to solve this
issue. It is based on the empirical approach mentioned above,
and consequently relies on a set of predefined partitions and
parametric partition transformations. We study the effect of
each parameter on the measure through multiple linear regres-
sion, in order to produce results that the end user can interpret.
Our framework is not tied to any specific measure, property,
or transformation, so it can be applied to any situation. We
illustrate its relevance by applying it to a selection of popular
measures, and show how it can be put in practice through
two concrete use cases. In addition to these contributions, we
review the literature for desirable properties and the partition
transformations used to test their presence, and propose a
typology of the latter.

The rest of the article is organized as follows. First, in
Section II, we review the literature on external measures,
focusing on desired properties, partition transformations, and
property assessment methods. Next, in Section III, we intro-
duce our own framework designed to study and compare
measures and their properties. We put it into practice on a
selection of widespread measures in Section IV and discuss
its results in Section V. Moreover, we consider two use cases
in Section VI to further illustrate its relevance. Finally, we
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review our main findings in Section VII, and identify some
perspectives for our work.

II. LITERATURE SURVEY

In this section, we perform a review of the literature, focusing
on three aspects directly related to our work. We first dis-
cuss the desirable properties used to characterize measures
(Section II-A). We then survey the partition transformations
proposed to empirically show the absence or presence of these
properties (Section II-B). Finally, we give an overview of
the evaluation methods used for assessing and comparing the
measures based on these transformations (Section II-C).

A. DESIRABLE PROPERTIES

As mentioned in the introduction, measures can be charac-
terized in terms of a number of distinct desirable properties.
There are many of them, sometimes with minor differences,
and the same property is likely to appear under different
names and forms in the literature: this makes it difficult to list
them exhaustively and compare them. Here, we focus on the
most frequently used, and propose a typology to ease their
comparison. These properties are listed in Table 1, with a
short description, as well as examples of popular measures
known to possess them. When the bibliographic sources
explicitly name the property, we use the same name in the
table. Otherwise, we propose a name based on its descrip-
tion. In the following, we distinguish three main categories,
depending on whether the property is related to the measure
interpretation, to the way it handles random partitions, and
to its sensitivity to certain characteristics of the partitions.

1) INTERPRETATION-RELATED PROPERTIES

The first category of properties is related to the interpretabil-
ity of a measure, i.e. how easily its values can be understood
by a human operator. This concerns the interpretation of a
single value, i.e. what its magnitude means, but also the
comparison of several values, and the interpretation of their
difference.

Understandability [4], [12]-[14] means that the mea-
sure has a straightforward interpretation. For instance, the
Rand index [15] (RI) is the proportion of element pairs for
which both partitions agree. Other measures have less direct
interpretations, for example the Standardized Mutual Infor-
mation [13] (SMI) is a normalized version of the mutual infor-
mation corresponding to the number of standard deviations
the mutual information is away from the mean value, for a
specific null distribution. At the other end of the spectrum,
composite measures such as the F-measure [16] do not have
a straightforward interpretation, as they combine other mea-
sures. This property is generally obtained by construction.

The Fixed Range property [3], [5], [17] means that the
measure is designed so that its values are restricted to a
predefined interval, which is often [0, 1]. This property eases
the comparison of scores obtained on different partitions.
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It is also the case of the Value Validity property [18].
Let my, mp, mz and mg4 represent four numerical values
obtained with some external measure for several pairs of
partitions. In addition to order (size) comparisons such as
my > my, when a measure possesses the Value Validity prop-
erty, the difference between several pairs of partitions, such as
my—my > m3—my ormy—my > k(mz—my) (for constant k),
can also be interpreted.

Convex Additivity [9], [19] concerns the case where one
partition is a refinement of another partition (i.e. there is
a hierarchical relationship between them). With a measure
possessing this property, the difference in overall score can be
expressed as a weighted sum of the score differences between
individual clusters.

2) HANDLING OF INDEPENDENT PARTITIONS
The second category of properties focuses on how two inde-
pendent partitions should be treated by the measure.

The Constant Baseline 3], [5], [10], [13], [20] property
deals with statistical independence, i.e. the case where one
compares two partitions sampled independently at random.
This property specifies that in this situation, the measure
should return a constant value. In practice, this constant value
is very often zero, in particular when the maximal value
is 1 (cf. also the Fixed Range property), see for instance the
Adjusted Rand Index [1] (ARID).

The traditional approach to bring this property to an exist-
ing measure is to apply a so-called correction for chance. It
consists in subtracting to the measure the score estimated for
two independent partitions, and possibly in normalizing the
resulting expression, in order to get a fixed range. This is how
Hubert & Arabie derived their Adjusted Rand Index [1] (ARI)
from the original Rand Index [15], but the method had been
used before in other contexts [21], [22]. Note that there is
a number of ways to define the null model used to estimate
the measure score under the assumption of independent par-
titions [23], with no consensus emerging regarding which of
these models is the most appropriate.

Certain authors consider two independent partitions as the
worst possible case [6], meaning that the resulting score
should correspond to the measure minimal value. On the
contrary, others make a distinction between independence
and worst case [24], [25], a property that is called Baseline-
Minimum Distinction. They generally place the constant
baseline midway between the respective scores of the worst
and base cases. This is for instance the case of the ARI,
which ranges from —1 to +1, 0 being the constant baseline.
In practice though, cases with scores lower than the constant
baseline are rare, and have not been studied much in the
literature [24].

3) SENSITIVITY TO PARTITION CHARACTERISTICS

The last category of properties concerns the sensitivity of the
measures to certain characteristics of the compared partitions.
The main such characteristics are the number of clusters,
the number of elements, the size of the clusters, and various
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descriptors allowing to express how similar the partitions
are. These characteristics are often considered separately, and
sometimes several at once.

In this category, the most frequent property is proba-
bly k-invariance. Certain measures such as the Normalized
Mutual Information tend to favor partitions depending on
the number of clusters they contain when compared with a
reference partition [5], a bias that a number of authors want to
avoid [3], [26]-[30]. For example, suppose that one compares
a ground truth partition to two estimated partitions differing
only in their number of clusters. A biased measure will reach
a noticeably higher value for one of these partitions due to
this single difference.

By comparison, the Discriminativeness property relies on
the difference in number of clusters between the compared
partitions [10], [29], [31]. It states that the measure score
should decrease when this difference increases. Put differ-
ently, the score should be larger when both partitions contain
similar numbers of clusters than when they differ on this
point.

The n-invariance property is analogous to the k-invariance,
except it is defined relative to the number of elements in the
dataset [3], [9], [17], instead of the number of clusters. It
allows comparing measure scores computed on datasets of
different sizes, as n-invariant measures are not affected by
such changes.

Authors do not agree on whether a measure should be
sensitive or not to cluster size. This disagreement concerns
partitions constituted of clusters which are imbalanced in
terms of size, i.e. containing large and small clusters. Certain
authors want the measure to focus mainly on the larger clus-
ters, as they consider smaller ones as negligible [17], [32],
[33]. Others adopt the Insensitivity to Cluster Size property
and assume that all clusters are equally important regardless
of their size, and that the measure should not be sensitive to
cluster size imbalance [6]—[8].

Finally, some properties focus on how the measure should
quantify the differences between pairs of partitions. Suppose
we compare one primary partition to two different secondary
partitions, resulting in two scores. The Monotonicity prop-
erty states that the score of the most similar pair of parti-
tions should be consistently higher or smaller (depending on
whether the measure expresses similarity or dissimilarity) [7],
[25], [34]. In addition, the Proportionality property states
that the difference between these scores should be propor-
tional to how close the secondary partitions are [35]. On
the contrary, certain authors expect the measure score to
rapidly change in presence of even the smallest differences,
which corresponds to a non-linear behavior [6]. More gen-
erally, some authors want the measure to be sensitive to
small differences [9], [36], whereas some others, on the
contrary, want the measure to ignore what are considered
as marginal differences [8]. It is important to stress that
these are very generic properties, as the notion of proxim-
ity between two partitions can be understood in a number
of ways.
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TABLE 1. Overview of the main desirable properties appearing in the literature, with examples of measures possessing them, and transformations used

for their assessment.

Category Desirable Property Example measures Related Transformations
Fixed Range [3], [5], [17] NMI [2], NVI [5] e None (proof)
Interpretation- | Convex Additivity [9] RI [15], Mirkin [37], o Splitting into unequal parts [9] (proof)
Related VI [9], x? distance [1]
Understandability [9], [12]-[14] RI [4], JT [4], SMI [13], e None (proof)
Split-Join [12]
Value Validity [18] MI. [18] o None (proof)
Handling of | Constant Baseline [3], [S], [10], [13], [20] ARI [1], AMI [26], o Fragmenting every cluster [6]
Ir;iep.efldent rNMI [27], RMI [30], e Random shuffling [7], [13], [23], [25], [26], [28], [29]
artitions

FNMI [29], cNMI [38]

Baseline-Minimum Distinction [24], [25]

ARI[1], SMI [13]

Random shuffling [25]

k-invariance [3], [26]-[30]

ARI[1], VI [9]

Random shuffling [25]-[29]
Splitting into singleton clusters [30]
Swap with single cluster [7]

Sensitivity to
Partition
Characteris-

n-invariance [3], [9], [17]

VI [9], FMI
NMI [2], ARI [1]

(361,

None (proof)

tics

Discriminativeness [10], [29], [31]

ARI [1], GNMI [29],
FNMI [29]

Merging whole clusters [10], [29] & Splitting into
unequal parts [10], [29]

Sensitivity to Small Differences [6], [8], [9],

VI [9],FMI [36]

Swap with all clusters [6]

(36]

Insensitivity to Cluster Size [6]-[8] PSI [7]

Swap with single cluster & remove [7]
Fragmenting a single cluster [7]
Random shuffling [32], [39]

Monotonicity [7], [25], [34] PSI  [7],
centric [25]

Merging a whole cluster with a part of other cluster [7]
Merging parts of different clusters [40], [41]

Merging whole clusters & splitting into equal
parts [34]

Swap with single cluster [7]

o Swap with all clusters [7]

e Random shuffling [25]

Element-

Proportionality [9], [35] vs. Non-linearity [6]

Kappa index [35] .

Random shuffling [35]

4) DISCUSSION

As explained in the introduction, and as summarized in
Table 1, certain of the properties described in this section
are obtained by construction, or verified through an analytical
proof, whereas others are shown empirically, by applying spe-
cific transformations to a set of partitions. This is generally
the case when the mathematical proof is impractical or too
difficult to make.

In this article, we adopt an empirical approach, therefore
we focus only on the latter type of properties. This includes
the properties of our second (Comparison with Random Par-
titions) and third (Sensitivity to Partition Characteristics) cat-
egories. The framework that we propose does not necessarily
handles the properties exactly as they are described here:
we sometimes had to reformulate them to ease experiments
and make the framework more generic. It relies on a set of
variables similar to those used in the literature to define these
properties (number of clusters, number of elements, cluster
size distribution, etc.). Our framework is able to handle prop-
erties on which authors disagree, such as the sensitivity to
cluster size distribution or to small differences.

B. PARTITION TRANSFORMATIONS
Like for the desired properties, the literature exhibits a large
number of different partition transformations, which are not
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always named, and when they are, not always similarly. This
makes it difficult to identify and compare them. Here, we
focus on the most frequent ones and use their most consensual
names. Table 1 indicates the transformations used in the liter-
ature to assess the presence of each listed property. One can
distinguish two types of partition transformations: random vs.
deterministic.

1) RANDOM TRANSFORMATIONS

Random transformations consist in randomly distributing all
the elements of the reference partition over a number of clus-
ters to form the new partition. These transformations mainly
differ in the probability distributions they rely upon. Such
processes can be seen more as shuffling than transformations,
as the original partition has no effect on the result. In essence,
the goal is to obtain a partition as independent as possible
from the original one. They are mainly used to check the
existence of the Handling of Independent Partitions category
of properties [7], [13], [23], [25], [26], [28], [29]. But several
works leverage random transformations to look for other
desirable properties, too. Certain authors force the shuffled
partition to have various numbers of clusters and imbalanced
cluster sizes, in order to check the k-invariance [25]-[29] and
Insensitivity to Cluster Size [7], [39] properties, respectively.
Others shuffle the original partition with an increasing level
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of randomness in order to test for the Monotonicity [25] and
Proportionality [35] properties.

2) DETERMINISTIC TRANSFORMATIONS

Deterministic transformations are used more frequently in
the literature, probably because they offer a better control of
the changes applied to the original partition. We distinguish
five categories of such transformations. We call the first one
Remove, and it consists in deleting some elements from a
cluster without erasing it completely. Although it is used to
check the Insensitivity to Cluster Size property in the litera-
ture [7], it has the drawback of affecting simultaneously two
aspects of the partition: cluster size, and number of elements
n. For this reason, it is not frequently used.

The second transformation category is Split, which consists
in dividing a cluster into multiple smaller parts. Two variants
mainly appear in the literature: splitting into equal [4], [9]
vs. unequal parts [4], [9], [10], [29]. There is also a specific
case of the first variant, consisting in splitting a cluster into
only singleton clusters [15], [30], [42]. This transformation
category is used in the literature to test several distinct prop-
erties. Hierarchical splits (i.e. refinements of a partition) con-
stitute an important part of the small experiments proposed
by Meild [4], [9], and allow to check the Convex Additiv-
ity property. Reichart and Rappoport [42] compare a refer-
ence partition to two estimated partitions differing mainly
in their number of clusters: slightly perturbed reference vs.
singleton clusters. They expect that singleton clusters are
less similar to the reference, and a measure should not favor
singleton clusters in such a case (cf. k-invariance property).
Rabbany et al [10] apply repeated split operations onto the
ground truth of several real-world networks and then compare
them to check the Discriminativeness property.

Transformation Merge is the reciprocal of Split, as it
gathers nodes belonging to different clusters into the same
cluster. It also appears under three forms: merging a whole
cluster with a whole other cluster [9], [10], [29], [34] vs. a
part of another cluster [7], and merging parts of different
clusters [41]. Note that the last two transformations are not
pure, in the sense that a Split is performed before the Merge.
Regarding the desirable properties, since Merge is the recip-
rocal of Split, all the properties tested through Split can be
also be tested by using Merge. On top of that, some authors
leverage Merge to test for Monotonicity, in two different
ways: Rezaei and Frinti [7] enlarge incrementally a specific
cluster by moving elements from the other clusters, whereas
Rosenberg and Hirschberg [41] merge same-sized parts of
each cluster to create new clusters, which they consider as
noise.

The next two transformations can be viewed as combi-
nations of Split and Merge, and they are also frequently
used in the literature. Swap consists in interchanging a num-
ber of elements between pairs of (generally equal-sized)
clusters. In practice, this operation is usually repeated for
each cluster, using one of two different forms: each cluster
swaps elements with only one different cluster [7], [9] vs. all
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other clusters [6], [7], [9]. In the literature, the first form is
mainly used with a range of the number of clusters to check
the k-invariance property. In the experiments of Rezaei and
Frinti [7], the authors keep the cluster sizes fixed, indepen-
dently from the number of clusters. However, this increases
the number of total elements, which arguably introduces a
side effect in their experiments. The second form induces
more perturbation of the original partition compared to first
one, and the experiments in the literature mainly focus on the
desirable properties related to this aspect, which are Mono-
tonicity [7] and Sensitivity to Small Differences [6].

Finally, the idea behind the Fragment transformation is
that elements belonging to the same cluster in the original
partition are placed in different clusters in the transformed
partition, as much as possible. Two variants mainly appear in
the literature: fragmenting a single cluster vs. all of them. The
former [7] is only used to change marginally the underlying
partition structure, whereas the aim of the latter [6], [15],
[32] is to obtain two maximally different partitions. In the
literature, these variants are used to check the Insensitivity to
Cluster Size [7], [32] and Constant Baseline [6] properties,
respectively.

3) DISCUSSION

Besides these categories, the literature also contains transfor-
mations which can be expressed as combinations of some of
these categories [7], [10], [34]. It is important to stress that
transformations are typically defined ad hoc, specifically to
test for a particular property of interest, and on some prede-
fined partitions. For this reason, each author adopts a different
angle, and it is hard to find two articles with the exact same
methodology, targeting the exact same desired properties. In
turn, this makes it difficult to compare transformations and
measures from one paper to the other. To solve this issue,
there is clearly a need for a unified view.

Another important limitation of the existing work is the
lack of control over the original partition and its transforma-
tion. Some authors use a single parameter, for example the
number of clusters in the transformed partition [13], [40].
However, there are other aspects likely to affect the outcome,
such as the number and size of the clusters in the original
partition, or the intensity of the transformation, and they are
not taken into account simultaneously in the literature. This
results in a relatively incomplete assessment of the measure
properties.

In Section III-A2, we try to solve both these issues, by
proposing a unified set of transformations designed to cover
most of the literature, and by defining a set of parameters to
get the appropriate level of control.

C. ASSESSMENT METHODS

After having described the properties that authors want to find
in partition comparison measures and the related partition
transformations, we now turn to the methods used in the
literature to check the presence or absence of these desired
properties based on these transformations. We distinguish
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two families of approaches: visual inspection vs. statistical
methods, more specifically correlation and regression.

1) VISUAL INSPECTION

Visual inspection is perhaps the most intuitive way to char-
acterize the behavior of a measure. Typically, one plots the
value of the measure as a function of some parameter used
to control the partition transformation, e.g. the number of
clusters produced. Authors usually expect a monotonic trend,
e.g. proportional increase or decrease in [25]. Some are more
specific and look for a specific pattern, e.g. the so-called knee
shape used in [10] for a parameter controlling the number of
clusters in the transformed partition. It requires the function
to reach its maximum when the numbers of clusters in the
original and transformed partitions match, and to decrease
when there are too few or too many clusters in the transformed
partition.

There are mainly two limitations to visual inspection. First,
it is not an objective method, so limit cases can be difficult
to judge. Second, it can handle only a very limited number
of distinct parameters at once, especially if one wants to
compare several measures and consider several properties, or
assess how parameters interact. Statistical methods allow to
solve the first issue, by providing an objective score. There
are mainly two types of statistical tools used in the literature
to assess measure properties: correlation and regression.

2) CORRELATION

A correlation coefficient quantifies the dependence between
two random variables. In our context, and like with visual
comparison, these variables are on the one hand the score
computed with the measure of interest, and on the other hand
a parameter controlling the partition definition or transfor-
mation. Many authors [24], [31] use the popular Pearson’s
product-moment correlation coefficient, which measures the
linear dependence between the variables. Others use a rank-
order correlation coefficient such as Kendall’s (e.g. [17]) or
Spearman’s (e.g. [10]), which relies on the rank of the values
rather than on the values themselves. Compared to Pearson’s,
such coefficients are able to detect a non-linear dependence,
and can thus lead to different conclusions [10].

Besides objectivity, another advantage of correlation coef-
ficients over visual inspection is that they summarize the
dependence through a single value, which allows representing
anumber of pairwise relationships in a single table. However,
this approach too becomes cumbersome when one wants
to consider simultaneously a certain number of parameters
and/or measures [40]. Moreover, multiple pairwise correla-
tion values are not able to capture the potential interactions
between the parameters (i.e. changing one parameter value
may affect the partition or transformation feature controlled
by another parameter).

3) REGRESSION
Regression analysis does not suffer from this limitation,
though. In its simplest form, it consists in describing the
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functional relation between a dependent variable and an inde-
pendent variable [43]. In our context, those are the considered
measure and a parameter of interest, respectively. However,
multiple regression allows considering several independent
variables at once, i.e. several parameters in our case. Another
advantage over correlation is that the regression model can
be used not only for interpretation, but also for prediction
purposes [44].

To the best of our knowledge, the work of Saxena &
Navaneetham [45] is the only one that uses multiple regres-
sion analysis to assess the similarity of external evaluation
measures. The authors study the effects of three input param-
eters (cluster size, number of dimensions and number of
clusters) on a single measure (the ARI). On top of the regres-
sion, they also assess the significance of these effects, and
compare the relative importance of the parameters through
their associated regression coefficients.

As we will see in Section III-B2, our method goes in the
same direction as Saxena & Navaneetham [45], but with a
more complex model, for the following reasons. First, the set
of transformations that we propose in Section III-A2 requires
to handle more parameters, and therefore to include more
independent variables in the model. Second, not only do we
study the direct effect of each parameter on the measure,
but also their interactions. Third, we consider several distinct
measures, and we want to assess and compare the relative
importance of the effects that the parameters have on them,
which requires a specific processing.

Ill. PROPOSED FRAMEWORK

In this section, we describe the framework that we propose
to analyze the behavior of a set of considered measures. It
is independent from these measures, so we describe it in a
generic way, for any selection of measures.

Our framework is constituted of two parts. The first one
consists in characterizing the considered measures through
the partition transformation-based principle mentioned in the
Introduction (Section III-A). The second part is to perform
an appropriate regression analysis in order to interpret these
characteristics and compare the measures (Section I11-B).

A. CHARACTERIZATION OF THE MEASURES

Our objective is to quantify how similar two partitions are
through several external measures, under different scenarios,
and then to assess how the resulting values are affected when
one of the partitions undergoes systematic and controlled
changes. Unlike the common approach taken in the literature,
we generate the necessary data in a fully parametric way
in order to get a greater control. For the same reason, our
approach is deterministic.

Our three-step method is summarized in Figure 1, and
detailed in the rest of this section. The first step is to create
a base partition, called original partition, and controlled by
three parameters (Section III-A1). The second step consists
in applying to this partition a transformation controlled by
two other parameters (Section III-A2). This leads to a second
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FIGURE 1. General Framework, with parameters represented in orange.
For illustration purposes, the k New Clusters transformation is used to
produce the output partition with k new clusters. Figure available at
10.6084/m9.figshare.13109813 under CC-BY license.

partition, which we call transformed partition. Finally, the
third step is to compute the selected external measures in
order to assess how similar the original and transformed
partitions are (Section I1I-A3). The whole process is repeated
with an adequate number of different parameter values, in
order to cover the parameter space.

1) CREATING THE REFERENCE PARTITION

We control the generation of the reference partition through
three parameters: the number of elements n, the number of
clusters k and the heterogeneity of the cluster sizes h. The
first two parameters allow to control the most basic aspects
of the partition. These are frequently targeted in the literature,
albeit not always through explicit parameters.

The last one is much more uncommon, and lets us con-
trol how much cluster sizes vary in the same partition, and
therefore to get more realistic cluster sizes. Similar concepts
appear in the literature, for example when dealing with bal-
anced vs. imbalanced cluster sizes, but not under the form of
such a convenient parameter, to the best of our knowledge. It
ranges from O to 1. When & = 0, all clusters have the same
size (i.e. so-called balanced cluster sizes), whereas they get
imbalanced when & > 0, and the differences between their
sizes increase when /i gets closer to 1. More formally, the
smaller cluster has a size of s; = « and the i smallest cluster
has a size of s; = s;_1 + B, whereas « and 8 depend on k, n
and A. In particular, g is proportional to 4. See Appendix C
for details. This choice is a form of compromise allowing
to obtain very heterogeneous cluster sizes even for a small
n and/or a large k.

2) APPLYING THE PARAMETRIC TRANSFORMATIONS

After having generated the original partition at the previous
step, we now want to change it in order to get the trans-
formed partition. Based on our review of the existing work
(Section II-B), we propose a set of five parametric transfor-
mations aiming at fulfilling several constraints. We want to
cover most of the transformations used in the literature, in
order to deal with as many desired properties as possible,
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while keeping our transformations as simple (and thus inter-
pretable) as possible and avoiding overlap between them. We
discard Remove, as it changes n, which in our context is
a parameter of the first step of our process. As mentioned
before, all our transformations are deterministic in order to
offer better control.

We note ¢ the nature of the transformation, and use it
later as a categorical variable during the regression analy-
sis. We define a parameter g to specify the intensity of the
transformation, i.e. the proportion of elements it involves.
It ranges from 0, meaning no transformation at all, to 1, in
which case the transformation involves all elements. We want
to give the same importance to all clusters when applying
the transformation, which means that it affects all of them.
However clusters may have different sizes, depending on the
heterogeneity of cluster sizes /. To deal with this situation,
we make the number of elements concerned by the transfor-
mation in each cluster proportional to the cluster size.

The five transformations that we propose are illustrated in
Figure 2, on two example reference partitions (Subfigure 2a).
Both contain n = 72 elements, represented as numbered
squares in the figure, and distributed over k = 3 clusters,
represented by colors. However, the top partition is balanced
(h = 0) whereas the bottom one is moderately imbalanced
(h = 0.5). Each other subfigure shows the partitions resulting
from a specific transformation with intensity ¢ = 1/6. Note
that all these transformations allow to test by construction
whether or not a measure is sensitive to some framework
parameters. On top of that, they can be used to test certain
desirable properties from Section II-A, as explained in the
rest of this section and summarized in Table 2.

a: k NEW CLUSTERS, tync

This transformation takes a predefined proportion of each
cluster from the original partition, and creates a new clus-
ter with these elements, resulting in k additional clusters
(Subfigure 2b). The effect of this proportion on the trans-
formed partition is mirrored in 0.5. For instance, transforming
40% and 60% of the elements give the same transformed
partition. For this reason, we scale ¢ so that it corresponds
to twice this proportion, which allows us to keep the same
[0; 1] range as for the other transformations.

It is worth noting that the transformed partition is a sub-
partition of the original one, in the sense that each one of
its clusters is included in one original cluster. Parameters k
and & therefore affect the way the created subclusters relate to
the original clusters. This transformation consequently allows
testing for the Convex Additivity property, which states that a
measure should not be affected when comparing refinements
of the same partition. Concretely, we conclude that a measure
has this property if it is not affected by k and # when applying
this transformation.

b: SINGLETON CLUSTERS, tsc
All the elements affected by this transformation become sin-
gletons, i.e. single-element clusters (Subfigure 2c). This can

20261


http://dx.doi.org/10.6084/m9.figshare.13109813

IEEE Access

N. Arinik et al.: Characterizing and Comparing External Measures for the Assessment of Cluster Analysis and Community Detection

K NEW CLUSTERS (tnc) SINGLETON CLUSTERS (t4)
GH @ cm om
o/ EEEm 8 @ @ e
h=0 _— - = ] q=1/6 0cd cm g
no= 72 SbIbLble el q=1/3 ¢ BT S e . E——————
k=3 © I I C; Bl el & =
Original Partition Transformed Partition Transformed Partition
C:H cm cm
_ ¢, [ “0 c@m cm Cul@
h=0.5 C, I2[3TaT5 67 89 [1o[i[12/13[1a5[16/17]18 _ Z% q= 1/6 cu@ Cdfl co ¢
n=72 c q=1/3 ¢ EErrRrEnmEEmEEED =0 Cul@ c,.m
_ Cs T5] e C, c, [4]5]6 78] 9|1011]1213]14[15]1617]18
k=3 . " c =1 Tl c:
Original Partition Transformed Partition G _I‘_ . ‘ P rt"t"
a) b) C) ransformed Partition
1 NEW CLUSTER (t,nc) NEIGHBOR CLUSTER SWAPS (t,cs) ORTHOGONAL CLUSTERS (t,.)
C. EEEEE T T _ [ STeT7TTSTm] =1/6
q=16 ¢ ST617 185 1011 F2l3 Le 1S[To[ 7 TEOl0 A z2Iz3 s q=1/3 gj b = q= AR e
C Tei] -
. Transformed Partition I5e] G|
Transformed Partition Transformed Partition
¢ HEE
Cs @
=1/6 G rmuu\ G ¢, CT ATSTET7 89 MO ESTEI7E q=1/6 (C;
a Cs T Tes] a= 13 (6:2 — 5] G g, 375 6718 9 i0[T[2]i3[aT5[ 161718
Transformed Partition Transformed Partition c el i
d) e) f) Transformed Partition

FIGURE 2. Parametric partition transformations used in our framework. Subfigure a) shows two reference partitions containing both n = 72 elements and
k =3 clusters, but differing on the heterogeneity of the cluster sizes: balanced (h = 0) vs. moderately imbalanced (h = 0.5). The 5 transformations,
illustrated in Subfigures b)-f), are applied to these two original partitions to produce corresponding transformed partitions. Transformation intensity is

q = 1/6, or equivalently 1/3 for both transformations concerned with rescaling. Figure available at 10.6084/m9.figshare.13109813 under CC-BY license.

TABLE 2. The six desirable properties selected from Section II-A, together with the framework parameters and transformations that allow testing them.
The bibliographic references indicate matching situations from the literature, when available.

Transformation & L
Property Parameter Description
. . tse & k [30] The measure is marginally affected by changes in k when undergoing this transformation.
k-invariance
toc & k [25] The measure is marginally affected by changes in k when undergoing this transformation.
Discriminativeness tse & q[10] Increasing g results in a substantial change in the measure score for this transformation.
Insensitivity to Clus- tonc & k [7] Increasing k results in a substantial change in the measure score this transformation.
ter Size tnes & h [7] The measure is marginally or never affected by this transformation, for increasing h.
. tse & k, h [9] The measure is not affected by k or h for this transformation.
Convex Additivity
tine & k, h [9] The measure is not affected by k or h for this transformation.
Proportionality toc & q[35] The measure score increases proportionally with g.
Sensitivity to Small toc & q [6] Even small values of g have a substantial effect on the measure score.
Differences tse & q Even small values of ¢ have a substantial effect on the measure score.

be viewed as an extreme form of partition refinement, in the
sense that each such singleton cluster is fully part of one of
the original clusters. Therefore, like kK New Clusters, but to
a lesser extent, this transformation allows testing the Convex
Additivity property through parameters k and h. Moreover,
it allows checking the Sensitivity to Small Differences by
considering the effect of parameter g. To be consistent with
the nature of this property, it is necessary to focus on relatively
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small values of g (i.e. a limited transformation magnitude),
though.

Parameter g can also be used to assess the Discriminative-
ness property, as increasing g largely increases the number
of clusters in the transformed partition. Therefore, a measure
which is affected by an increasing g is likely to discriminate
more between transformed partitions whose number of clus-
ters is closer to k (and hence to possess this property [10]).
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This is particularly true when the measure scores cover the
whole [0; 1] range. Parameter k can also be used, indirectly,
to check the k-invariance property. Indeed, the number of
clusters created by this transformation does not depend on &,
and is generally much larger than k. So increasing k changes
noticeably the number of clusters in the original partition, but
not in the transformed one. Consequently, a measure which is
marginally or never affected by changes in k£ when undergo-
ing this transformation can be considered as k-invariant.

¢: 1 NEW CLUSTER, tonc

Like the previous transformation, this one takes a proportion
of each original cluster, but it gathers these elements to create
a single cluster instead of k distinct ones (cf. Subfigure 2d).
If we switch the original and transformed partitions, this
transformation can alternatively be seen as the removal of
a same-sized cluster, i.e. distributing proportionally the ele-
ments of a single cluster over the others. This is similar to
the transformations used in [7] to test for the Insensitivity
to Cluster Size property. In our case, if increasing k results
in a substantial change in the measure score (all other things
remaining equal), then this indicates that the measure is likely
to treat the clusters equally, i.e. that it holds the property [7].

d: NEIGHBOR CLUSTER SWAPS, tncs

This transformation moves a proportion of each cluster into
its neighbor cluster. Each cluster swaps elements with exactly
one different cluster (cf. Subfigure 2e). Like for k New Clus-
ters, the effect of this proportion on the transformed partition
is mirrored in 0.5 for certain values of . We therefore rescale
it in the same way as before, in order to obtain a parameter g
ranging from O to 1. This transformation allows to test for the
Insensitivity to Cluster Size property through parameter 4. By
design, the number of clusters in the original and transformed
partitions are the same. Hence, this transformation does not
interfere with k and 4. If increasing 4 has a substantial effect
on the measure score, then this indicates that the measure is
not likely to treat the clusters equally, i.e. it does not hold the

property.

e: ORTHOGONAL CLUSTERS, toc

This transformation uses a proportion of each cluster to create
new clusters, in such a way that all of their elements come
from different original clusters (cf. Subfigure 2f). The result-
ing clusters are orthogonal to the original ones, in the sense
that each original cluster is represented equally in the new
clusters.

Applying this transformation with different values of k
has an effect on the number of clusters in the transformed
partitions, such that the difference in number of clusters
between the original and compared partitions substantially
decreases, when k increases. This is similar to the transfor-
mations used in [25]. The main difference is that the authors
shuffle completely the transformed partitions, whereas this
randomization process is tuned with the parameter g in our
case. Therefore, like in [25], this transformation can be used,
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to a lesser extent, to test for the k-invariance property. If
a measure is marginally or never affected by changes in &k
when undergoing this transformation can be considered as
k-invariant.

Moreover, this transformation can also be used to check the
Proportionality property with parameter ¢, as in [35]. If the
scores of a distance measure increase linearly with increasing
values of g, then we say that the measure validates this
property. Finally, like in Singleton Clusters, the Sensitivity
to Small Differences property can be also checked through
small values of g, i.e. a limited transformation magnitude [6].

3) COMPUTING AND NORMALIZING THE MEASURES

The third step is very straightforward and simply consists in
computing the measures for each pair of partitions generated,
in order to compare the reference partition with each trans-
formed partition. Note that during the regression analysis,
the measure of interest is considered as a categorical variable
noted m.

In order for these values to be comparable, one has to
make sure they respect two constraints, though. First, some
measures of the literature quantify the similarity between
two partitions, whereas others assess their dissimilarity. For
comparison purposes, all measures compared within our
framework should express the same concept, be it similarity
or dissimilarity. Without loss of generality, we assume in
the rest of our framework that all considered measures are
dissimilarity measures (possibly after having undergone an
appropriate transformation).

Second, all measures are not necessarily defined on the
same range, which means that some of them must be normal-
ized in order to allow comparison. Many measures are defined
on [0; 1], so this seems like a consensual choice.

B. REGRESSION ANALYSIS

The second part of our framework consists in analyzing all
the dissimilarity values obtained during the first part. In the
following, we first introduce our proposed regression model
(Section III-B1). We then turn to relative importance analysis
(Section III-B2), which aims at determining how much the
framework parameters affect the measures depending on the
applied transformations.

1) MODEL DESIGN
In our context, the dependent variable is a dissimilarity score
in [0, 1], which we note y, whereas the independent variables
correspond to the five parameters of the framework (n, k, A,
g, t) and the nature of the measure used to compute the score
(m). Four of them are therefore quantitative (n, k, h and g),
and two are categorical (¢ and m).

We study the relation between these variables through
a multiple linear regression model. Note that in this type
of model, the linearity constraint concerns the regression
coefficients, and not the independent variables. This means
that independent variables can appear as polynomial terms
in the model, and that the model can contain interaction
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terms corresponding to products of independent variables.
There exist more complex types of regression models
(e.g. polynomial regression), which could better fit our data.
We chose to use a linear regression nevertheless, because it is
much more interpretable [46], a property which is particularly
important in our case.

The presence of categorical independent variables makes
it necessary to adopt a specific approach, by comparison to
a straightforward model including only numeric dependent
variables, and there are several methods to do so [46]. Among
them, we decide to use so-called dummy variables, as they
allow to avoid splitting the model in several parts, which
in turns makes it easier to compare the estimated regression
coefficients [47].

Our multiple linear regression model is as follows

y=y > </30ijlimj
i

+Buyntim; + Baiktim; + Ba;ptim; + Pajihtim;
+Bsijnktimj + Beijnhtim; + Brinptim;

+Bgijkhtim; + Pojikptim; + ﬁlOijhptimj>
+e, (D

where the B.;; are the regression coefficients, #; and m; are
the dummy variables, and € is the common error, which is
assumed independent and normally distributed with mean O
and standard deviation o. Each dummy variable is binary,
and represents one specific value of a categorical variable:
transformations for #; (1 < i < T) and measures for m;
(1 <j < M), where T (resp. M) is the number of trans-
formations (resp. measures). The model focuses on various
types of interactions between the independent variables. The
second line contains terms describing interactions between
the categorical variables and each single numeric variable.
The third line deals, in addition, with interactions between
pairs of quantitative variables. These terms are likely to
introduce some amount of collinearity with the corresponding
terms from the previous line. In order to solve this issue, we
center all the quantitative independent variables [48]. In order
to keep the model interpretable, we do not include any higher
order term.

2) RELATIVE IMPORTANCE ANALYSIS OF INDEPENDENT
VARIABLES

As this stage, we have a multiple linear regression model able
to represent the relations between our framework parameters
and the scores of the measures. Next, we want to assess the
relative importance (also called relative strength [49] or effect
size [50]) of the terms constituting our model.

In our context, relative importance refers to the contribu-
tion of an independent variable, by itself and in combination
with other independent variables, to the prediction or the
explanation of the dependent variable [51]. Such notion can
be formalized in a number of ways, therefore several methods
have been proposed [51], originating from different research
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fields. Nevertheless, they are designed with a common goal in
mind, which is to handle both problems frequently occurring
in multiple regression analysis and making this task chal-
lenging: 1) multi-collinearity between independent contin-
uous variables; and 2) non-linearity of regression models.
Since our independent variables are perfectly uncorrelated
by design, and since we consider a purely linear model,
all of these methods are relatively equivalent in our case.
Therefore, we select the most straightforward approach, con-
sisting in using squared standardized regression coefficients
(SRC), or squared B weights [51], [52], to assess the relative
importance.

When the regression terms are by design perfectly uncor-
related, zero-order correlations and B weights are equiva-
lent [51]. Thus, squared B weights sum to the explained
variance of the dependent variable [51], generally noted R
This implies that squared 8 weights can be used as a means
of decomposing R? according to the terms of the model [52].
That is, a squared 8 weight close to zero makes a regression
term less important, from which we can deduce that it does
not play a key role in explaining the observed variance for the
dependent variable y.

Having a similar beta weight is not sufficient to conclude
that two terms have the same importance: the significance
of their difference must be statistically tested [47]. In the
presence of such significance we can confirm the superiority
of the same variable in one transformation type (similarly,
for one measure) over the others. The importance analysis
framework includes this test for all pairs of S weights.

IV. EXPERIMENTAL SETUP

In order to illustrate how to use our framework and interpret
its results, we now apply it to a selection of popular external
measures. In this section, we define our experimental setup.
We first describe briefly these measures (Section IV-A),
before turning to the dataset and the regression assump-
tions (Section IV-B). The results are presented afterwards, in
Section V.

A. SELECTED MEASURES

In the literature, external measures are divided into three main
categories based on the basic principle they rely upon [3],
[4]: 1) Pair-counting, 2) Set-matching (or set overlaps) and
3) Information-theory. Among them, the pair-counting mea-
sures are the most studied ones. In line with this, for our
experimental setup we select 6 widely used measures cov-
ering all three categories, with a prevalence of pair-counting
measures. The formal description is given in the Appendix
(Section B): in this section, we focus on the principle
underlying these measures, as well as their similarities and
differences.

A pair of elements can be handled in only two different
ways in a given partition: either they belong to the same
cluster or to two different clusters. Pair-counting measures
are based on the idea of comparing how two partitions of
the same dataset handle each pair of elements. For a given
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pair, there is positive agreement between the partitions if
its elements belong to the same cluster in both partitions;
negative agreement if they belong to different clusters in
both partitions; and disagreement otherwise. The Rand Index
(RI) [15] is the proportion of agreement relative to the total
number of element pairs. Hubert and Arabie’s Adjusted Rand
Index (ARI) [1] is based on the RI, but additionally includes a
correction for chance. The Jaccard Index (JI) was originally
defined to compare sets [53], but it is also used as an external
measure [54]. It completely ignores negative disagreements,
as it corresponds to the proportion of positive agreements
relative to the number of disagreements and positive agree-
ments. The Fowlkes-Mallows Index (FMI) [36] also ignores
negative agreements, as it is based on a score corresponding
to the proportion of positive agreements relative to the num-
ber of pairs belonging to the same cluster in one partition.
This score is computed separately for each one of the two
compared partitions, and the Fowlkes-Mallows Index is the
geometric mean of the resulting values.

To represent the category of sef-matching measures, we
select the F-measure (F). Note that this name is sometimes
used in the literature as a synonym of harmonic mean, and
therefore covers several distinct measures (e.g. [10], [23]).
We use the definition of Artiles et al. [16], according to which
the F-measure is the harmonic mean of two quantities called
Purity and Inverse Purity. In order to compute the Purity of
a cluster from the first considered partition, one needs first
to identify the cluster from the second partition with which
it has the largest intersection. The Purity then corresponds
to the proportion of the first cluster which belongs to this
intersection. The Purity of the first partition is the total purity
of its clusters. The Inverse Purity is simply the Purity of the
second partition relative to the first. Finally, the F-measure is
the harmonic mean of the Purity and Inverse Purity.

Information-theoretical measures are generally based on
the notion of Mutual Information [55]. The principle behind
these measures is to consider each partition as a categorical
random variable, whose possible values are the clusters. The
mutual dependence between these variables can then be inter-
preted as the similarity between the partitions. There are a
number of variants of the notion of mutual information, in
particular several normalizations have been proposed (see for
instance [5]). In this work, we focus on the sum normalization
as defined in [2], which is very widespread, and results in the
so-called Normalized Mutual Information (NMI).

As mentioned in Section III-A3, our framework expects
that all measures express the same concept, either dissimilar-
ity or similarity, and that they are all defined on the same fixed
range. Regarding the latter point, all the selected measures are
originally ranging from O to 1 except ARI, which can output
negative values in theory. However, in practice it is very rare
to get negative values for ARI. In the context of our exper-
iments, it is always positive, so we decided not to perform
any additional change. Regarding the former point, we adjust
our selected measures through a simple subtraction, so that
they all quantify the dissimilarity between partitions. We note
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the resulting measures as follows: Dg; (Rand Index), Dag;
(Adjusted Rand Index), Dryy (Fowlkes-Mallows Index), Dj;
(Jaccard Index), Dr (F-measure) and Dy (Normalized
Mutual Information).

B. DATASET AND REGRESSION ASSUMPTIONS
We generate our data through the process presented in
Section III-A, using the following parameter values. For the
number of elements n, we choose values arithmetically com-
patible with the desired numbers of clusters, ranging from
3,240 to 12,960 with increments of 1, 080. The number
of clusters k ranges from 2 to 11. The heterogeneity of the
clusters size & ranges from 0 to 0.9 with increments of 0.1.
Regarding the transformations, their intensity g ranges from
0.1 to 1, also by increments of 0.1, and the nature ¢ of the
transformation itself is one among fs. (Singleton Clusters),
tonc (I New Cluster), tine (k New Clusters), tyes (Neighbor
Cluster Swaps), toc (Orthogonal Clusters), as defined in
Section III-A2. In the end, the different combinations of our
parameter values produce a total of 50, 000 pairs of partitions.
There are several standard assumptions to check before
performing a linear regression [46], [48], [49]: 1) sufficient
sample size, 2) linear relationships, 3) no or little multi-
collinearity, 4) multivariate normality, and 5) homoscedas-
ticity. We review them here for our dataset and framework.
First, our sample size of 50, 000 observations is large enough
for getting reliable estimates of the regression. Second, after
a visual inspection we observe that the relation between the
dependent variable and the independent variables appear to be
linear, except for k and ¢ in which case it looks rather curvi-
linear. We stick to the linear model for the sake of readability
and understandability, though. Third, by design of our dataset,
the observations are independent and there is no collinearity
between the independent variables. Fourth, the large size of
our dataset makes the possible presence of outliers unlikely to
affect our results [56]. For the same reason, the central limit
theorem guarantees that the residuals will be approximately
normally distributed. Fifth, a visual inspection reveals that
the variance of y increases with parameters ¢ (intensity of
the transformation) and k& (number of clusters), which means
the data are not completely homoscedastic. The standard
way of solving this issue is to introduce non-linear terms
in the model [46], [48], [49], but again we want to keep it
simple, and moreover the observed level of heteroscedasticity
does not prevent us from interpreting the regression coeffi-
cients [49].

V. RESULTS AND DISCUSSION

We now assess, compare and discuss the performance of the
considered measures when applied to the generated dataset.
We first show the relevance of our method through visual
inspection (Section V-A), then present our results in further
detail (Section V-B).

A. VISUAL INSPECTION

To show the relevance of our method we highlight two aspects
of our analysis through the visual inspection of Figure 3:
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FIGURE 3. (a) Score of each measure as a function of p, for the Singleton Clusters transformation. (b) Score of each measure as a function of k, for
the Singleton Clusters transformation. (c) Dp; score as a function of k, for the 7 New Cluster transformation, and for several values of q. Figures

available at 10.6084/m9.figshare.13109813 under CC-BY license.

1) slope coefficients and 2) interaction between parameters.
As we will see in Section V-B, those aspects allow our
method to identify similarities and differences between the
considered measures, and therefore to discriminate between
them.

Plot 3a shows how the measure scores evolve as functions
of g, for the Singleton Clusters transformation, while the other
parameters are fixed to arbitrary values. One can observe that
all the scores increase with g, albeit in different ways. Overall,
Dgy has the smallest slope coefficient, followed by Dy, and
they are therefore the least sensitive to this transformation.
We observe that Dy;, Dagr, Dryr and Dy get similar scores
for extreme g values, but are relatively different when ¢
gets closer to 0.5. Plot 3b is built upon the same principle,
except it focuses on k instead of g. As before, all measures
differ in terms of absolute score values, but this time one can
detect similar certain trends. In particular, Dy, Dppyy and Dy
remain unchanged, whereas Dgy, Dar; and Dy decrease
with k. These two plots show that our framework is able to
produce situations for which the measures behave differently.
Moreover, they also show that the slope coefficients, which
constitute the basis of our analysis, are able of capturing these
differences.

As mentioned in Section II-C1, the common way to assess
the performances of the measures is trough visual inspection,
which requires fixing many parameters, as we did just now,
as such plots are able to handle only a limited number of
parameters at once. Plot 3c illustrates the limitation of this
approach by showing the evolution of the Dg; score for the
1 New Cluster transformation, as a function of both £ and q.
When considering only k, the Dg; score is always monotonic.
However the nature and slope of the trend depend on g¢:
increasing for ¢ > 0.7 vs. decreasing for ¢ < 0.7. This
means that there is an interaction between both parameters.
This type of joint effect between parameters is hard to detect
when using only plots, as it requires considering all possible
combinations of parameters. However, it is captured by the
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interaction terms present in our regression model, as we will
see in Section V-B.

B. RELATIVE IMPORTANCE ANALYSIS

We first discuss the effect of the framework parameters on
each measure (Section V-B1), and compare them. Along with
our discussion, we identify the desirable properties possessed
by each measure, as well. We then show how this analy-
sis can be leveraged to derive a typology of the measures
(Section V-B2).

1) EFFECT OF THE PARAMETERS

We show all the results from our relative importance analysis
in Figure 4, using stacked barplots. We describe these plots
globally here, for matters of convenience, before interpreting
them in the rest of this section. The figure contains 6 barplots
(i.e. subfigures), each one corresponding to a specific dis-
similarity measure. Each barplot is constituted of 5 stacked
bars, each one corresponding to a different transformation.
The segments constituting these stacked bars represent the
regression terms from (1). Their colors and order match
the legend, and their height corresponds to the associated
regression coefficient 8 in (1). More precisely, the segment
heights are proportional to the square root of the squared 8
coefficients.

The larger the segment height, the more important
the regression term for the measure and transformation
represented by the considered stacked bar. The values they
represent are unitless, and we perform no upper bound nor-
malization in order to ease comparisons between transforma-
tions and measures. Differences between segment heights are
not always statistically significant, though. The exhaustive
list of significant differences at p-value < 0.05 is given in
Appendix (Figures 5 and 6) for the sake of completeness.
However, we find it difficult for the reader to cross-check
them systematically with Figure 4. It is more intuitive to
use the following rule of thumb: if one can visually detect a
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FIGURE 4. Results of the relative importance analysis, for measures a) Dg,, b) Dgg, ) Dgyyy. d) Dy, €) D and f) Dy, - The order of the
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of the values of the other parameters. Figure available at 10.6084/m9.figshare.13109813 under CC-BY license.

difference between two bars of Figure 4, then it is statistically
significant.

Finally, there is a last bit of information in Figure 4,
under the form of triangles placed over certain seg-
ments and representing monotonic behaviors. Upward
(resp. downward) triangles indicate that the measure score
consistently increases (resp. decreases) when the concerned
parameter increases, independently from the other parame-
ters. This information can be seen as complementary to the
relative importance analysis. Suppose that a given parameter
is similarly important for several measures, i.e. it affects them
to roughly the same extend. The triangles allow distinguish-
ing the measures qualitatively, based on the nature of this
effect (see Section VI for a practical example).

Overall, we can observe that all measures are strongly
affected by ¢, and to a lesser extent by k and 4. On the
contrary, n has close to no effect on the measures. This effect
of ¢ on all measures also appears under a different form
in Figure 3a. As shown by the triangles in Figure 4, the
measure score increases with g in all cases. This general
behavior is intuitively sound, as g controls the intensity of
the transformation. There are differences, as illustrated in
Figure 3a, in the way the measures are affected by g and
the other parameters, though, and we can also see some
punctual effects due to interactions between parameters. In
the following, we consider each measure and discuss the
results displayed in Figure 4.

a: Rl
We can distinguish roughly two categories of transformations
regarding Dg;, depending on how the measure is affected
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by the parameters. The first category contains only / New
Cluster, for which we observe a sensitivity almost twice as
important as for the other transformations, which is unique
among the considered measures. Also, this transformation
exhibits a very strong effect of g, and to a lesser extent of the
interaction between ¢ and k, as also illustrated in Figure 3c
from a different perspective. The second category contains
the rest of the transformations, for which parameter impor-
tance is more balanced between g, k, and their interaction.

As mentioned in Section IV-A, Dg; considers positive
and negative agreements equally. When applying a trans-
formation of the second category, an increase in g causes
the number of positive agreements to decreases, whereas
the negative agreements are largely preserved. This pre-
vents Dg; from using its whole nominal range [0, 1], as
also pointed out by Meild [4] and Vinh et al. [5]. This in
turns explains the observed smaller effect of g. As explained
in Section III-A2.b, we can infer from a small ¢g effect for
Singleton Clusters that Dry does not possess the Discrimi-
nativeness property, a conclusion that confirms the results of
Rabbany et al. [10].

On the contrary, there is a relatively substantial effect of k
for the transformations of the second category, which is due
to them largely preserving negative agreements, as already
noticed for g. As explained in Section III-A2, the large effect
of k for the Singleton Clusters and Orthogonal Clusters
transformations indicates that the measure is not k-invariant.
Similarly, the large effect of k for the Singleton Clusters
and k New Clusters transformations indicates that it does not
have the Convex Additivity property. These findings are in
line with the results of Rabbany et al. [10] and Amelio &
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Pizzuti [29] regarding k-invariance, and Meild [4] regarding
Convex Additivity.

The relatively small effect of k for I New Cluster shows
that Dgy is sensitive to variations in the cluster sizes
(cf. no Insensitivity to Cluster Size), as already pointed out by
Rezaei & Frinti [7] for pair-counting measures. The absence
of any significant effect of 4 in the results of Neighbor Cluster
Swaps corroborates this finding. Regarding the remaining
parameters, / New Cluster is also the only transformation
which seems not to be affected by 4. Finally, n does not seem
to affect Dg; at all.

b: ARI

Overall, g has a much stronger effect on D4g; when compared
to Dgy, which results in a total sensitivity approximately twice
as large for all transformations except / New Cluster (which
is already large in Dg;). Based on the effects observed for
Singleton Clusters, Dag; seems to validate the Discrimina-
tiveness property much more than Dg;.

The effect of k is much lower than in Dg;, for all transfor-
mations except Neighbor Cluster Swaps. According to certain
results obtained by Meild [4] for a similar transformation,
the correction term in Dsg; can be sensitive to variations in
the cluster number and sizes, which may explain our obser-
vation. Regarding / New Cluster, the effect of k in Dgs is
already small, and the correction present in Dggy only slightly
increases it. Therefore, Dagy is sensitive to the variations of
the cluster sizes, too (cf. Section II1I-A2.c).

The effect of k observed for Singleton Clusters and
Orthogonal Clusters is much smaller than in Dgy, which
indicates that the measure is k-invariant (Sections III-A2.b
and III-A2.e). This is consistent with the fact that Dag; was
designed specifically to make Dg; k-invariant, a property
already verified empirically by Rabbany et al. [10]. However,
this effect is still noticeable, which shows that the measure
is not completely k-independent. Similarly, the effect of k
for k New Clusters is smaller than in Dg; but still consid-
erable. Based on these two observations, we can conclude
that Dgr; does not possess the Convex Additivity property
(Section III-A2.a).

The introduction of chance correction has a side-effect
on h, as it has a much smaller effect on Dgg; compared to
Dg;, for all transformations. This is consistent with a similar
observation pointed out by Romano et al. [28]. Interaction-
wise, the effect of k:g is much weaker than in Dg;, probably
due to the lower overall effect of k, except for I New Cluster.
Finally, n does not seem to affect Dg; at all.

c: FMI & JI

We jointly discuss both other pair-counting measures, Dryy;
and Dyy, because their results are very similar and differ only
on the magnitude of the effect of g. The main difference
with the other measures is that ¢ is the only perceptible
effect for three transformations: Orthogonal Clusters, k New
clusters and Singleton clusters. Consequently, both measures
differ from the two previous ones regarding certain desirable
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properties. First, like D4y but unlike Dg;, both measures pos-
sess the Discriminativeness property. Second, unlike Dg; and
Darr, they seem to validate the Convex Additivity property.
It is worth stressing that, in theory, Dpyg and Dj; are not
supposed to possess this last property [9], strictly speaking.
However, our results show that in practice they behave as if
they do, at least fo some extent, and under some conditions
(here: when the number of elements 7 is large enough).

The effect of k is negligible for all transformations but
1 New Cluster, i.e. the second category of transformations
previously identified for Dg;. These transformations affect
only marginally negative agreement, which explains why the
effect of k is so small here, compared to Dg;. This effect
is small for Singleton Clusters and Orthogonal Clusters, so
we can conclude that both measures appear to validate the
k-invariance property (Sections III-A2.b and III-A2.e). The
strong effect of k for I New Cluster indicates that these
measures possess the Insensitivity to Cluster Size property
(Section III-A2.c).

Regarding the other effects, one can observe that unlike
Dpgr and Dygy, h has a small effect only for I New Cluster.
Furthermore, not only do k and g have a strong effect for this
transformation, but their interaction does too. Finally, overall,
n has no significant effect on both measures.

d: F-MEASURE

Unlike the previous measures, which rely on pair-counting,
Dr is based on set-matching. Nevertheless, the observed
effects are very similar to those of Dryy and Dj;. We observe
essentially two differences. The first is that k and & have
a relatively noticeable effect for Orthogonal Clusters. The
second is that the effect of interaction h:q is stronger for
Neighbor Cluster Swaps and I New Cluster. D still validates
the same properties as Dy and Dy; do, despite these small
differences.

e: NMI

The results obtained for the information-theoretical measure
Dpyy are very similar to those of Dgy, qualitatively speak-
ing, and to those of Dags, in terms of magnitude of the
effect observed for each transformation. Like Dgy, Dy
behaves in the same way for all the four desirable proper-
ties, and this is consistent with the observations from the
literature. For instance, Meild [9] proves that the rescaling
performed by some measures for normalization purposes,
such as NMI, have the effect of breaking the Convex Addi-
tivity property. Moreover, Newman et al. [30], like oth-
ers [5], [10], [29], show that NMI tend to favor partitions
with more clusters when compared with a reference partition
(cf. no k-invariance), and that this behavior can be smoothed
by correcting NMI for chance.

A clear difference between Dyy; and all the other mea-
sures is that n has a very visible effect for Orthogo-
nal Clusters and Singleton Clusters. This seems to be
an artefact of the normalization for these transformations,
which would match the observation made by Amelio &
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TABLE 3. Relations between four desirable properties and the considered measures, based on our results presented in Figure 4. The method used to
check whether a measure has a property is summarized between parenthesis in the first line, and additional details can be found in Section I11-A2. The
bibliographic references show matching observations found in the literature, when available.

k-invariance Discriminativeness  Insensitivity to Cluster Size ~ Convex Additivity
(tsc and to with k) (tsc with q) (tonce With k, tycs with h) (tsc and tgq,. with k and h)
Dry X [4], [10], [29] X [10] X [71,157] X[4]
DaRy v [10] v [10] X171, 157] X[4]
Dpymr v [25] v v v
Dji v [25] v [10] v v
Dp v v v [57] v
Dyapr XI51,[10], [25], [29], [30] X [10], [29] X171, [571 X [4]

Pizzuti [29], rather than a violation of the n-invariance
property. Indeed, the information-theoretic measures are n-
invariant by construction [9].

f: GENERAL OBSERVATIONS

For the sake of clarity, we roughly summarize in Table 3
the discussion that takes place throughout the current section
regarding the presence or absence of desirable properties
within the considered measures. We observe that three
measures validate all 4 properties (D, Dj;, Dryy), whereas
two measures have none of them (Dg;, D). The last one,
Dagr, holds an intermediary position, as it possesses the
k-invariance and Discriminativeness properties like D, Dy
and Dpgyyy, whereas it shares the same behavior with Dgy
and Dy regarding Insensitivity to Cluster Size and Convex
Additivity.

Let us now conclude this section by highlighting the main
observations we could draw from the relative importance
analysis. First, it is important to stress that the results pro-
duced by our framework are consistent with those published
in the literature, including both theoretical and empirical
works. This is summarized in Table 3. Second, the system-
atic nature of our approach helps uncovering properties not
already described in the literature. For instance, Rezaei &
Friénti [7] state that set matching measures are more suitable
regarding the Insensitivity to Cluster Size property. Never-
theless, we find out that the pair-counting measures D;; and
Drpr also possess this property. Third, our framework allows
us to state that some measures possess certain properties at
least partially, or under certain conditions. Indeed, our frame-
work does not predict the presence of a property in a Boolean
way, but rather on some continuous spectrum, through regres-
sion. Put differently, instead of predicting whether a measure
has a property or not, we can estimate how much it possesses
this property, and assess how this can change depending on
the parameter values. For instance, as mentioned above, we
can say that Dyg; validates the Discriminativeness property
much more than Dgy, based on the effect of g for Singleton
Clusters.

2) TYPOLOGY OF MEASURES

We now show how a typology of the measures can be built
based on the results shown in Figure 4, through a cluster
analysis. First, we compute a distance matrix comparing all
pairs of stacked bars constituting the plots from this figure.
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For this purpose, we represent each stacked bar by a vector of
proportions, each value corresponding to a term of the regres-
sion model (i.e. a segment of the stacked bar). We use the
Hellinger distance [58], which was designed to compare pairs
of discrete probability distributions. Second, we perform the
cluster analysis by applying the k-medoids method [59] to
our distance matrix. This method requires us to specify the
desired number of clusters, though. To find the most appro-
priate number, we apply the standard approach consisting in
performing the clustering using all possible values, and then
selecting the most appropriate one. For this purpose, we use
the Silhouette measure, a well-known internal criterion [60],
but we also take into account a more subjective constraint of
parsimony (i.e. we want a small number of clusters).

The analysis results in 5 clusters of stacked bars, for a
Silhouette of 0.55. Table 4 shows the distribution of the bars
from Figure 4 over these clusters, each one being represented
as a specific color. The blue cluster corresponds to bars in
which there is a relatively balanced main effect of k and
g, and a minor effect of 4 and k:q. In the brown cluster,
the situation is quite similar but g supersedes k. In the red
cluster, g even more prevalent, and both minor effects are
even smaller. The orange cluster contains bars in which all
effects are negligible compared to ¢. Finally, bars from the
green cluster are dominated by ¢ and exhibit a minor effect
of h:q.

Table 4 shows that each transformation produces a different
vertical pattern, which indicates that the transformations we
selected in our framework are not redundant in the way
they allow characterizing the measures. The measures can be
compared using the horizontal patterns present in the table.
Roughly speaking, there is a first group constituted of Dryyy,
Dy, Dr; a second containing Dgr; and Dyyg; and Dagy is
apart. We see that this characterization is consistent with the
results in Table 3. The fact that these groups of measures,
which are automatically obtained, match the ones identified
manually based on our knowledge of the desired properties,
indicates that this clustering-based method could be useful
when the user is not able to (or does not want to) express their
desired properties a priori. Indeed, for a given collection of
available measures, this method allows identifying clusters
of measures possessing a similar behavior: these clusters can
then be characterized a posteriori, and the user can select a
measure from the cluster considered as the most appropriate
to the considered application.
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TABLE 4. Comparison of the measures based on the characterization provided by our framework and shown in Figure 4. We use the Hellinger distance
and k-medoids to identify groups of similar behaviors, each one being represented by a color in the table.

k New Clusters

Orthogonal Clusters

Neighbor Cluster Swaps

1 New Cluster  Singleton Clusters

To sum up, not only does our analysis allows distinguish-
ing the effects of the framework parameters over transfor-
mation types and measures, but it also makes it possible
to categorize the measures based on their empirical behav-
ior. Our results confirm the findings of Pfitzner et al. [6],
which indicate that the categorization of the measures based
on their sole definitions (cf. Section IV-A) does not nec-
essarily hold when it comes to comparing them through
experiments.

VI. PRACTICAL CASES

In practice, an external evaluation measure is usually needed
in two situations frequently occurring in the context of cluster
analysis or community detection. In the first, one wants to
compare an estimated partition to a partition of reference.
This typically happens when one has applied some algorithm
in order to estimate a partition of their data, and wants to
quantify how similar it is to some available ground truth
partition. In this context, the measure is used to assess the
performance of the partitioning method. In the second sit-
uation, there is no reference partition involved: one wants
to compare two estimated partitions. For instance, one has
access to several partitions and wants to assess them in the
absence of any ground truth. These partitions could either
result from the application of several distinct partitioning
methods to the same data, or from the application of single
method able to output several solutions for the same input
data. In this context, one would use a measure to assess how
similar these partitions are, in order to check whether the
methods reach a relative consensus.

The external measure has a central role in both situations,
as different measures are likely to result in very different
outcomes. The choice of an appropriate measure depends on
anumber of factors, including the broad situation, but also the
nature of the application at hand and other contextual aspects
such as the behavior expected by the user. In particular, it is
worth stressing that not all transformations and parameters
are relevant in all cases.

In the following, we illustrate all these aspects through two
use cases, each one corresponding to one of the two broad
situations described above. First, we treat the partitioning of
the well-known cluster analysis method k-means, in a case
where the ground truth is known (Section VI-A). Second, we
turn to the cluster analysis of a set of estimated partitions,
in the context of a study aiming at analyzing votes at the
European Parliament (Section VI-B).
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A. COMPARING ESTIMATED PARTITIONS WITH
GROUND-TRUTH

In order to illustrate the comparison of some estimated parti-
tions with the ground truth, we leverage the work of Frinti
& Sieranoja. In [61], they study the behavior of k-means,
and more precisely how this clustering method is affected
by certain properties of the considered data. To this end,
they propose a benchmark constituted of various artificially
generated datasets together with their associated ground truth.
Certain properties of these data are controlled through a set
of parameters. Among these, some are only related to the
k-means algorithm (e.g. number dimensions of the data, spa-
tial overlap) and not to the problem of partition comparison,
so we ignore them in the rest of our discussion. Frinti &
Sieranoja want to assess how changes in the properties con-
trolled by the parameters affect the algorithm performance.
For this purpose, they use the ARI and the Centroid Index
(CD). The latter is a clustering comparison measure defined
by Frinti et al. in a previous article [8]. It focuses on global
partition differences concerning the number of clusters, by
opposition to what the authors call point-level differences,
i.e. local differences concerning the cluster borders. However,
it was designed specifically to handle centroid-based cluster-
ing methods, which is why it is not part of the selection of
measures we study in Section IV-A.

Let us now suppose that one wants to use a measure
selected among the one discussed in Section IV-A. We can
leverage the objectives of Frinti & Sieranoja as described
in [61], as well as their methodology, to infer which mea-
sure behavior is desirable in terms of our own framework.
First, the main parameters used to directly control the ground
truth partitions in [61] are the number of objects, which
corresponds to our parameter n, and the number of clusters,
which is the same as our k. Although it is not controlled by
a specific parameter, they also consider datasets with various
levels of cluster size imbalance, a feature related to our 4. The
authors compare scores produced on data obtained by using
different values of these parameters. For these comparisons
to be relevant, it is necessary that these parameters affect the
measure as little as possible, in order for it to reflect only
changes in algorithm performance.

It appears clearly in the article that, for the authors, incor-
rectly estimating the number of clusters is the most serious
error that k-means can make, by opposition to so-called
point-level errors which concern only cluster borders. The
transformations of our framework which are the most relevant

VOLUME 9, 2021



N. Arinik et al.: Characterizing and Comparing External Measures for the Assessment of Cluster Analysis and Community Detection

IEEE Access

to this situation are therefore those that change the number of
clusters, i.e. all of them but Neighbor Cluster Swaps. More-
over, due to the nature of the considered data and clustering
method, it is very unlikely to see singleton clusters appear in
the considered partition (this would require the presence of
very eccentric outliers). Therefore, transformation Singleton
clusters is not relevant in this situation. This leaves us with /
New Cluster, k New Clusters and Orthogonal Clusters.

Let us now assess the relevance of the measures studied
in Section IV-A with respect to the criteria we identified.
Based on our results from Section V-B, we can identify two
categories of measures in this situation. First, Dg;, Dgry and
Dpyyy are sensitive to k, especially for k& New Clusters and
Orthogonal Clusters, and to a lesser extent, to /. They differ
on I New Cluster, as Dgy is much less sensitive to these
parameters when considering this transformation. The second
category contains Dpyy, Dy and D, which exhibit sensi-
tiveness to k and 4 only for I New Cluster, and Orthogonal
Clusters in the case of Df. In conclusion, the second category
is more appropriate to the situation described in [61], with
a preference for Dj; which, overall, is less sensitive to the
parameters of interest than the Dy used in the original study.

B. COMPARING ESTIMATED PARTITIONS

We now illustrate the case of comparing several estimated
partitions with each other. In [62], Arinik e al. study voting
data from the European Parliament (EP), in order to identify
voting patterns, i.e. how Members of the EP (MEP) are splitin
various factions depending on the topic of the considered leg-
islative texts. Formally, they model the MEPs’ voting behav-
ior as a multiplex signed graph, and perform community
detection on each layer to identify so-called voting patterns,
i.e. partitions of the set of MEPs. This specific application
brings specific constraints on the partitions, which can con-
tain at most three communities: 1) a single community in
case of unanimity (all MEPs vote either For or Against the
legislative text); 2) two communities when there is either an
antagonistic situation (i.e. some MEPs support the concerned
document and the rest oppose it), or a unanimous commu-
nity with an additional community of abstentionists; 3) two
antagonistic communities with an additional community of
abstentionists.

Arinik et al. identify the partition of MEPs (voting pattern)
associated to each legislative text in their corpus. They then
use an external measure to compute the dissimilarity between
each pair of partitions, and perform a cluster analysis in order
to identify groups of similar patterns, which they finally dis-
cuss relatively to the application context. In order to select the
most appropriate measure, they adopt a qualitative approach
consisting in identifying some partitions of interest and com-
paring how different measures behave when comparing them.
Among Dgy, Dr, Dsgr and Dy, they conclude that Dy and
Dpy are the most appropriate for their situation, with a slight
advantage to Dr.

We propose to use our results from Section V-B, and in
particular from Figure 4, to solve the same measure selection
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problem, but based on the method presented in this article.
Note that, in the following, we use the term cluster instead
of community, for the sake of consistency with the rest of
the article. It is important to stress that some parameters and
transformations are not relevant here, due to the application
context. First, the case of k = 1 is not applicable for some
transformations. Therefore, we apply all our transformations
if there is more than one cluster in the original partition. For
k New Clusters and Singleton Clusters, this means that we
get at least four clusters in the transformed partition. This is
incompatible with the fact that all the compared partitions of
this application contain at most three clusters, so we exclude
both transformations. Second, in this context, the Orthogonal
Clusters transformation can be applied only when there are
two clusters in the original partition, and only one element
in each cluster is affected by the transformation. In this case,
this transformation results in the same transformed partition
as with I New Cluster, therefore we also exclude Orthogonal
Clusters.

This leaves us with two transformations. The first is / New
Cluster, which we apply only when the original partition has
two clusters, in which case the transformation produces an
additional cluster in the transformed partition. The second
is Neighbor Cluster Swaps, which we apply only when the
original partition has either two or three clusters, but not a
single one. For both these transformations, there is no con-
straint on parameters / and g. However, as explained above,
our analysis must focus only on certain values of k. Finally,
in this context all the considered partitions contains the same
number of elements, which means 7 is fixed and can therefore
be ignored in our discussion.

Next, based on the description given by Arinik et al. of
what they consider to be an appropriate measure for their
application needs, we express the desired behavior of the
measure with respect to the remaining parameters and trans-
formations. The measure must be sensitive to the / New
Cluster transformation as, in this context, detecting an extra
cluster or missing one is an important error, since there are
only a few possible clusters of MEPs. When k increases, so
does the diversity of the cluster created by this transformation,
in the sense that its elements come from more distinct original
clusters. In this context, this is an important difference with
the original partition, so we want the score of the measure to
increase with k. By comparison, it is desirable that the dissim-
ilarity score decreases when & increases, as this means most
elements of the extra cluster come from the same original
cluster, an error which is less serious. For the same reason, the
effect of k should be stronger than that of 4. Transformation
Neighbor Cluster Swaps consisting in mixing the original
clusters to get the transformed partition without changing the
number of clusters makes the clusters more different, when ¢
increases. In this application context, it is important that this
type of difference between partitions is taken into account, so
the measure must be sensitive to it. Changes in k and / do not
affect the mixing much, so the measure score is expected to
be largely independent from these parameters.
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Let us now study which measures studied in Section [V-A
fit the constraints described above. Regarding transformation
1 New Cluster, it appears that only Dryy, Dy; and D behave
appropriately. When considering transformation Neighbor
Cluster Swaps, we can see that, even if it is a small one, k
as an effect on Dgyy; and Dy;. In conclusion, based on these
observations, we would select D in this context, a choice that
incidentally matches the one made through a more qualitative
and heuristic method in [62].

VIl. CONCLUSION

In this article, we have presented a new evaluation framework
to address the problem of selecting an appropriate measure to
compare partitions. We want not only to compare measures,
but also to produce results that the end user can easily inter-
pret. For this purpose, based on our review of the literature,
we designed a set of predefined partitions and parametric
partition transformations in order to generate a benchmark
dataset. Our two-step framework first computes the consid-
ered measures for these partitions, then conducts a regres-
sion and relative importance analysis to determine how the
measures are affected by the transformations. We illustrated
its relevance by applying it to a selection of standard mea-
sures. We showed that our framework allows identifying the
desirable properties possessed by each measure. For some of
them, our results confirm empirical and theoretical findings
already published in the literature. For others, the systematic
nature of our approach even uncovers properties not men-
tioned before in the literature. Furthermore, we propose a

DJI

Dr

DNMI N

typology of the considered measures based on their charac-
teristics. Overall, our results confirm the findings of Pfitzner
et al. [6], which indicate that categorizing measures based
on their mathematical definitions does not necessarily match
experimental comparison. Finally, we demonstrated how our
framework can be put in practice through two concrete use
cases: comparing an estimated partition to a partition of ref-
erence, and comparing several estimated partitions with each
other.

Our work could be extended in several ways. First, our
method can be applied systematically to other external
measures, for the sake of completeness. It is particularly
important to include the recently proposed measures for an
up-to-date comparison, which would prevent from following
the tradition of using only well-established measures without
regard for their relevance. Second, similar to the previous
point, some new parametric transformations can be proposed
to closely investigate the performance of the measures on a
specific subject. For instance, there is an important number
of measures aiming at correcting Mutual Information for
chance in the literature. Including some specific transforma-
tions could enable to concentrate more on the aspect related
to the number of clusters. Finally, by proposing relevant
parameters and transformations, our general method could be
adapted to handle objects similar to partitions, such as covers,
to compare overlapping clusters (e.g. [25], [31]), or edge-
aware community similarity measures, to compare commu-
nity structures while taking graph topology into account

(e.g. [10], [63]).

tocs

FIGURE 5. Significance of the results regarding the comparison of the segment heights performed in

Section V-B over all pairs of transformations, considered for each measure and parameter set. For instance, the
top four matrices correspond to Figure 4.a. Green (resp. red) cells represent significant (resp. non-significant)
differences between the considered transformations, with a significance level of « = 0.05. Figure available at

10.6084/m9.figshare.13109813 under CC-BY license.
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APPENDIX A
ADDITIONAL RESULTS

APPENDIX B

EVALUATION MEASURES

In this section, we give the formal definition of the evalua-
tion measures used in this work. A common point of those
measures is that they can be computed using the so-called
confusion matrix (also called association matrix or contin-
gency table) based on the two partitions.

We note n the numbers of elements of a dataset D. Also,
let P = {Cy,...,C¢} (1 < k < n) be a k-partition of D,
i.e. a division of D into k non-overlapping and non-empty
clusters C; (1 < i < k). Let have another partition P’ formed
by k' clusters, where k" may be different from k. Then, the
confusion matrix is a k x k' integer matrix, whose ii’th cell
is the number of elements in the intersection of clusters C;
and Cy, as shown in Table 5.

A. RAND INDEX, RI

The formulation of all pair-counting measures can be
expressed in terms of four types of element pairs. The positive
agreement N11 corresponds to the number of element pairs
which are in the same cluster in both partitions P and P'.
The negative agreement Nyg is the number of element pairs
which are in different clusters in both P and P’. The partitions
disagree on the remaining element pairs, as Nig (resp. Nop)
corresponds to the number of element pairs which are in the
same cluster in P (resp. P’), but not in P’ (resp. P). The
formula of each term is shown in Table 6.

Singleton
Clusters

1 New
Cluster

Dari Demi

k New
Clusters

Dgy
Neighbor §:;:
Cluster Swapsz®

Dgi
D

Orthogonal o
Clusters

(
D
Dy

Dri Dari Demi Dy D Dywi Dri Dari Demi

TABLE 5. The confusion matrix for two partitions P = {C;, ..., Ct} and
P =(C,..., Cl",] of n elements, where nj =G N le| are the number of

elements in both clusters C; P and C; € P'.

Partition P’
Cluster C] ... Cl,c , Marginal sum
C1 ni1 . [ ni.
Partition . . . .
P
Ck Nk1 e N fe! ng.
Marginal sum | 7.1 . .t n.=mn

TABLE 6. Formulae for the number of (unordered) element pairs of the
four types.

Type Formula
koK L& K’
Ni > 2 (M) =52 X nij(ng —1)
i=15=1 i=15=1
Noo %) — (N11 + N1o + No1)
k kK
Nio (X nz - Y n)
i=1 i=15=1
K’ K
No1 %an—zznf])
j= i=14=1
N..= N1 5) =n(n—1)/2
+ N1o + No1 + Noo

The Rand Index (RI) [15] is the proportion of total
agreement, i.e. when counting both positive and negative
agreement:

Ni1 + Noo
N.
Its values lie between 0 and 1, where O occurs for the absence
of any positive and negative agreements, whereas 1 corre-
sponds to the case where the partitions are perfectly identical.

RI(P,P) = )

De  Dym Dri Dari Dew Dy Dr Dymi Dr Dari D Dy D Dywi

FIGURE 6. Significance of the results regarding the comparison of the segment heights performed in Section V-B over all pairs of measures, considered
for each transformation and parameter set. For instance, the top four matrices correspond to the last stacked bar in each barplot of Figure 4 (Singleton
Clusters). Green (resp. red) cells represent significant (resp. non-significant) differences between the considered measures, with a significance level of
« = 0.05. Figure available at 10.6084/m9.figshare.13109813 under CC-BY license.
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B. ADJUSTED RAND INDEX, ARI
The Adjusted Rand Index (ARI) [1] is a well-known extension
of the Rand Index, with additional correction for chance.
It aims at dealing with the statistical independence of two
partitions (see Section II-A2). Its formula is

RI(P, P') — E[RI(P, P)]

ARI(P,P)) = CTERIP P 3)

where E[RI(P, P')] corresponds to the estimated score of
RI(P, P") for independent partitions under hypergeomet-
ric assumption (so-called permutation model). This term is
defined as

E)-TEE0 -

1

The ARI takes a value of 1 for identical partitions, whereas
0 indicates a case of statistical independence. Moreover, ARI
can take a negative value for very dissimilar partitions [4],
when the observed Rl is smaller than expected.

C. JACCARD INDEX, JI
The Jaccard Index (JI) was originally defined to compare
sets [53], but it is also used as an external measure [54].
As reported in [4], the negative agreement Nyp can be often
almost as large as the maximum number of element pairs (g)
The Jaccard Index is an improved version of RI on this aspect,
as it does not take Ny into account. It is defined as
/ Nii
JIP,P)= ———. (&)
N11 + Noi + Nio

The Jaccard Index ranges from O (absence of any positive
agreement) to 1 (identical partitions). Note that one minus the
Jaccard Index is a metric on the finite sets [64].

D. FOWLKES-MALLOWS INDEX, FMI
The Fowlkes-Mallows Index [36] is the final pair-counting
measure that we consider in this work. It was originally intro-
duced to ease the comparison of hierarchical dendrograms.
Like the Jaccard Index, it ignores negative agreements. It can
be described as the geometric mean of two asymmetric forms
of positive agreement: the proportion of positive agreements
relative to the number of pairs belonging to the same cluster
in P vs. those in P'. Its formal description is

N1

FM(P,P) = . 6
( ) ~/(N11 + N1o)(N11 + Not) ©

E. F-MEASURE, F

In the category of set-matching measures, we select the
F-measure (F). Note that this name is sometimes used in
the literature as a synonym of harmonic mean, and therefore
covers several distinct measures (e.g. [10], [23]). We use
the definition of Artiles ef al. [16], according to which the
F-measure is the harmonic mean of two quantities called
Purity and Inverse Purity.

20274

The formal definition of Purity is as follows:

Purity(P, Py = 3 2 max * %)
— n j
l

n;.

The Inverse Purity is simply the Purity of the second parti-
tion relative the first, i.e. Puriry(P’, P). Finally, the F-measure
is the harmonic mean of the Purity and Inverse Purity

Purity(P, P') x Purity(P', P)

F(P,P)=2 .
P F) Purity(P, P') + Purity(P', P) ®)

F. NORMALIZED MUTUAL INFORMATION, NMI
The last measure that we consider is the Normalized
Mutual Information (NMI), which belongs to the category of
information-theoretical measures. It is based on the notions of
entropy and Mutual Information [55]. The principle behind
these notions is to consider each partition as a categorical
random variable, whose possible values are the clusters.

In the context of clustering, entropy in the sense of Shan-
non is defined as

HP) = — Z ”7‘ log 2t ©)

Each element in dataset D has an equal probability of being
picked, so its probability of being in cluster C; is n;/n. Thus,
we have a discrete random variable taking k values, which
is associated to the partition P. If the partition P has only
1 cluster containing all the points, then H(P) will be zero,
since there is no uncertainty in the clustering structure. If the
partition P consists of as many clusters as n, it will reach its
maximum value. Note that H(P) does not depend on n, but
on the relative proportions of the clusters.

The Mutual Information can be described as the mutual
dependence between these variables, and it can then be inter-
preted as the similarity between the partitions. It is formally
described as

Vl,j

MI(P, P)—ZZ Ulgnl 7 (10)

i=1 j=I

There are a number of variants of the notion of mutual
information, in particular several normalizations have been
proposed (see for instance [5]). In this work, we focus on
the sum normalization as defined in [2], [65], which is very
widespread. The resulting NMI is

NMI(P, P') = iy (11)
APPENDIX C
EXPERIMENTAL DETAILS ABOUT HETEROGENEITY OF
CLUSTER SIZES
There are many ways to make clusters imbalanced. In this
work, we opt for a sequence based on an arithmetic progres-
sion. Consider the sizes of the clusters in a partition as a
sequence of values Sy whose sum is equal to the number of
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nodes n, as in (12). In this equation, « corresponds to the first
value and B corresponds to the constant increment value

n=oa+@+B)+@+28)+...+(@+ Kk —1p)
Bk(k — 1)
— (12)

Note that the sequence contains as many terms as the number
of clusters.

In such a sequence, each term is a constant increment value
B larger than the previous term (e.g. B = 2 for the sequence
3,5,7,.). This B is computed based on the parameter &
(heterogeneity of cluster sizes). When & = 1, it reaches its
maximal value that we note S,4.. In the case of & < 1, B is
proportional to B,y to the extent of 4 (i.e. B = h X Bqy). The
value of B4 can be determined in different ways. In order
not to introduce an additional parameter for this, our approach
is to assign the first term « and the constant increment Sqx
to the same value, i.e. ® = Pq. Then, we compute 8 as
follows

= ok +

Bmaxk(k + 1)
n= —

2
/3 = Lhﬂmaxj .

Note that |.] denotes the floor function (returning the
greatest integer less than or equal to the input value). Finally,
we obtain the value of « as follows

Bkk—=1)
— 2

k

13)

n
o =

(14)
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