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ABSTRACT Spinning reserve (SR) is an essential resource for system operators to compensate for
unpredictable imbalances between load and generation caused by sudden unit outages and unforeseen
fluctuations of load demand and wind power. System operators could face many alternative SR allocations
determined by different methods and decide the optimal one based on the experience and consideration
of risks in the power system. Considering the stochastic nature of power system components, this paper
proposes a utility function-based decision-making model for SR allocations, which incorporates the whole
distribution of social benefits (SBs) of the SR allocation and the risk preferences of decision-makers together.
Three different utility functions are established that relate the SBs of SR allocations to risk-seeking, risk-
neutral, and risk-averse preferences, respectively. Besides, the risk preference degree is represented by a
shape parameter. The risk of different SR allocations is analyzed and the expected utilities, which reflect
the relative satisfaction, are used to determine the optimal SR allocation for the operators with various risk
preferences. Incorporating both the distribution of SBs and decision-makers’ risk preferences makes the final
decision for optimal SR allocationmore flexible than the decision strategies based only on the expected social
benefit or a probabilistic reliability index (such as loss of load probability and expected load not served).
The effectiveness is examined using the IEEE-RTS.

INDEX TERMS Spinning reserve, uncertainty, risk analysis, utility theory, electricity.

I. INTRODUCTION
Spinning reserve (SR), the amount of unused capacity in
online units, is the most important resource to compensate
for the imbalance between generation and demand without
resorting to load shedding [1]. Due to wind power’s ran-
domness and unpredictability, its increasing integration is
challenging for power system operations. Determining the
required SR is one of the main concerns of the operators in
power systems with random components. In many regional
power systems, deterministic criteria are implemented by the
operators to decide the required amount of SR. For exam-
ple, the SR capacity is assumed to be a specific percentage
of the hourly system loads or the capacity of the largest
online generator [2]. Although deterministic criteria are easy
to implement, they do not reflect the random behavior of
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system components, which leads to inconsistent decisions
and variable operating risk levels.

Probabilistic methods to address reserve assessment prob-
lems are well established in the literature [1]–[11]. These
methods provide realistic evaluations of SR requirements
by incorporating the probabilities of the occurrence of each
contingency, unforeseen fluctuations of load or wind power
in the decision-making issues. Probabilistic reliability criteria
such as loss of load probability (LOLP) [3], expected load
not served (ELNS) [3], [4], expected energy not supplied
(EENS) [1], [5]–[6], and demand factor (the ratio of EENS
to the load demand) [5]–[6] are used as reliability constraints
to set the SR requirements for security-constrained unit com-
mitment (UC) problems [1], [3]–[6]. Stochastic programming
has been used to formulate and solve problems with uncertain
parameters in power systems, in which the uncertainties of
system components are represented by a finite set of real-
izations or scenarios [5]–[11]. A comprehensive evaluation
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of LOLP and EENS indices for each scenario and each hour
are formulated to determine the optimal SR allocations in the
stochastic–probabilistic approaches for the renewable pene-
trated systems [7]–[8]. Probability constrained methods are
adopted to assess the reserve requirements so that a certain
percentile of the total forecast error and unit outages have
to be covered by the reserves [9]–[11]. In these researches,
SR volumes are allocated so that these probabilistic reliability
indices are within the desirable values.

However, it is complicated to set and justify a specified
index, and the effect of the value of lost load (VOLL) is
not considered in the involuntary load shedding of cus-
tomers [12]. Consequently, the SR scheduling is not based
on cost-benefit analysis and so may be suboptimal. Based
on cost-benefit analysis, the authors in [13]–[15] optimize
SR requirements by maximizing the expected social benefit
(ESB) or minimizing the expected economic dispatch cost
and EENS cost. In [16], the authors use value at risk and
integrated risk management to assess the risks and make an
optimal tradeoff between risks and profits in the wind power
penetrated-system. Some recent researches use the condi-
tional value at risk (CVaR) method to manage the risk and
assess the reserve requirements in the wind power penetrated
systems [17]–[20].

The above methods provide a more realistic evaluation and
determination of SR allocations compared to the determin-
istic criteria. However, in the methods using predetermined
risk thresholds to assess SR requirements, the remaining
parameters characterizing the distribution associated with the
profits or costs of the SR allocations are neglected. Rational
decision-makers are concerned about both the probabilities
of profits or losses of the investments. The risk attitude of
the decision-maker also affects the scheduling strategies [21].
Therefore, the distributions of profits or costs of the SR
allocations and decision-makers’ risk attributes should be
incorporated in the decision-making process. This paper is
not devoted to defining the SR requirements but instead pro-
viding decision support for decision-makers with various risk
preferences to determine the optimal SR allocation among
alternatives.

Utility-based methods have been applied for the deci-
sions in power systems [22]–[23]. In the expected util-
ity framework, the whole distribution of returns (risk and
return) is simultaneously considered, and there is no need to
define risk [24]. This paper proposes a utility function-based
decision-making model for optimal SR allocation in the
wind power penetrated-system. The variable representing the
social benefit (SB) of the SR allocation is established by
considering every realization of the uncertainties from unit
outages and net load forecast errors. Three different utility
functions are established, which relate the SBs of the SR
allocation to decision-makers’ risk-seeking (RS), risk-neutral
(RN), and risk-averse (RA) preferences, respectively. In these
utility functions, the subjective risk preference degrees, par-
ticularly the RA, RN, and RS preferences, are represented
by different values of the shape parameter. The expected

FIGURE 1. Discretization of the probability distribution of the net load
forecast error.

utilities that reflect the relative satisfaction are then used to
determine the optimal SR allocation. The proposed model is
tested on IEEE-RTS and compared with the decision strate-
gies that order the SR allocations according to the expected
social benefit and the reliability indexes, such as LOLP and
EENS.

The rest of the paper is organized as follows: Section 2
models the uncertainties of unit outages and forecast errors
of wind power and load. Section 3 introduces the SBs of
the SR allocations and the risk measure that characterizes
the risk associated with the SR allocations. Section 4 formu-
lates the utility function-based decision-makingmodel for SR
allocations and the shape parameter that represents the risk
preference degrees of decision-makers. Section 5 includes
simulation and data analysis from the IEEE-RTS. And
Section 6 is devoted to the conclusions.

II. UNCERTAINTY MODEL OF POWER SYSTEM
A. UNCERTAINTY MODEL OF LOAD AND WIND POWER
Both the forecast errors of load and wind power can be mod-
eled as Gaussian random variables [15], [17]. The probability
density function of load and wind power forecast errors are
given by

fεl (εl) =
1

√
2πσl

e−(εl )
2/
(
2σ 2l

)
(1)

fεw (εw) =
1

√
2πσw

e−(εw)
2/
(
2σ 2w

)
(2)

where εl and εw are the load and wind power forecast errors,
respectively. σl and σw are the standard deviations of load and
wind power forecast errors, respectively. The net load forecast
error εd equals the difference between load and wind power
forecast errors [17].

εd = εl − εw (3)

As these forecast errors are uncorrelated and assumed to
follow the same distribution, the standard deviation of net
load forecast error σd is given as follows [15], [25]

σd =

√
(σl)

2
+ (σw)

2 (4)

The continuously-valued net load forecast error model just
developed is not computationally practical to set the SR
requirements, so the continuous variable is approximated by
a set of discrete variables [26]. The probability distribution
of forecast error is equally divided into several intervals,
as shown in Fig. 1. The net load forecast error of interval
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FIGURE 2. Two-state model of generator.

k takes the value of the midpoint of the interval, and its
probability is given by

πk =
1

σd
√
2π

uk∫
lk

e
−(x)2

2σ2d dx (5)

where uk and lk are the upper/lower bounds of the interval k
respectively.

B. UNCERTAINTY MODEL OF CONVENTIONAL UNIT
In Fig. 2, a two-state model [1] is used, assuming that failure
and repair times are exponentially distributedwith parameters
and respectively. Applying the parameters failure rate λi and
repair timeµi of generation units, the unavailabilityUT i, and
availability AT i of unit i in period T can be approximated by
the two-state Markov model as follows [7], [8].

Ui (T ) = 1− e−λiT ≈ λiT = ORRi (6)

Ai (T ) = 1− Ui (T ) = 1− ORRi (7)

Suppose S is the set of states representing the realizations
of all the unit outages and forecast errors of net load. Then,
the probability of a realization of net load forecast error and
generation outages in state s (s ∈ S)ps, is obtained by

ps = π(s) ·
∏
j∈GUs

Uj
∏
i∈GAs

(1− Ui) (8)

where π(s) is the probability of net load forecast error εd,s
in state s. GUs and GAs are the sets of unavailable units and
available units in state s, respectively.

III. SOCIAL BENEFIT AND RISK OF SPINNING RESERVE
ALLOCATIONS
It is necessary to schedule SR capacities to maintain the
system’s reliability due to unit outages and unforeseen fluc-
tuations of wind power and load demands. In this section,
the variable representing the SB of the SR allocation is estab-
lished. The standard deviation of this variable is used as the
risk measure of the SR allocation.

A. SOCIAL BENEFIT OF THE SPINNING RESERVE
ALLOCATION
After the SR volumes are determined in the day-ahead dis-
patch schedule, the deployment of these volumes is affected
by the power imbalance caused by the unit outages and the
power fluctuations of net load in real-time. For the SR allo-
cation A = (R1,R2, . . . ,R|G|)T, its SB in state s is obtained
as the difference between its benefits and costs (capacity cost
and deployment cost), which is given by

ws = ηB,s − cR,s − cE,s (9)

where ws, ηB,s, cR,s, and cE,s are the SB, benefit, capacity
cost, and reserve deployment cost of the SR allocation in
state s, respectively. G is the set of all generating units. The
positive value of ws means that the SR allocation is profitable
in state s, while a negative value indicates a deficit.

ηB,s = Voll ·
(
P0loss,s − Ploss,s

)
(10)

The benefit of SR is measured by the reduction in the cost
of load interruptions [14]. Voll is the VOLL. P0loss and Ploss,s
are the load interruptions before and after purchasing the SR
volumes in state s, respectively.

cR,s = CR =
∑
i∈G

ρRi · Ri (11)

where ρRi and Ri are the SR cost and allocated SR volume
of unit i, respectively. Since the SR volumes are determined
before the realization of every state, the capacity costs in
every state are the same and equal to the SR purchase costCR.

The reserve deployment cost varies with the power imbal-
ance caused by an increase in net load or unit outages. The
power imbalance in state s Pimb,s, is given by

Pimb,s = max(εd,s +
∑
j∈GUs

Pj, 0) (12)

where Pi is the power production of unit j in the day-ahead
dispatch schedule. The SR volumes will be deployed to com-
pensate for the power imbalance in two cases: (1) The power
imbalance is within the total SR volumes. Thus, parts of these
SR volumes are needed, which will be deployed economi-
cally to minimize the deployment costs, and the remaining
SRs are unused. (2) The power imbalance exceeds the total
SR volume. In this case, all the SR volumes will be deployed,
and part of the load demand has to be curtailed to restore
the power balance. According to the above cases, the reserve
deployment cost is formulated as follows.

cE,s = min
ri,s

∑
i∈GAs

ρEi · ri,s (13)

s.t.
∑
i∈GAs

ri,s = min(Pimb,s,
∑
i∈GAs

Ri) (14)

0 ≤ ri,s ≤ Ri, ∀i ∈ GAs (15)

where ρEi is the energy cost of unit i, and ri,s is the deployed
SR volume of unit i in state s. The SR volumes accommo-
dating the power imbalance are limited by the allocated SR
capacities (14)–(15). The lost load Ploss,s corresponding to
the reserve deployment, is the part of the load that could not
be supplied:

Ploss,s = Pimb,s −
∑
i∈GAs

ri,s (16)

The distribution of SBs is then obtained by calculating every
ws in (9) and the corresponding probability ps in (8), respec-
tively. The ESB of the SR allocation, Eb, is given by

Eb =
∑
s∈S

ps · ws (17)
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B. RISK MEASURE
The risk occurs when the SBs vary from the ESB. The
SR allocations obtained by different methods show different
risks. Thus, risk measures are needed to characterize the
risk associated with the given decisions and enable us to
compare different decisions in terms of the risk involved [27].
The variance, or standard deviation, first proposed by Harry
Markowitz, has been the most common measure of risk
among academics and practitioners alike [24]. The standard
deviation of SBs σSB is used as the risk measure in this paper,
which is given by

σSB =

√∑
s∈S

ps · (Eb − ws)2 (18)

This standard deviation indicates possible deviations of the
realized SBs from the ESB. Hence a high standard deviation
indicates that there exists a high risk of experiencing a benefit
or loss that is different from Eb.

IV. UTILITY FUNCTION-BASED DECISION-MAKING FOR
SPINNING RESERVE ALLOCATIONS
This section presents the utility function-based decision-
making process for decision-makers with different risk
preferences to decide between different SR allocations. The
utility is a measure of the relative satisfaction from the con-
sumption of goods or services in economics. In the expected
utility framework, one does not analyze risk and return
separately but instead considers the whole distribution of
returns simultaneously [24]. Also, the risk preferences of
decision-makers can be expressed in the model.

A. RISK PREFERENCE
Let u(w) denote the utility function of SB w, u′ and u′′ denote
the first and second derivatives of u(w). The relationship
between utility functions and risk attitudes are given as fol-
lows [22], [28].

1) u(w) is a non-decreasing function u′ ≥ 0, which means
that the decision-makers prefer more wealth to less wealth.

2) The decision-maker is risk-averse (RA) with u′′ ≤
0, which means that other things being equal, this
decision-maker dislikes uncertainty or risk.

3) The decision-maker is risk-neutral (RN) with u′′ = 0.
4) The decision-maker is risk-seeking (RS) with u′′ ≥ 0,

which means this decision-maker will be sensitive to possible
opportunities.

The typical utility curves of these three risk preferences are
illustrated in Fig. 3.

B. MEASURE OF RISK PREFERENCE
TheArrow-Pratt measure of absolute risk aversion (ARA) is a
widely used measure of risk aversion in current day economic
analysis [29]–[30]. The ARA coefficient Ra(w) of the utility
function u(w) at benefit w is given by [30]:

Ra (w) = −
u
′′

(w)
u′ (w)

(19)

FIGURE 3. Diagrams of utility curves of different risk attitudes.

Based on the definition in (19), the relationship between
Ra(w) and risk preference can be summarized as follows.
For a risk-averse decision-maker, Ra(w) ≥ 0, it reflects
the degree of concavity of u(w), and hence the strength or
intensity of risk aversion [29]. A larger Ra(w) value indi-
cates a greater degree of risk aversion. For a risk-neutral
decision-maker, Ra(w) = 0, it means u(w) is linear. When
Ra(w) ≤ 0, it reflects the degree of convexity of u(w) for a
risk-seeking decision-maker. A lower Ra(w) value indicates a
greater degree of risk-seeking preference.

C. UTILITY FUNCTION
Different utility functions can be used to study decision-
makers’ behavior, such as linear utility, quadratic utility, and
exponential utility [30]. The utility functions constructed in
the paper are based on linear utility and exponential util-
ity because of their mathematical tractability. This paper
assumes that the range of utility functions is [0, 1], where
1 means the decision-maker is most satisfied, and 0 means
extremely uncomfortable. Combined with the fuzzy logic,
the utility functions constructed in this paper are given as
follows:

1) The utility function of the RA decision-maker

u1 (w)

=


0, w ≤ wmin

γ1

(
1− e−α1β(w−wmin)

)
, wmin < w < wmax

1, w ≥ wmax

(20)

where α1 > 0, γ1 = 1
1−e−α1

.
2) The utility function of the RN decision-maker

u2 (w) =


0, w ≤ wmin

β (w− wmin) , wmin < w < wmax

1, w ≥ wmax

(21)

3) The utility function of the RS decision-maker

u3 (w)

=


0, w ≤ wmin

γ3

(
eα3β(w−wmin) − 1

)
, wmin < w < wmax

1, w ≥ wmax

(22)

where α3 > 0, γ3 = 1
eα3−1 .
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In (20)-(22), wmax and wmin are the SBs that the
decision-makers aremost and least satisfied, respectively. β is
a scaling factor for the normalization, it equals the ratio of the
utility range to the SB range and β = 1/(wmax −wmin).α1, 0,
and −α3 are the shape parameters that characterize the con-
cavity or convexity of utility functions. The shape parameters
reflect the subjective risk preference degrees. The scaling
factor β depends on the objective distribution of SB and the
selected utility range, while the shape parameter depends on
the subjective risk preference. γ1 and γ3 are the calibration
coefficients that satisfy u(wmax) = 1.
The feature of the above utility functions is that they exhibit

constant ARA coefficients. The constant ARA coefficients
of the RA, RN, and RS utility functions are α1β, 0,−α3β,
which are the productions of their shape parameters (α1, 0,
and−α3) and the scaling factor β, respectively. Besides, both
the RA and RS preferences approach RN preference as the
respective shape parameters (α1 and −α3) approach 0. Take
u′1 (w) as an example.

u′1 (w) =
α1βe−α1β(w−wmin)

1− e−α1
,∀w ∈ (wmin,wmax) (23)

Let f (α1) denote
α1βe−α1β(w−wmin), and g (α1) denote 1 − e−α1 . The limits
of f (α1) and g (α1) as α1 approaches 0 are 0.

lim
α1→0

α1βe−α1β(w−wmin) = lim
α1→0

[
1− e−α1

]
= 0 (24)

Then g′ (α1) 6= 0,∀α1 > 0 and

lim
α1→0

f ′ (α1)

lim
α1→0

g′ (α1)
=

lim
α1→0

βe−α1β(w−wmin) [1− α1 (w− wmin)]

lim
α1→0

e−α1

= β,∀w ∈ (wmin,wmax) (25)

Replace α1 by −α3, the limits of u′1 (w) and u
′

3 (w) as α1
and −α3 approach 0 are β (26). The limits of u′′1 (w) and
u′′3 (w) as α1 and −α3 approach 0 are 0 (27).

lim
α3→0

u′3 (w) = lim
α1→0

u′1 (w) = β

= u′2 (w) , ∀w ∈ (wmin,wmax) (26)

lim
α3→0

u′′3 (w) = lim
α1→0

u′′1 (w)

= u′′3 (w) = 0, ∀w ∈ (wmin,wmax) (27)

Equations (26) and (27) indicate that both the RA and RS
utility functions approximate the linear RN utility function
as α1 and −α3 approach 0. Therefore, differential risk pref-
erences, including the RA, RN, and RS preferences, can be
represented by merely the shape parameter. Table 1 illus-
trates the relationship between the risk preference degree and
the shape parameter. A positive value of the shape param-
eter means the decision-maker is RA. And a larger value
of the shape parameter indicates a higher degree of risk-
averse. Meanwhile, a negative value of the shape parameter
means the decision-maker is RS. And a lower value of the
shape parameter indicates a higher degree of risk-seeking
preference.

TABLE 1. Illustration of the relationship between the risk preference
degree and the shape parameter.

D. DECISION-MAKING FOR SR ALLOCATIONS
Suppose the decision-maker has to decide between N dif-
ferent SR allocations � = (A1,A2, . . . ,AN)T, which are
obtained by available methods. The decision-making process
for these SR allocations is given as follows.

First, the SBs of each SR allocation in each state are
obtained by (9). Second, the utilities of these SBs are obtained
by (20)–(22) for decision-makers with particular risk prefer-
ences. Then, the summation of wn,s weighted by probabilities
of the corresponding states is the expected utility (EU) of the
n-th SR allocation Eu·n:

Eu·n =
∑
s∈S

ps · u
(
wn,s

)
, ∀n = 1, 2, . . . ,N (28)

Based on the utility maximization principle, the best choice
is the one that provides the highest utility (satisfaction) to the
decision-maker. Suppose the EU of the q-th SR allocation
is the largest in the EU set, then the final decision-making
process is given by

q = argmax
n
{Eu·n} (29)

Consequently, the q-th SR allocation is the best choice for the
decision-maker with a particular risk preference.

V. CASE STUDY
In this section, the proposed utility function-based
decision-making model for SR allocations is tested on the
IEEE-RTS [31]. There are 26 thermal generators in this base
system, and the hydro units have been removed [1], [12]. Gen-
erators’ data, including size, type, forced outage rate (FOR),
and production cost, are given in [31]. VOLL is assumed to
be $200/MWh [4]. Generation units offer SR costs at the rates
of 50%of their energy production costs [13]. For a given hour,
the system load and wind power are 2280 MW and 150 MW,
respectively. The standard deviations of load and wind power
forecast errors are set at 3% and 10%, respectively [17].
In this paper, the net load forecast error is divided into seven
intervals [15], and 26 first-order generation contingencies are
studied [12]. The simulation has been achieved in the Matlab
2014a environment [32].

Table 2 gives each unit’s energy production schedule,
energy and SR costs, and three different SR allocations dur-
ing the study period. A1 is determined by the deterministic
method, and a minimum SR requirement of 10% of the load
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TABLE 2. Parameters of generation units and three different SR
allocations.

demand (228 MW) is satisfied. A2 is determined by maxi-
mizing the ESB. A3 is determined by a probabilistic method,
in which the risk threshold of LOLP is 0.01.

A. DISTRIBUTION OF SOCIAL BENEFITS
Based on the data given above, the discrete SBs and the
corresponding probabilities of the above three SR allocations
are obtained by (8) and (9), respectively. Then both the
probability distributions and cumulative distributions of the
SBs are obtained, which are shown in Fig. 4. Some essential
characteristics of the SB allocations are shown in Table 2,
where SBmin and SBmax denote the minimum and maximum
SBs of the SR allocations, respectively.

The SBmins in A1,A2, and A3 are −$724,−$1819, and
−$2650 with high probabilities of 0.5223, 0.5127, and
0.5127, respectively (the sixth column in Table 3). These
SBmins are equal to the SR capacity costs, resulting from
the situation where none of the purchased SR volumes is
deployed in the real world. Thus, there is no benefit of the SR.

FIGURE 4. Distributions of social benefits. (a) for R1, (b) for R2, and
(c) for A3.

Meanwhile, the probabilities of SBs less than the ESBs are
0.627, 0.5959, and 0.5959 for A1,A2, and A3, respectively.
The SBmaxs in A1,A2, and A3 are $43 427, $74 540, and

$88 729, with low probabilities of 0.0631, 0.0232, and 0.0103
(the eighth column in Table 3), respectively. The more the SR
volumes are purchased, the better the system is capable of
reducing the interruption costs from large power imbalances,
so the larger the SBmax will be. The above results show that
both SBmin and SBmax vary between these three SR alloca-
tions, even though the ESBs of these three SR allocations are
close to each other.

Fig. 5 illustrates the probability distributions of SBs of
A3 when VOLLs are set at 100, 200, and 300 $/MWh,
respectively. VOLL is the parameter representing the cost
of unserved power, so only the benefit component of the
SB increases with the increase of VOLL, while the cost
component and the probability of each state are independent
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TABLE 3. Statistical results of social benefits of the SR allocations.

FIGURE 5. Probability distributions of SBs of A3 for different VOLLs.

of VOLL. Three observations are obtained. First, the max-
imum discrete losses are the same −$2650 with the same
probability of 0.5127. Second, the discrete SBs increase
with the increase of VOLL except for the minimum one.
The ESBs corresponding to these three VOLLs are $3336,
$9809, and $16 282, respectively. Finally, the LOLP and
EENS of A3 do not change with different VOLLs. The
above results confirm that only a reliability index could
not cover the above characteristics of SBs of different
SR allocations.

B. UTILITY-BASED DECISION-MAKING FOR SR
ALLOCATIONS
In this section, wmax and wmin are set at −$10 000 and
$100 000 respectively, according to the ranges of SBs
in Fig. 4. Then, the shape parameter is the only variable that
influences the utility-based decisions for these SR alloca-
tions. The shape parameters are supposed to be 4 (highly RA),
0, and −4 (highly RS) for the RA, RN, and RS decision-
makers, respectively. The decision results based on reliability
indices (LOLP and EENS), ESB, and EU are compared and
presented in Table 4.

As seen in Table 4, A1 requires the least capacity cost and
the ESB of A1 is also the least. A2 is the most cost-effective
choice among the three because of the maximized expected
return. A3 is the most reliable choice because of the least
LOLP and EENS, but it requires the largest capacity cost of
$2650, and the probability of A3 resulting in no benefit is as
high as 0.5127.

FIGURE 6. Discrete utilities and the utility curves for different shape
parameters of A3.

When considering the risk attributes, the order of the SR
allocations determined by EUs is the same as that deter-
mined by ESBs for the RN decision-maker. Thus A2 is most
favored for the RN decision-maker. However, the orders are
quite different for the RA and RS decision-makers. The RA
decision-maker is unwilling to spend too much to purchase
SR capacities and prefers A1 because A1 shows the least
risk (minimum σSB). In contrast, the RS decision-maker is
willing to seek potential benefits by reducing the interruption
costs from generation outages and forecast errors, and thus
prefers A3, which has the maximum σSB. The difference in
the decisions for SR allocations confirms the flexibility of
the proposed model, as compared to the decision strategies
based only on ESBs or the reliability indices such as LOLP
or EENS.

C. EFFECT OF THE SHAPE PARAMETER
The risk attributes of decision-makers play an essential role
in the utility-based decision for SR allocations. Fig. 6 illus-
trates the utility distributions for different shape parameters
(±10, ±2, ±1, 0) of A3. As seen in Fig. 6, the larger the
absolute value of the shape parameter, the greater is the
curvature of the utility curve. In comparison, the utility curves
become straight as the shape parameters approach 0. The
decision results with these different shape parameters are
listed in Table 5.

Both Fig. 6 and Table 5 show that the utilities and EUs
decrease as the shape parameter decreases. As expected,
the RA decision-maker tends to be risk-neutral with a
decrease in α1 (approaching 0), and the optimal SR allo-
cation changes from A1 to A2 when α1 is less than 3.
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TABLE 4. Result comparison of the optimal SR allocation determined by different decision strategies.

TABLE 5. Utility-based decision results for different shape parameters.

TABLE 6. Utility-based decision results for different FORs.

Meanwhile, the RS decision-maker tends to be risk-neutral
with an increase in −α3 (approaching 0), and the optimal
SR allocation changes from A3 to A2 when −α3 is larger
than −2. The difference in optimal decisions for the RA
and RS decision-makers becomes apparent when the absolute
values of the shape parameters become large. Thus, the model
can reveal the changing trend of the satisfaction degree of
the SR allocations with the change of shape parameter and
provide decision support for the operators with various risk
preferences.

D. EFFECT OF THE FOR AND FORECAST ERROR
Both the unit outages, forecast errors of wind power and load
demand affect the optimal SR allocation. In this sub-section,
the decision results between two different decision-makers
are compared, whose shape parameters are −2 (slightly RS)
and 0 (RN), respectively. Table 6 shows the utility-based
decision results when the FOR is scaled by factors of 0.5,
1.0, and 1.5 times. Table 7 shows the utility-based decision
results when both load and wind power forecast errors are

TABLE 7. Utility-based decision results for forecast errors.

scaled by factors of 0.5, 1.0, and 1.5 times. As expected,
both decision-makers prefer more SR capacities when the
FOR or forecast errors increase. This is because the increased
uncertainty from either the unit outages or net load forecast
errors leads to higher interruption costs. Conversely, when
the units are more reliable or the forecast errors are lower,
the SR requirements are lower. Besides, compared to the
RN decision-makers, the RS ones seek possible opportuni-
ties and prefer more reserve capacities when dealing with
uncertainty.

VI. CONCLUSION
Various methods have been proposed to determine the
optimal SR allocation while achieving a balance between
reliability and economy in recent years. Before mak-
ing the final decision between alternative SR allocations,
the decision-maker considers both the ESB of the SR allo-
cations and the experience and risk attributes in the system
with random components.

In this paper, decision-makers’ risk attributes are
addressed, and a utility function-based decision-making
model for SR allocations is proposed. The distribution of
SBs of the SR allocations is simultaneously considered in the
model, and the risk preference degree is represented by the
shape parameter. Simulation results show that the proposed
model can reveal the changing trend of the satisfaction degree
of the SR allocations with the change of shape parameter and
provide decision support for decision-makers with particular
risk preferences. The SR allocation with the largest ESB
is also the one with the largest EU for the RN decision-
maker. Meanwhile, the optimal SR allocations for the RA
and RS decision-makers vary with their shape parameters.
Themodel provides operators with another choice for optimal
SR allocation besides decision strategies based on maximum
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expected return or a specified reliability index. It should be
noted that although the standard deviation of SBs is used
to analyze the risk of the SR allocations, there is no need
to define risk or set a risk threshold in the proposed model.
Further researchwill focus on studying amulti-objective opti-
mization problem for the optimal SR allocation considering
both the expected operational cost and expected utility in the
market environment.
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