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ABSTRACT Diabetic Retinopathy (DR) is a complication of diabetes that affects the eyes. It is caused by
blood vessel damage of the light-sensitive tissue at the back of the retina. Neovascularization are emerged
and the small blood vessels are blocked. The prevention or delaying vision loss can be obtained by DR
early detection. The retinal microvascular network as a biological system has its own multifractal features
as generalized dimensions, lacunarity and singularity spectrum. In this study, a novel approach for DR
early detection based on the multifractal geometry has been proposed in some details. Analyzing the
macular optical coherence tomography angiography (OCTA) images for diagnosing early non-proliferative
diabetic retinopathy (NPDR). Using a supervised machine learning method as a Support Vector Machine
(SVM) algorithm to automate the diagnosis process and improving the resultant accuracy. The classification
technique had achieved 98.5 % accuracy. This approach also can classify easily other diabetic retinopathy
stages or other retinal diseases, which affect the vessels or neovascularization distribution.

INDEX TERMS Diabetic retinopathy, multifractal, optical coherence tomography angiography, support
vector machine.

I. INTRODUCTION
Unfortunately, diabetic retinopathy has no early warn-
ing signs. For the patients with the fear of vision loss,
DR becomes a frightening prospect. Blood vessel damage
in the retina is the main diabetic retinopathy pathophysiol-
ogy, this may cause exudates, hemorrhages, and swelling of
the retina [1]. Tiny blood vessels in the human retina were
blocked due to increasing the blood sugar ratio. Therefore,
the retina blood vessel suffers from bleeding or fluid leakage.
Moreover, new several vascular abnormalities as neovascu-
larization are grown on the retina surface, although, this neo-
vascularization frequently does not function well, as well as
cause hemorrhage [2]. Preventing or delaying diabetic related
blindness can be achieved by the early detection of DR.

The diagnosing algorithms and procedures may dif-
fer according to the imaging techniques. The modern
Non-invasive technique that can be used for vessel imaging
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is Optical Coherence Tomography Angiography (OCTA),
which has nowadays the upper hand in the early stages of
non-proliferative diabetic retinopathy diagnosis. It has the
advantages of detecting the early microaneurysms in the reti-
nal microvascular network [3]–[7].

Machine learning is an application of artificial intelligence
(AI). It focuses on the development of computer programs for
providing systems with the ability to automatically learn and
improve from experience. It became one of the most impor-
tant methods used in medical diagnose. According to the
learning algorithms either supervised or unsupervised algo-
rithms, several DR classification techniques had been used.
Application of machine learning in the retina and diabetic
retinopathy [8], [9]. Using fundus images, different regions
of interest were clustered by using the k-means color com-
pression technique, with segmenting out the diabetic parts,
finally uses fuzzy inference system (FIS) as a classifier [10].

Several DR classifier techniques were used. In [11], they
used a deep neural network as a supervised segmentation
technique for a large data sample. Extracting the features,
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which were changed due to the morphological changes as the
mean of 10 and 20 intercapillary areas as regions of interest
include and exclude the Foveal Avascular Zone (FAZ) region,
circularity index, FAZ perimeter, and vascular density [12].
Using fundus retinal dataset images, DR was classified by
using a deep learning algorithm [13]–[17]. In [18], Convolu-
tional Neural Networks (CNNs) on color fundus images were
used with the aid of pretrained AlexNet andGoogLeNet mod-
els using two available datasets. Other CNNs as classification
techniques were used in [19]–[22].

Based on the Support Vector Machine algorithm as a
classifier, a dual classification approach was proposed. Mor-
phology, intensity and gradient based features of the blood
vessels create a 21-D feature set, applying genetic algorithm
and SVM [23]. In [24], retinal micro-aneurysms and exu-
dates were detected for automatic screening of DR using
SVM and k-Nearest Neighbors algorithm (KNN) classifier.
Twin support vector machines (TWSVMs) were used for
DR detection. The authors used digital fundus images which
are fed to the TWSVMs [25]. In [26], they proposed a
computer-aided diagnosis (CAD) system for detecting early-
stage DR using OCTA images. They extracted vessel density,
blood vessel caliber, and width of the FAZ from superficial
and deep retinal OCTA. Using SVM with the radial basis
function (RBF) kernel as a classifier. The retinal blood ves-
sels structured were segmented from fundus images in [27],
a Deep learning- based SVM segmented technique was
used for the recognition of both the non-blood and tiny
blood vessel pixels. The detailed information about the reti-
nal blood vessels in the final resultant images enable the
ophthalmologists in the analyzing and diagnosing severity
level.

As a matter of fact, the branching pattern like for example
retinal blood vessel matches randomly. The random fractal
is designed as a geometrical pattern whose parts resemble
in a statistical sense the whole, i.e., statistical self-similar
structure. Generally speaking, fractal geometry describes
with appreciation success many parts of biological systems
that possess strong irregularities where Euclidean geometry
failed. Fractals are adequate to characterize many complex
physical and biological structures, which cannot display a
single length-scale, i.e., self-invariant.

Thus, by using fractal analysis one can find many ways
to quantify and measure things that were traditionally mean-
ingless and impossible to measure. Consequently, modeled
fractals could be applied successfully in medical digital
images, electrochemical patterns, and circulation rhythms.
For instance, one of the fractal examples is the cardiovascular
system with the regular beating of the human heart. Also,
an example of a multifractal pattern is the retinal blood vessel
network, which means, it has different fractal properties for
their different regions. So, a hierarchy of exponents rather
than a single fractal dimension can characterize them.

In essence, one of the most important parameters, which
can be used to classify multifractal structures, denoted lacu-
narity. The lacunarity describes the gaps sizes distribution

of an object throughout an image. In fact, lacunarity plays
a vital role to identify different structures that may have
the same fractal dimension [28]. For example in recent
studies [29] have considered the lacunarity for identify-
ing retinal artery and vein blockage that have used for
diagnosing amblyopia eyes. In summary, multifractal pat-
terns as the retinal blood vascular network have different
regions with different fractal properties, a discrete spectrum
of exponents can be used rather than a single-length scale.
As is well known, modeling biological systems represent
a significant take off both systems biological and medical
images.

Multifractal analysis attracted the attention of many
researchers in the field of medical diagnosis. In [30], the reti-
nal microvascular networks morphological changes were
characterized by diabetic retinopathy progression stages.
Microvascular network in high-resolution fundus photogra-
phy were segmented to a high number of branching gen-
erations followed by fractal analysis parameterization. In
another study [31], a relationship was established between
the fractal dimension (FD), the macular circulation, and the
morphology of the FAZ in patients with type 2 Diabetes Mel-
litus. Fractal dimensional analysis was used for analyzing the
retinal vascular disease burden in eyes with diabetic retinopa-
thy using OCTA. With a conclusion that FD for control ayes
was significantly higher than diabetic eyes for the superficial
and deep capillary plexuses [32]. In [33], new methods for
feature extraction from multifractal spectra of retinal vessels
were used for diabetic retinopathy classification.

Consequently, although, fractal geometry helped the
researchers in measuring the irregularity and complexity of
the anatomical structures in the medical images, it can not
alone give a numerical decision for the diagnosing of medical
image. Hence, several researches used the fractal dimension
for observing the differences between the DR stages.

Therefore, the objective of this study is to analyze the
macular vascular network using OCTA images by multifrac-
tal geometry for normal and NPDR early stages. Use the
different generalized dimensions, lacunarity and singularity
spectrum characteristics to obtain a numerical decision for the
DR diagnosing by the implementation of the SVM algorithm.
The SVM is used to summarize the image-extracted features
into a single accurate decision, which is very suitable in
terms of statistical analysis and feature minimization. This
technique is suitable for automatic assessments without the
need for extensive user participation.

The contributions of the research can be summarized as:
(1) Several researches use the retinal fundus images in

classifying DR rather than the retinal OCTA images.
Although, the retinal blood vessels in the retinal
microvascular system can be viewed with detailed
information by using OCTA images.

(2) A novel study for the classification of DR using mul-
tifractal geometry and lacunarity parameters with the
usage of the support vector machine algorithm to obtain
an accurate single decision.
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(3) Extracting the most features, that are correlated to the
retinal morphological changes.

(4) The suggested methodology has achieved 98.5% accu-
racy.

(5) The suggested classification system can be used eas-
ily for DR stages detection like non-proliferative
DR (moderate and severe) and Proliferative Diabetic
Retinopathy PDR.

(6) In addition, it can be used in diagnosing other retinal
diseases, which affect the vessels or neovascularization
distribution.

II. MATERIAL AND METHODS
A. RETINAL IMAGES
The used research data were approved and obtained by Oph-
thalmology Center inMansoura University-Egypt. This study
has 170 eye images that have been analyzed. The subjects
divided into 90 healthy eyes and 80 eyes of early DR sub-
jects. The subjects are between 45 and 63 years old. These
diabetic retinopathy (DR) subjects or normal eyes have been
examined clinically by the retinal specialist.

1) The imaging speed is 100,000 A-scans/sec and
1050 nm wavelength

2) B-scans with a four-repeated sequence of 320 A-scans
for each 320 raster positions.

3) En-face acquisition areas with dimensions 3∗3 mm,
4.5∗4.5 mm, and 6∗6 mm.

4) Theoretical acquisition time is 4.1 sec.

This research used an angiographic 3∗3 mm image with a
quality between 35% and 60%.

B. THE OCTA IMAGE PROCESSING SOFTWARE
The subject images have been processed using a custom pro-
gram written by MATLAB (Mathworks, MA, USA, v.9.4 for
R2018a) for contrast and resolution enhancement of the
source image as in Fig.1(a). First, obtain the grayscale
matrix for the image pixels. Second, verifying and correcting
according to a threshold value for showing the microvascular
structure pixels as in Fig.1(b). The threshold value can be
investigated according to each image, which depends on the
image pixels status as the pixels average gray level, the image
contrast, and intensity level. Due to the difficulty of describ-
ing the morphological features and structures of the retinal
microvascular system, the ‘‘Fraclac’’ plugin was used for
calculating the multifractal parameters and lacunarity mea-
surement. Then create, train, and test the proposed SVM
using a custom MATALB program with the evaluation of the
classification procedure.

III. THE STUDY METHODS
A. MULTIFRACTAL GEOMETRY
Most medicine and biology structures as the retinal vas-
cular system have irregular forms and can’t be described
or fully understand by the traditional calculus methods.
Actually, there is no, in general, a biological system has a

FIGURE 1. The steps of OCTA images processing (a) Source image
(b) Improved image contrast.

regular Euclidean dimension; almost their dimensions can be
described by fractal dimension.

As is well known, in Euclidean geometry, the line is con-
sidered to have one dimension while the rectangle has two
dimensions. However, it is easy to infer from Fig.1 that the
human retinal vascular network represents a mathematical
set that neither a straight line nor two dimensions object, but
something between. This means that one has to consult what
is called fractal dimension. This concept represents a pow-
erful tool to quantify the complexity, randomness structure,
and irregularity especially in medical images as shown in
Fig.1.

General speaking, the fractal structure has the following
features:

i It has a fine structure at an arbitrarily small scale.
It means the fractal parts have the same form or struc-
ture as the whole, except that they are at a different
scale.

ii It is self-similar, however, not all self-similar objects
are fractals.

In concluding the above remarks, fractal objects processes
are therefore said to display self-invariant properties, i.e.,
self-similar or self-affine.

There are many specific definitions of a fractal dimension.
A suspect fractal object is examined by the box-counting
dimension, the Renyi dimension, the Hausdorff dimen-
sion, and the packing dimension [34]–[36]. Indeed the
box-counting and correlation are widely used to character-
ize the fractal structure due to the ease of implementation.
In order to obtain the fractal dimension (DF), the method
depends on drawing a grid consists of squares with side length
ε1, then determine the number of boxes N(ε1) that contain at
least one pixel. Next, choose finer and finer grids with side
length ε1 < ε2 < ε3 <. . . . < εm and calculate the number of
the corresponding boxes as N(ε1), N(ε2), N(ε3),. . .N(εm) that
cover the fractal structure, samples of the covering steps are
shown in Fig.2. Therefore, one can get:

N (ε) ∼ ε−DF (1)

where DF is defined as a fractal dimension.
As amatter of fact, the dimensionality D of space is usually

defined as the number of coordinates needed to determine
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FIGURE 2. Samples of covering grid with different side length.

a unique point in that space. Therefore, the allowed values
for D are the non-negative integers i.e., 0,1,2,. . . . However,
the fractal dimension can be redefined so that it still takes on
non-negative but real number values.

This is due to the following property that the fractal set
is for example a line that can stay written a finite value, but
still have an infinite length. This means that it has a complex
structure at all lengths of magnifications.

Formula (1) admits in the following form:

lnN (ε) ∼ DF ln (
1
ε
) (2)

Leads to

DF = lim
ε→0

lnN (ε)

ln ( 1
ε
)

(3)

where DF is defined as fractal dimension, or capacity dimen-
sion, or evenMandelbrot box-counting dimension [36] which
can be obtained by the asymptotic slope of N(ε) versus
1/ε in a double logarithmic plot. If the fractal dimen-
sion lies somewhere between 0 and 1, this means that the
above fractal set is falter than points and thinner than a
line. Therefore, such self-similar objects are referred to as
fractals since their geometric dimension is often not an
integer.

Natural structures have not an exact regular structure as
deterministic fractals, they can be considered as non-exact
self-similar or have different scales. Noting that, in non-
uniform structures with self-similarity properties and rich
scaling that can change from point to point, the fractal
dimension cannot describe these types of structures. In this
case, these structures will be described as ‘‘Multifractals’’

rather than fractals. These irregular and multi-scale struc-
tures behavior can be found in several biological systems
like the nervous system, retina vascular network, circulatory
system. . . etc.

Multifractal structures can be described exactly by employ-
ing:

1. The Generalized Dimensions
a. Box Counting Dimension (DB),
b. Information Dimension (DI),
c. Correlation Dimension (DC),

2. The Singularity Spectrum.
3. Lacunarity.

These parameters can be shortly described in the nest section.

IV. THE GENERALIZED DIMENSIONS
Let Npoint be a large number of points, actually Npoint →∞

on a fractal set under consideration. Label ε sized boxes that
contain at least one point by i= 1,. . . .,Nbox(ε). Assuming that
Ni (ε) be the number of pints in box i. now, one is able to
define the generalized dimension as:

Dq =
1

1− q
lim
ε→0

ln I (q, ε)

ln ( 1
ε
)

(4)

where the partition function I(q, ε) is given by

I (q, ε) =
∑Nbox

i=1
Pqi (ε) (5)

With Pi (ε) =
Ni(ε)
Npoint

is the number of average fractional of
points in box i, that represents probabilities with satisfies the
normalization condition,∑Nbox

i=1
Pi =

1
Npoint

∑Nbox

i=1
Ni (ε) =

1
Npoint

Npoint = 1 (6)

Given a real number q and τ (q) fragmentation ratios for
self-similar multifractals, the normalization condition takes
the form, ∑Nbox

i=1
Pqi r

τ (q)
i = 1 (7)

Noting that, the function τ (q):R→R is a decreasing real
analytic function with,

lim
q→−∞

τ (q) = ∞, lim
q→∞

τ (q) = −∞ (8)

It is often to denote Dq as Reinyi dimension spectrum and can
be put in terms of the scaling function τ (q) as,

τ (q)= Dq(1− q) = lim
ε→0

ln I (q, ε)

ln ( 1
ε
)

(9)

Thus, the generalized form of power law behavior of rela-
tion (1) in the limit of ε→0 and N→∞,

Zq ∼ εDq(q−1) (10)

It is easy to show that Dq is a non-growing function with q
i.e., Dq ≥ D′q if q ≤ q′. Fig.3 gives the typical behavior of
Dq versus q or the generalized dimension spectrum.
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FIGURE 3. The generalized dimensions spectrum.

In self-similar fractal or monofractal, a constant or a flat Dq
spectrum with D−∞ = D∞. In the case of Dq is a nonlinear
behavior with respect to q, then our fractal set is multifractal
i.e., points are non-uniform distributed on the fractal set.
Indeed, the bandwidth betweenD−∞ andD∞ as one can infer
from Fig.3 measures how large the variation of the fractal
dimension is on the multifractal structure.

Practically, there are some important remarks that must be
studied in some detail.

A. BOX COUNTING DIMENSION DB(OR D0)
When q = 0, to obtain D0 or DB

Dq =
1

1− q
lim
ε→0

ln I (q, ε)

ln ( 1
ε
)

(11)

Using eq. (6) in above equation, one gets

Dq =
1

1− q
lim
ε→0

ln
∑Nbox

i=1 Pqi
ln ( 1

ε
)

(12)

Or,

Dq =
1

1− q
lim
ε→0

lnNbox( 1
Nbox

)q

ln ( 1
ε
)

(13)

This leads to following well-known definition for the gener-
alized fractal definition,

Dq =
1

1− q
lim
ε→0

lnNbox
ln ( 1

ε
)

(14)

So, the Box counting dimension is the same fractal dimension
DF = D0, taking into account Pi ∼ 1

Nbox
if ε →0. Indeed,

the Box counting dimension gives a measure of how the
density or self-similarity varies with respect to length.

B. INFORMATION DIMENSION DI (OR D1)
When q = 1, The partition function can be written as:

ln I (q, ε) = ln
∑Nbox

i=1
Pqi (ε) (15)

Employing Taylor expansion admits the following form,

ln I (q, ε) = (q− 1) ln
∑Nbox

i=1
Pi(ε) lnPi(ε) (16)

Therefore, one can get,

lim
q→1

Dq = − lim
q→1

1
1− q

lim
ε→0

ln I (q, ε)

ln ( 1
ε
)

(17)

That leads to,

DI = − lim
ε→0

∑Nbox
i=1 Pi(ε) lnPi(ε)

ln ( 1
ε
)

(18)

It worth mention that, the quantity S is known as the Shannon
entropy

S = −
∑Nbox

i=1
Pi(ε) lnPi(ε) (19)

Therefore, the main interesting result is the relation between
the information dimension measures the amount of informa-
tion scales with resolution ε.

S(ε) = −DI ln ε (20)

Clearly, above expressions provide that DI<DB for
non-uniform patterns, but, for uniform patterns, the expres-
sion will be DI = DB. Therefore, the information dimension
describes the increasing in the region morphology as ε→0.

C. CORRELATION DIMENSION DC (OR D2)
In case of q = 2, Dq then denoted the correlation dimension.
The partition function can be written as:

ln I (q = 2, ε) = ln
∑Nbox

i=1
P2i (ε) (21)

Then one easily gets,

Dc = D2 = lim
ε→0

ln I (q = 2, ε)

ln ( 1
ε
)

(22)

Noting that in the case of q > 0, contribution to I(q, ε) from
regions of high density on the multifractal system is much
more compared to low-density regions. That is meant that the
quantity Dq with large q is the main feature of high-density
clustering regions.

Remarkably, the correlation dimension plays a vital role
to classify all multifractal structures especially in the charac-
terizing of the non-uniform point pattern. It represents a good
indicator regarding the inhomogeneous pattern distribution of
the structure under consideration, i.e. gives a direct relation
between two pixels inside a region under study.

The formal dimension definitions for uniform patterns
leading to

DC = DI = DB (23)

In non-uniform distribution, the relation will be

DC < DI < DB (24)

Therefore, in the human retina, box-counting, information
and correlation dimensions are significantly different.
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FIGURE 4. The f(α) spectrum.

V. THE SINGULARITY SPECTRUM f(α)
The singularity spectrum f (α) is considered a significant
way of describing the multifractal behavior. It shows the
distribution of the singularity exponents. It gives complete
information about the nonlinearity degree and its nature.
The Dq versus f (α) transformation equations can be written
as

τ (q) = (1− q)Dq (25)

By using Legendre Transformation Eq (25) admits,

τ (q) = f (α)− qα (26)

where the factor α is based on the real number q, solve the
Eq. (26) leads to,

d
dx
(qα − f (α)) = 0 (27)

With known τ (q), the singularity spectrum can be expressed
as

f (α (q)) = τ (q)+ qα(q) (28)

The value of α gives the information regularity points. Hence,
each pixel is characterized by its α value. The singularity
spectrum f (α) gives a measure of the heterogeneity degree
of regions. The region is considered an homogeneous state
if f (α) is close to 1 or 2 as in Euclidean geometry. The
broader the f (α) spectrum, themore heterogeneity regions for
different α values. The singularity spectrum f (α) is shown in
Fig.4.

VI. LACUNARITY MEASUREMENT
According to the previous discussion, the retinal microvas-
cular network can be considered as multifractal structures.
The microvascular distribution varies from a subject to the
other according to the diabetic stage. So, we need a measure
that describes how much space is filled with the object.
Mandelbrot [37] introduced ‘‘Lacunarity’’ as a measure for
describing the sizes of gaps distribution or lacunae surround-
ing the object within the image.

The lower lacunarity reflects the lower size distribution
of gaps ‘‘low degree of gappiness’’. In our case, the higher
the lacunarity, the higher microvascular sized gaps. Lacunar-
ity can be calculated using the gliding-box algorithm [38].

FIGURE 5. Different gaps sizes and distribution (a) Large gaps with
different bifurcation microvascular sizes (b) less gaps with less
bifurcation microvascular sizes.

Image-J and FracLac plugin can be used to calculate lacunar-
ity ‘‘λ’’. Many λs can be obtained according to the sampling
unit size. The mean lacunarity (or 3) for all the used sample
sizes was expressed as:

3 =

∑
(1+ (σ/µ)2)

n
(29)

where σ is the standard deviation, µ is the mean for pixels
per box at this size δ and n is the number of box sizes.
Figure 5 shows a comparison of two images that having
gaps with different sizes and distribution. The lacunarity
measure can be illustrated in Fig.5. Figure 5(a) shows a retinal
microvascular network image with large gaps between the
vessels and random distribution, as well as the image has dif-
ferent bifurcation blood vessel sizes the lacunarity = 0.389.
While in Fig.5(b), the microvascular network has fewer gaps,
semi-normal distribution and less bifurcation microvascular
sizes with lacunarity = 0.221. Therefore, the lacunarity is
considered a good measure for describing the sizes of gaps
distribution.

A. CASE STUDY
Let us illustrate the previous concepts by a retinal image
example. Figure 6 shows the source OCTA retinal image
with its multifractal analysis results. The source image Fig.6
(a) has a moderate resolution with little artifacts. Using
a custom-written program in MATLAB software and Fra-
cLac plugin based Image-J software, the multifractal analysis
results are illustrated in Fig.6 (b) and (c). Figure 6 (b) shows
the generalized dimensions of the selected images using the
box-counting algorithm. The box-counting dimension DB =

1.92 rather than 2, which reflects the non-exact self-similarity
in the retinal vascular network. The Shannon or Informa-
tion dimension DI = 1.88 which means there are some
morphological changes in the retinal vascular network in
the image zones which may be due to microaneurysms and
neovascularization in DR stages. The correlation dimension
DC = 1.86 which reflects the degree of correlation between
pair of pixels in each box. Therefore, here the pixels have
not a complete correlation, which means there are little gaps
between the pair of pixels.
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FIGURE 6. Sample image with multifractal analysis results. (a) The source
image (b) Generalized dimension curve (c) The singularity spectrum.

Figure 6(c) shows the f(α) singularity spectrum. The
f(α) spectrum has a wide range of variability. It starting
at f(α) = 0.971 then it increased to 1.92, then reduced
again to 0.575. This wide range of variability (broader
spectrum) means that the image has different heterogeneity
zones.

Therefore, by using multifractal geometry, we can extract
particular image regions’ features that usually invisible.
These analyses are very important and useful in medical diag-
nosis applications. The multifractal applications in medicine
seem to be very promising tools.

VII. SUPPORT VECTOR MACHINE ALGORITHM IN BRIEF
A support vector machine is a supervised machine learning
algorithm that can be used in classification and regression
problems. The main idea of SVM is: The algorithm creates
a line or a hyperplane, which separates the data into classes.

FIGURE 7. Support vector machine algorithm.

At first, the data are plotted in n-dimension axes; hence n is
the number of classification features. Then, draw a hyper-
plane or a straight line to separate the input data. The data
points nearest to the hyperplane are called support vectors.
This hyperplane is the decision boundary, where any data
point that falls to one side of it, the data will be classified
according to the location side.

For training dataset:

(x1, y1) , ..., (xn, yn) , xi ∈ Rdand yi ∈ (−1,+1) (30)

where xi is the feature vector and yi is the class label of a
training item i.
For a two-class classification system, the hyperplane can

be written as:

wxT + b = 0 (31)

where x is the input feature vector, w is the weight vector, and
b is the bias.

The objective of the training procedure of SVM is to
find the w and b to satisfy the following inequalities
for all elements of the training set and maximizes the
margin: {

wxTi + b ≥ 1 if yi = 1
wxTi + b ≤ −1 if yi = −1

(32)

The SVM algorithm for two classes is shown in Fig.7.
Several hyperplanes can be drawn for separating the

data points, but the best hyperplane whose distance to
the nearest data element is the largest (Maximum Mar-
gin) [39]. The SVM algorithm is implemented in prac-
tice using a kernel. A kernel transforms an input data
space into the required form [40]. The Kernel type depends
on the data point’s separation type, which is shown
in Table 1.

SVM has several advantages as:1) it is very efficient even
with high dimensional data 2) less training time, 3) it can
perform well even the number of features is more than the
data rows, 4) Used for classification and regression.

Although SVM has limitations as: 1) choose an opti-
mal kernel for SVM for best classification 2) in case
of the large number of features, an over-fitting may
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FIGURE 8. The Normal subject images.

TABLE 1. SVM kernel.

occur. 3) Long training time for large datasets [41]. SVM
attracted the researcher’s attention for many applications
as seismic liquefaction potential [42]–[46], data classifi-
cation [47]–[50], texture classification [51],[52], face and
speech recognition [53]–[54], [55], cancer diagnosis and
prognosis [56],[57], protein fold and remote homology detec-
tion [58]–[61] and others [62]–[65].

In this study, the classification procedure depends on the
usage of a support vector machine, which can be a useful clas-
sifier tool, especially in small and non-singularity datasets.

The training procedure depends on using the seven extracted
features as the training datasets. The extracted features are
distinct between the two classified stages, which are a good
choice for the classification process. The training datasets are
in numerical format rather than a complete image, so no need
for extra datasets. The proposed classification system can be
described as:

1. Extracting the most seven features, which is related to
the multifractal analysis and correlated to the retinal
morphological changes according to DR stages. The
features are:

a. The α at themaximum of the singularity spectrum
f (α).

b. The shift in the singularity spectrum symmetrical
axis.

c. The width of the singularity spectrum (W).
d. The Lacunarity (3).
e. The Box counting dimension DB.
f. The Information Dimension DI .
g. The Correlation Dimension DC .
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FIGURE 9. The NPDR subject images.

2. These generalized dimensions describe the self-
similarity, morphological characteristic and pixels cor-
relation of the retinal vascular images.

3. The singularity spectrum description features for the
retinal image heterogeneity characteristics with lacu-
narity.

4. The objective is to classify the input data images to
two-class normal and NPDR.

VIII. RESULTS
A. DEMOGRAPHIC CHARACTERISTICS
In this study, 170 eye images have been analyzed,
90 images for normal and 80 images for early DR
(mild non-proliferative diabetic retinopathy) subjects.
Table 2 shows the studied Subjects’ demographic character-
istics.

Table 2 shows the examined subjects’ demographic char-
acteristics. In this study, the statistical metric P-value had
been used for assessing the subjects’ significance. The data
were non-significant, in the case of the P-value (P > 0.05).

TABLE 2. The subjects demographic characteristics.

The subjects average ages are 54.6 and 58.56 years for
normal and Mild NPDR respectively, which is statistically
non-significant with (P > 0.2268). The subjects’ sex were
88 for Females and 82 for Males, with (P > 0.5179).
The laterality numbers (RT/LT) were 91/79 with (P >

0.1975). Therefore, the subjects under study were statistically
non-significant.

B. IMAGE ANALYSIS
Figure 8 shows, four main normal image samples with the
following id 1734R, 2723R, 2723L and 6174L respectively,

22852 VOLUME 9, 2021



M. M. Abdelsalam, M. A. Zahran: Novel Approach of DR Early Detection Based on Multifractal Geometry Analysis

TABLE 3. The result parameters for the image analysis.

TABLE 4. The classification data.

with their processed images and multifractal analysis
results (generalized dimensions and singularity spectrum).
Figure 9 is the same as Fig.8, except it is for NPDR images
with the following id 5730R, 10972R, 7543L and 10972L
respectively.

The retinal microvascular network images had been
processed and analyzed using the multifractal geometry,
in order to extract the parameters that describe the gaps
distribution, vessel heterogeneity and the blood vessels’
random distribution. The selected parameters are listed
before.

Table 3 shows the seven parameters for 20 sample images.
Ten sample images for normal subjects and 10 sample images
for NPDR subjects.

In this study, the classification had been done by using an
SVM classifier with RBF kernel. The multifractal parameters
that resulted from the studied images were the SVM features.
In the training step, the datasets were 113 images, while new
67 images were used in the testing step. The detailed numbers
are shown in Table 4.

IX. DISCUSSION
Figures 8 to 10 show the generalized dimensions for
both normal and pathological cases. It is clear that the

FIGURE 10. Sampled images f(α) spectrum.

pathological (NPDR) curves have slight changes, which can-
not enable to reach an accurate decision. It is noticeable
that the f(α) spectrum in NPDR cases shifted slightly to the
right and exceed α = 2.5 with as shown in Fig.8 with a
slight increase in the spectrum curves width and have average
symmetrical shift 0.185. While in normal cases the value
of α didn’t exceed 2.5 with less spectrum width and less
symmetrical shift 0.078 which means it is more symmetrical
than the NPDR cases. So, it is a good metric that can be
used in the classification process. Therefore, to accurately
classify the resulted data, it is necessary to have complete
information about the multifractal spectra. These parameter
sets lead to decision-making in NPDR and normal subjects’
classification.

As illustrated in Fig.11, the generalized dimensions for
both normal and NPDR subjects Fig.11 (a), (b) and (c) satisfy
the inequality DB ≥DI ≥DC, which confirms that the studied
images have multifractal nature. The average generalized
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FIGURE 11. The statistical representation of the extracted.

dimensions in normal subjects are less than their counterparts
in NPDR subjects. This is due to increasing the number of
occupied pixels (density) this arising from the new microa-
neurysms in NPDR subjects. The NPDR cases have a broader
f(α) spectrum with slight shift due to more heterogeneity in
the vascular network images, this can be illustrated in Fig.10
and Fig.11 (d), (e) and (f). The mean of the lacunarity in

normal subjects is 0.243 with little increase in NPDR to reach
0.285, this is back to the sizes of the new gaps due to the
blocked blood vessel.

To ensure the proposed classification system quality, clas-
sification accuracy, sensitivity, specificity, confusion matrix,
and precision were used. After the SVM training, 67 new
subject eyes were used for testing, 30 images for normal eyes
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TABLE 5. Confusion matrix.

TABLE 6. Sensitivity, specificity and precision parameters.

and 37 images for NPDR eyes. Table 5 and Table 6 summarize
the performance measures.

Where
TP: True Positive, it is the number of normal images that

classified correctly.
TN: True Negative, it is the number of NPDR images that

classified correctly.
FN: False Negative, it is the number of normal images that

classified as NPDR (incorrectly).
FP: False Positive, it is the number of NPDR images that

classified as normal (incorrectly).

Sensitivity(%) =
TP

TP+ FN
× 100 (33)

Specificity(%) =
TN

TN + FP
× 100 (34)

Precision(%) =
TP

TP+ FP
× 100 (35)

From tables 5 and 6, the statistical parameters confirm that
the classification accuracy is within 98.5%. The classifica-
tion system achieves sensitivity with 100%, specificity with
97.3%, and 96.8% in precision. With a low misclassification
error 1.5%.

X. COMPARATIVE EVALUATION
In addition to the obtained results, we want to verify the
effectiveness of the proposed approach in the classification
problem. The performance of the proposed classification
method was listed and compared with some previous studies
considering the same classification topic. Table 7 shows the
comparative evaluation of different studies, the best values
are written in bold style.

As illustrated in Table 7, different classification techniques
were listed with their performance measures. Two techniques
such as Principle Component Analysis (PCA) with fire-
fly [66] and [67] used a deep neural network approach. Two
studies based on CNN [13], [68], add two more stud-
ies based on Support Vector Machine (SVM) have been
included [24], [26]. Another study used K-nearest neighbor
(KNN) with Fractal analysis [69]. Accuracy, sensitivity and
specificity have been evaluated for all the methods.

TABLE 7. Comparative evaluation techniques.

The proposed multifractal geometry with the SVM algo-
rithm had achieved a classification accuracy of 98.5% with
100% sensitivity and 97.3% for specificity. From the com-
parative results, the proposed classifier technique gives bet-
ter results than other methods in the previous studies. The
DNN technique [67] achieved a slight decrease in the accu-
racy (ROC) by 0.5% with lower values in the other per-
formance measures. The studies [24], [26] had achieved
decreasing in the sensitivity by 2% and 2.1% respec-
tively, hence our proposed technique has higher accuracy
and specificity measures. The study [13] had achieved a
slight increase in the specificity by 0.7%, but, with lower
accuracy and sensitivity than the proposed classification
technique.

Finally, the proposed technique had achieved the best per-
formance measures for diabetic retinopathy early detection.
These measures can be enhanced by increasing the training
datasets. This technique can be used for the classification of
the diabetic retinopathy stages. One of the proposed tech-
nique challenges is image quality. The images that have
been worked on have a quality between 35% to 65%. If the
OCTA image quality below 30% (whichmay be difficult even
for physicians to diagnose), bad extracted features will be
obtained.

XI. CONCLUSION
The present work aims to develop a new accurate and efficient
algorithm based on the framework of multifractal analysis to
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classify and characterize any complex shapes and branching
patterns found in physics and biology.

We represent such a simple technique in order to obtain a
more accurate human retinal network description instead of
a traditional Euclidian study. This study provides us strong
evidence that multifractal analysis will play a vital screen-
ing tool for retinal diseases early detection. The interest in
understanding our study has resulted in the development of a
considerable number of graphs to study the parameter α with
the variation of entropic function f (α).
Multifractal and Lacunarity enable us to visualize the

vascular structure distribution for both normal and NPDR
cases. Interestingly, one can infer that there are appreci-
ate differences between both normal and NPDR subjects.
In addition, to the above remark, there is also a slight right
shift in the singularity spectrum for most NPDR cases,
i.e. an obvious broken of symmetries of the curves rep-
resent these mentioned cases. On the other hand, in nor-
mal cases, there is a symmetrical behavior of entropic
function f (α).

In summary, this research work has emphasized the neces-
sity for an automated technique for NPDR retinal image
classification. Moreover, this road map reminds us the eval-
uation of the Skeleton could in principle promising approach
to get many fractal features like for instance, information
and correlation dimensions in order to have good ideas con-
cerning the existence of gaps and the bifurcation point as
well.

In addition, the support vector machine has been employed
to the obtained multifractals parameter to give us a com-
putational simple recipe and attains accurate detection con-
cerning early diabetic retinopathy. The proposed technique
has achieved an accuracy of 98.7%. It worth mention that,
this approach in essence it can be used to classify different
diabetic retinopathy stages.

FUTURE WORK
• Design a new GUI application that can extract the
selected image features for early detection and diagnos-
ing.

• The detection and extraction of malignant.
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