
Received December 9, 2020, accepted January 4, 2021, date of publication January 25, 2021, date of current version February 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054472

Early Detection of Flawed Structural
Dependencies During Software Evolution
DI CUI
School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

e-mail: cuidi@stu.xjtu.edu.cn

This work was supported in part by the National Natural Science Foundation of China under Grant 61632015, Grant 61772408, Grant
U1766215, Grant 61721002, Grant 61532015, and Grant 61833015; in part by the Ministry of Education Innovation Research Team under
Grant IRT_17R86; and in part by the Project of China Knowledge Centre for Engineering Science and Technology.

ABSTRACT During software evolution, complex structural dependencies between source files pose a
great challenge on maintenance activities. Some of these dependencies propagate defects among files,
incurring frequent bugs or changes, and consuming significant maintenance costs. They can be referred to as
flawed structural dependencies. In this paper, we proposed a method to identify these potential problematic
dependencies at an early stage during software evolution, by combing structural and semantic dependencies,
so that developers can save maintenance costs by fixing these issues in time. Our method works as follows:
First, we extract structural dependencies from the source code syntax and semantic dependencies from the
source code lexicon. Second, we collect suspect file pairs by calculating the difference between structural
and semantic dependencies. Next, we exhaustively examine each source file in the system and locate the
interaction of its impacted subordinated files and suspect file pairs (SFP) as suspect dependencies. Finally,
we gather all the suspect dependencies as flawed structural dependencies candidates.We evaluate ourmethod
using 838 releases of 15 open source projects, including 33353 bug reports and 86690 revision commits.
The detection result shows that our identified dependencies use 14% of all the files to capture almost 70%
of top 10% bug-prone files or change-prone files with enough high precision: 92%. Moreover, our identified
dependencies also incur 957% of bug frequencies and 1050% of change frequencies than average in future
versions. In summary, our method can effectively and efficiently detect flawed structural dependencies in
time during software evolution.

INDEX TERMS Software quality, software maintenance, software evolution, architectural design, code
dependencies.

I. INTRODUCTION
As software evolves, an increasing amount of maintenance
efforts were spent on assuring software quality [30]. How-
ever, the rapid growth of complex structural dependencies
in software systems poses a great challenge to maintenance
activities [39]. Recent research has shown that a signifi-
cant proportion of bug-prone files are often connected by
structural dependencies [33]. Our recent industrial collabora-
tion [26] revealed that bug-proneness may propagate through
these flawed structural dependencies among files. The accu-
mulation of them forms a great source of technical debt [37],
which will gradually make software system harder to main-
tain, debug, evolve, and eventually cause a ripple effect. For

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Pietrantuono .

a software system, there always exists a large proportion
of flawed structural dependencies frequently incurring bugs
and changes, which consumes significant maintenance costs
during software evolution [37]. If these dependencies can
be discovered early and fixed via refactoring in time, it is
possible to avoid the increasing maintenance cost.

For example, Figure 1 shows a group of 6 source files
architecturally connected with 8 instances of flawed struc-
tural dependencies in Avro 1.3.0 [7]. These files and related
dependencies are organized with a pyramid structure and
GenericData is the top-most file dominating the other five
files. Table 1 shows the evolution of this flawed structure
from Avro 1.0.0 to Avro 1.3.0. Combined with the revi-
sion history, bug reports, and source code of this group,
we discovered these flawed dependencies were first intro-
duced when fixing AVRO-110 by implementing Comparable

28856
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2859-9003
https://orcid.org/0000-0003-2449-1724

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

FIGURE 1. The flawed structural dependencies in Avro 1.3.0 (Each node
represents a source file. Each edge represents a structural dependency.).

TABLE 1. A case of the flawed structural dependencies in a group of files.
(Ver is short for versions).

interface and employing a singleton design pattern onGener-
icData in 1.1.0. This is a typical design flaw caused by a
quick and dirty implementation that may frequently roll back
later. We found that, in subsequent versions, these involved
6 source files consume significant maintenance costs from
1.2.0 to 1.3.0. Developers spent nearly 700 lines of code
related to 18 bugs within this structure. If these dependencies
can be detected early and fixed in time, the extra costs can be
saved.

To the best of our knowledge, state-of-the-art related tech-
niques on diagnosing flawed structural dependencies can be
divided into two lines. The first line is the metric-based
techniques. One representative work is Decoupling Level
Metric (DL) [32], which evaluates the maintainability of
structural dependencies based on the design rule theory [48].
We employ DL in detecting the preceding structural depen-
dencies. As shown in Table 1, DL does monitor AVRO’s
structural health from 1.0.0 to 1.2.0. However, this high-
level approach cannot locate the problematic dependencies
directly.

The second line is history-based techniques. One of the
most recent work is hotspot detection [38]. It can leverage
revision history to examine structural dependencies corre-
latedwith bugs and changes.We also employ this technique in
detecting the preceding dependencies. As shown in Table 1,
they can be identified in 1.3.0. However, hotspot incurs the
following two issues: First, flawed structural dependencies
cannot be identified as soon as they were introduced. In the
preceding example, these dependencies are detected after
significant maintenance costs were paid. By 1.3.0, developers
have committed nearly 700 lines of code. Second and most
importantly, hotspot may misdiagnoses dependencies already
fixed. In the preceding example again, these dependencies are
patched in 1.3.0 and will not contribute to bug-proneness in a

long time. However, it will be continually reported by hotspot
in subsequent versions according to the revision history [38].

Our previous work [27] systematically investigated the
relationship between three types of dependencies (structural
dependencies, history dependencies, and semantic dependen-
cies) and software bug-proneness. Our work revealed that
semantic dependencies capture a significant proportion of
bug-prone fileswith higher accuracy and efficiency compared
with structural dependencies and history dependencies. This
finding inspires us that semantic dependencies can assist us
in detecting flawed structural dependencies. Our work also
revealed that the combination of structural dependencies and
semantic dependencies can further improve the performance
of bug prediction. The difference between semantic depen-
dencies and structural dependencies, which means that two
files are connected with the semantic dependency but not
structural dependency, presents the highest efficiency to cap-
ture bug-proneness from these combinations. According to
the information hiding principle [39], the structurally isolated
files should evolve independently for they encapsulate imple-
mentation details separately. If they are related to semantic
dependencies at the same time, it has the possibility to be a
design flaw. This finding can hint us to further locate flawed
structural dependencies.

Based on these findings, in this paper, we proposed a
method, by combining semantic dependencies and structural
dependencies, to identify flawed structural dependencies at
early stages during software evolution and maintenance.
Once a dependency problem is induced during evolution, our
method can achieve just-in-time detection for not requiring
revision history. The history-based technique may report it
after a few versions until some patches and changes are
accumulated on this issue. Our method detects flawed struc-
tural dependencies as follows: First, we extract structural
dependencies and semantic dependencies among files. Struc-
tural dependencies are extracted from the source code syntax
using Depends [1], a state-of-the-art dependency analysis
tool. semantic dependencies are extracted from the source
code lexicon using information retrieval techniques. Second,
we collect suspect file pairs by calculating the difference
between semantic dependencies and structural dependencies.
Next, we exhaustively examine each source file in the sys-
tem. We obtain its impacted subordinated file by calculating
the transitive closure of the graph constructed from struc-
tural dependencies and locate their interactions with suspect
file pairs as suspect dependencies. Finally, we gather all
these suspect dependencies as flawed structural dependencies
candidates.

Compared with metric-based techniques, our method can
accurately locate the potential problematic structural depen-
dencies. Compared with history-based techniques, we can
find these flawed structural dependencies at the early stages.
We collected 33353 bug reports and 86690 revision commits
from 838 versions of 15 open source projects, and systemat-
ically evaluated our method. The experiment results showed
that: (1) The identified structural dependencies use merely

VOLUME 9, 2021 28857

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

TABLE 2. Structural Dependencies versus Semantic Dependencies.

14% of all the files; (2) The precision of identified struc-
tural dependencies is as high as 92%; (3) Almost 70% of
the top 10% bug-prone and change-prone files are covered
by the identified structural dependencies; (4) The involved
files in identified structural dependencies will incur 957%
and 1050% frequencies of bugs and changes in subsequent
versions than average.

The rest of the paper is organized as follows: Section II
presents the problem definition and motivation. Section III
presents the details of our approach. Section IV gives a run-
ning example to illustrate our approach. Section V evaluates
experimental results. Section VI presents some discussions.
Section VII shows the related work. Section VIII finally
concludes the paper.

II. PROBLEM DEFINITION AND MOTIVATION
A. PROBLEM DEFINITION
Flawed structural dependencies (FSD) is a set of structural
dependencies. A instance of flawed structural dependency is
a pair of files and both of them are frequently involved in bug
fixes and change commits. It is formally defined as:

FSD =
{(
fi, fj, type,Cost (vm, vn)

)
| i 6= j,m 6= n

}
(1)

where fi and fj represent the source files. vm and vn represent
the versions. type represents the type of structural depen-
dency between fi and fj, including inheritance, implementa-
tion, method call, field access, type reference, and instance
creation. Cost (vm, vn) represents, from version m to version
n, the increased maintenance cost (bug frequency and churn)
was spent on this dependency.

Recent study revealed [78] that flawed structural depen-
dencies may not capture all co-change dependencies. The
involved files may be patched separately in multiple bug
fixes. Previous study [33] have shown that flawed structural
dependency cover 70% of the most bug-prone/change-prone
files on average. That is, 30% of them are not con-
nected with structural dependencies. A more precise and
efficient approach is deserved to detect flawed structural
dependencies.

B. MOTIVATION
From the findings in our previous work, we assume that
semantic dependencies and their interaction with structural
dependencies can assist us to early detect flawed structural

TABLE 3. The interaction of structural dependencies (Str) and semantic
dependencies (Sem).

dependencies. In this part, we first validate our assumptions
in Avro. Table 2 and Table 3 present the correlation between
these dependencies and software bug-proneness from 1.0.0 to
1.3.0. We observed that:

1) Most of the bug-prone files are relevant to structural
dependencies. This observation is consistent with Lu et al’s
work [33] and our previouswork [27]: there exists the correla-
tion between bug locations and dependencies, which is more
significant in security bugs [80] and performance bugs [79].
As shown in Table 2, from 1.1.0 to 1.3.0 of Avro, structural
dependencies capture all the buggy/bug-prone files (100%).
This validates the existence of flawed structural dependen-
cies that propagate bug-proneness among files. In total,
we discovered 452-771 instances of structural dependen-
cies. However, only a small portion (18.58%-28.66%) of
them are related to bug dependencies. It means that deriving
flawed dependencies from structural dependencies directly is
challenging.

2) Semantic dependencies present a higher efficiency in
capturing software bug-proneness compared with structural
dependencies. As shown in Table 2, from 1.1.0 to 1.3.0 of
Avro, semantic dependencies cover 46 bugs (50% of 87 bugs
in total) and 36 buggy/bug-prone files (32% of 110 files).
The proportion of flawed/bug dependencies from semantic
dependencies is 74%, which is 336% higher than structural
dependencies. On the contrary, the average number of seman-
tic dependencies is merely 48 instances, which is 8% of
structural dependencies. It implies that semantic dependen-
cies can be used as hints to further detect flawed structural
dependencies.

28858 VOLUME 9, 2021

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

FIGURE 2. The overview of our approach to detect flawed structural dependencies.

3) The combination of semantic dependencies and struc-
tural dependencies captures newly introduced bug-prone files
during software evolution. We explore the interaction of
semantic dependencies and structural dependencies in Table 3
and discovered: From 1.1.0 to 1.3.0, their intersection sta-
bly contains 10 instances and the average proportion of
flawed dependencies from them is 58.8%. On the contrary,
the difference between semantic dependencies and structural
dependencies contains 23 to 93 instances, and the average
proportion of flawed dependencies from them is as high as
80.2%. From 1.1.0 to 1.3.0, the number of files and bugs in
this system is continually increasing shown in Table 1. There-
fore, we observed the difference between semantic depen-
dencies and structural dependencies indeed captures newly
introduced bug-prone files in time.

These observations validate our assumption of semantic
dependencies and motivate us to design our method to early
detect flawed structural dependencies.

III. METHODOLOGY
In this section, we describe our methodology. Figure 2
presents an overview of our approach to detect flawed struc-
tural dependencies. Our approach takes the source as input
and follows three steps: extracting structural dependencies
and semantic dependencies, collecting suspect file pairs, and
generating suspect dependencies as flawed structural depen-
dencies candidates.

A. EXTRACTING STRUCTURAL AND
SEMANTIC DEPENDENCIES
In this step, we extract dependencies including structural
dependencies and semantic dependencies as follows:

1) EXTRACTING STRUCTURAL DEPENDENCIES
Structural dependency, derived from the source code syntax,
is one of the most common code dependencies for pro-
gram comprehension and software maintenance. In our paper,
we select six types of syntax, including software inheritance,
implementation, method call, field access, type reference, and
instance creation, as the source to extract structural dependen-
cies. We employ Depends [1], a state-of-the-art dependency
analysis tool, to extract these dependencies among files. For
a subject, we denote all the collected structural dependencies
as Str.

2) EXTRACTING SEMANTIC DEPENDENCIES
Semantic dependencies, derived from the source code lex-
icon, explore the textual similarity among files using

information retrieval techniques. In this paper, we extract
semantic dependencies using the five steps following the
previous work [36]:

1) Crawling raw lexical data. In this step, we crawl four
types of source code lexicons as features including class
name (feature1), method name (function and function param-
eter name, feature2), global variable name (feature3), and
comment (feature4). Supported by our implemented lexical
parser based on srcML [2], a state-of-the-art lightweight and
scalable parsing tool, we summarize all the collected data as
a n× 4 matrix:

RawLexicalData ==

WS11 WS21 WS31 WS41
WS12 WS22 WS32 WS42
· · · · · · · · · · · ·

WS1n WS2n WS3n WS4n

 (2)

where n is the number of source files and each element WSki
represents the crawled word set for filei on featurek , which is
defined as follows:

WSki = {w
k
1,w

k
2, · · · ,w

k
m} (3)

where wk represents the extracted word and m represents the
number of them. The i ranges from 1 to n. The k ranges from
1 to 4 and the featurek is correlated with class name, method
name, global variable name, and comment respectively.

For each filei, {WS
1
i ,WS

2
i ,WS

3
i ,WS

4
i } represents the col-

lected lexical data set. We use GenericDatumWriter, one of
the preceding files with flawed structural dependencies, as an
example. Figure 3 presents a part of its source code. The
column type presents the results parsed by our tool line by
line. The collected lexical data of GenericDatumWriter is
demonstrated in the first row of Table 4. Each cell corre-
sponds to the WS i where repeated words are expressed with
brackets.

2) Preprocessing lexical data. In this step, we preprocess
each word of the set with three processes including filtering,
decoupling, and stemming. The filtering process removes the
345 stop words for the natural language [62]. The decou-
pling process separates each word according to the naming
convention, such as camel casing and snake casing [63].
The stemming process searches the root for each word using
Porter algorithm [62]. Thus, for each WSki , the preprocessed
word set is defined as follows:

PWSki = {pw
k
1, pw

k
2, · · · , pw

k
m} (4)

where pw represents the preprocessed word and m represents
the number of words. Table 4 presents the preprocessing

VOLUME 9, 2021 28859

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

FIGURE 3. Crawling Lexical Data of GenericDatumWriter (Gvarible is short for global variable name).

TABLE 4. Preprocessing Lexical Data of GenericDatumWriter (The difference is marked in Bold).

of lexical data of GenericDatumWriter step by step. For
convenience, we mark the difference between rows in bold.
For instance, the ‘‘out(2)’’, in row: Raw and column: Global
Variable, is marked in bold, indicating it will be filtered
in the next row. The ‘‘writeRecord’’, in row: Filtered and
column:Global Variable, is marked in bold, indicating it will
be decoupled into write and Record in the next row. The
‘‘Record’’, in row: Decoupled and column: Global Variable,
is marked in bold, indicating it will be stemmed in the next
row.

3) Generating TF-IDF weighting matrix from prepossed
lexical data. In this step, we generate weighting matrix
using one of the most popular information retrieval model:
TF-IDF [31]. Based on the definition of equation 2, for each
featurek , we gather the involved preprocessed lexical data as
lexical space: LSk , which is defined as follows:

LSk = {PWSk1,PWS
k
2, · · · ,PWS

k
n} (5)

where n is the number of files. For each LSk , we generate its
weightingmatrix using TF-IDF as Ek , which is am×nmatrix
(file-by-word). m represents the number of distinct words in
feature k .
A generic entry eki,j of this matrix denotes the relevance of

the ith word in the jth file.

eki,j =
ti,j∑
o to,j
× log

n
|{j : pwi ∈ filej}|

(6)

where ti,j represents the occurrence frequency of word pwi
in filej.

∑
o to,j represents the occurrence frequency of word

pwi in all of files. |{j : pwi ∈ filej}| represents the number
of files containing pwi. In summary, the eki,j represents the

term frequency and inverse document frequency (TF-IDF)
for the word: pwi and the file: filej. For the collected TF-IDF
weighting matrices, we further use principle component anal-
ysis (PCA) to reduce the dimension of features to com-
pute textual similarity as: REk . We implemented the TF-IDF
and PCA using the state-of-the-art machine learning library:
scikit-learn [23].

4) Computing textual similarity. In this step, we compute
textual similarity matrix as Sk for each lexical feature: LSk
based on the reduced TF-IDF matrix: REk . The constructed
textual similarity matrix is a n× nmatrix (file-by-file) where
n is the number of files. A generic entry ski,j of S

k denotes
the cosine semantic similarity between ith file and jth file
of REk :

ski,j =

∑m
l=1 re

k
l,i × re

k
l,j√∑m

l=1(re
k
l,i)

2 ×

√∑m
l=1(re

k
l,j)

2
(7)

where the rekl,i and re
k
l,j represent the entries of RE

k .
5) Obtaining semantic dependencies. In this step, we obtain

semantic dependencies by normalizing the textual similarity
matrix and fusing them. We first normalize the Sk as S

k
. The

entry of ski,j in S
k
is defined as:

ski,j =

{
1, ski,j > θ

0, other
(8)

where θ is empirically set as 0.8.

28860 VOLUME 9, 2021

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

The normalized four similarity matrices are fused as SIM ,
which is defined as:

SIM =
4∑

k=1

S
k

(9)

Based on the definition of SIM , we formally define the
semantic dependencies as Sem:

Sem = {(filei,filej) | SIM i,j > th, i 6= j} (10)

where th is set as 2. In semantic dependencies: Sem,
(filei,filej) is equivalent to (filej,filei).

B. COLLECTING SUSPECT FILE PAIRS
The suspect file pair (SFP) is defined as a pair of file: x and y.
They are involved in semantic dependencies but not structural
dependencies.

SFP = { (x, y) | (x, y) /∈ Str ∧ (x, y) ∈ Sem} (11)

where Str represents the structural dependencies and Sem
represents the semantic dependencies.

For a subject, we exhaustively inspect each pair of files and
collect all the suspect file pairs (SFP).

C. GENERATING SUSPECT DEPENDENCIES
Although suspect file pairs (SFP) can reveal maintenance
problem, each pair of files are actually structurally isolated.
However, we aim at detecting flawed structural dependencies.
As a consequence, we design the following algorithm to
capture the interaction between structural dependencies and
suspect file pairs as suspect dependencies.

Before describing the detection algorithm, we first intro-
duce two notions: structural dependency graph:G and its tran-
sitive closure graph: G+. The structural dependency graph is
defined as follows:

G = {F, Str} (12)

where F represents the collection of all the source files in sys-
tem. Str represents the structural dependencies among these
source files. The transitive closure of structural dependency
graph is defined as:

G+ = {F, Str+} (13)

where Str+ represents the reachable structural dependencies
among these source files. For an edge: (a, b) in Str+, it means
that there is a path from file a to file b. That is, file a has the
structural impact on file b.

Algorithm 1 shows the procedure of detecting suspect
dependencies. The idea is based on the finding unveiled
by recent work [33]: if the subordinate files are bug-prone,
the leading files are also likely to be bug-prone. The input of
this algorithm is the collection of suspect file pairs and tran-
sitive closure of the structural dependency graph. The output
is a set of suspect dependencies. This algorithm inspects all
the source files in the system iteratively. For each file, we use
it as the leading file: v. Line 2 to 9 select a set of subordinate

Algorithm 1 SusDepsDetection(G+, SFP)
1: V ,E ← {G+}.F, {G+}.Str+ % initialization
2: SusDepSet ← ∅% detection target
3: for v in V do
4: Sub(v)← ∅ % the subordinate files influenced by v
5: for vs in V do
6: if (v, vs) ∈ E then
7: Sub(v).append(vs)
8: end if
9: end for

10: SusFileSet(v)← {v} % the subset of suspect files
11: for a in Sub(v) do
12: for b in Sub(v) do
13: if a 6= b and (a, b) ∈ SFP then
14: SusFileSet(v).append(a)
15: SusFileSet(v).append(b)
16: end if
17: end for
18: end for
19: SusDepSet(v)← ∅ % the subset of suspect deps
20: for i in SusDepSet(v) do
21: for j in SusDepSet(v) do
22: if i 6= j and (i, j) ∈ E then
23: SusDepSet(v).append((i, j))
24: end if
25: end for
26: end for
27: SusDepSet ← SusDepSet ∪ SusDepSet(v)
28: end for

files having structural dependencies with the leading file: v.
It means that these selected files are structurally impacted by
the file: v. We further analyze them and related dependen-
cies as follows: Line 10 to 18 discover the overlap of these
impacted files and suspect file pairs (SFP) as the suspect file
set because our observation in Section II revealed that the
suspect file pair is an efficient pattern to characterize bug-
proneness. We collect their intersection as the suspect files.
Line 19 to 26 further distill its involved dependencies for they
are involved in suspect files. Line 27 iteratively finally gathers
all the suspect dependencies into the suspect dependency set
as flawed structural dependencies candidates.

IV. RUNNING EXAMPLE
In this section, we use the case of flawed structural depen-
dencies presented in Table 1 as an example to illustrate the
procedure of our approach.We use the design structurematrix
(DSM), a state-of-the-art tool, to visualize multiple software
dependencies. We introduce the related concept as follows:

Design Structure Matrix (DSM). A DSM is a square
matrix. Each element in DSM represents a source file. The
rows and columns of a DSM are labeled with the same set of
source files in the same order. Each cell in DSM represents
the dependencies between the file in a row and the file in the
column. A marked cell in row x and column y, cell (x, y),

VOLUME 9, 2021 28861

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

FIGURE 4. A running example to detect flawed structural dependencies.

means that the file in row x depends on the file in column y.
The marks in the cell are refined to represent different types
of dependencies such as structural or semantic. We use the
DSM shown in Figure 4.(b) as an example. In Figure 4.(b),
cell(2,1) is labeled with ‘‘dp’’, which means GenericDa-
tumReader have structural dependencies with GenericData.
Cell (2,1) is also labeled with ‘‘,7’’, which represents Gener-
icData and GenericDatumReader changed together with
7 times in the revision history. Cell(7,5) is filled with blue
color, which indicates GenericDatumReader and Specific-
Data are connected with semantic dependencies. In this
paper, we employ DSM to manage structural and semantic
dependencies.

Case Study. The case of flawed structural dependencies
shown in Table 1 and Figure 1 involves six source files includ-
ing TestCompare, TestSchema, TestProtocolGeneric, Speci-
ficData, GenericDatumWriter, and GenericData, which is
organized with a pyramid structure. We found that Generic-
Data is the top leading file structurally connected with other
files. By tracing the source code, bug report, and revision his-
tory of these files, we represent the evolution of these files and
related dependencies structurally influenced by GenericData
using the design structure matrix (DSM). Figure 4.(a)-4.(c)
present the results from 1.0.0 to 1.3.0. For each file of
each version in presented DSMs, we label its bug ranking
on the left. We observed that, by Avro 1.3.0, the average

bug ranking of the six files in the previous case increases
almost 20%. According to the concept of code smell, this
flawed structure is a typical case informally referred to as
‘‘spaghetti code’’ or ‘‘big ball of mud’’. The leading file of
this structure: GenericData is gradually evolving into the
‘God interface’, propagating defects on more source files and
consuming increasingly significant maintenance costs. We
believe that the poor dependency/architectural design can be
the root cause for this case, which violates the OO design
principle: the single responsibility principle (SRP). Once a
change is made, several modifications will also be induced
accordingly. We can fix this issue by applying the state-of-
the-art interactive architectural refactoring tool [24] to guide
our redesign step by step.

To early detect flawed structural dependencies in the above
case, we employ DL measurement, Hotspot detection, and
our method as follows:

DL Measurement. Mo et al. [32] proposed a new
metric: decoupling named DL metric based on design
rule theory to measure the maintenance complexity of
software dependencies. The DL opens the possibility of
quantifying canonical principles of single responsibility
and separation of concerns, aiding the comparison of
various projects and variation of the individual project.
In this case, for an individual project, we intuitively
believe that the variation of DL metric may capture the

28862 VOLUME 9, 2021

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

inducing of flawed structural dependencies. However, from
Figure 4.(a)-4.(c), we observed that the variation of DL
reports the presence of flawed structural dependencies. How-
ever, this method failed to concentrate on related files and
dependencies.

Hotspot Detection. Mo et al. [38] proposed a suite of prob-
lematic patterns related to high error-proneness and change-
proneness named hotspot. The studied case was detected
by hotspot as an instance of the unstable interface pattern
in 1.3.0, shown in Figure 4(c) marked with the red color.
According to the definition of unstable interface pattern, if a
file is structurally depended by many files and also changes
with them frequently, this file and its subordinate files are
considered to be an instance of an unstable interface pattern.
By default, if there are more than 10 files structurally depend-
ing on this file (dp > 10) and more than 5 files change
together with it more than 5 times (#cochange > 5), hotspot
will identify them. According to the definition, these files
are identified by Hotspot only when they have been revised
enough times. In this case, we also found that the studied
case of flawed structural dependencies is detected until Avro
1.3.0. However, at that time, it has accumulated significant
maintenance costs.

Our Method. The procedure of our method is as follows:
First, we extract all the structural and semantic depen-

dencies from the source code for each version. Second,
we collect all the suspect file pairs (SFP) by calculat-
ing the difference of structural and semantic dependencies.
In this studied case, there are no suspect file pairs (SFP)
in 1.0.0. On the contrary, both in 1.1.0 and 1.3.0, three
instances of suspect file pairs (SFP) within are found filled
with blue background color shown in Figure 4(b) and 4(c),
including (SpecificData, GenericDatumWriter), (TestCom-
pare, TestSchema), and (TestCompare, TestProtocolGeneric).
Finally, we determine the suspect file set by calculat-
ing the overlap of structurally influenced files and sus-
pect file pairs. For example, in 1.1.0 and 1.3.0 shown in
Figure 4.(b)-Figure 4.(c), we obtained a set of six files:
{TestCompare, TestSchema, TestProtocolGeneric, Specific-
Data, GenericDatumWriter, and GenericData}, as the sus-
pect file set. We further discover dependencies among
them as suspect dependencies, which are identified as
flawed structural dependencies candidates. For example,
in 1.1.0 and 1.3.0 shown in Figure 4.(b)-Figure 4.(c), the
following 7 instance of suspect dependencies are detected
by our approach: (GenericData, SpecificData), (Generic-
Data, GenericDatumWriter), (GenericData, TestCompare),
(GenericData, TestSchema), (GenericData, TestProtocol-
Generic), (GenericDatumWriter, TestSchema), and (Gener-
icDatumWriter, TestProtocolGeneric),

Summary. The detected suspect dependencies cover the
fore-mentioned flawed structural dependencies. Compared
withDLmeasurement, ourmethod identifies them accurately.
Compared with hotspot detection, our approach identifies
them in 1.1.0 as they first emerge.

V. EVALUATION
To evaluate the effectiveness of our approach, we investigated
838 versions of 15 Apache open source projects (Avro [7],
Cassandra [8], Flume [9], Hadoop [10], Hbase [11],
Log4j [12], Mahout [13], Mina [14], Openjpa [15], Pdf-
box [16], Pig [17], Tika [18], Zookeeper [19], Cxf [20], and
Camel [21]) as our evaluation subjects. They are involved
with 33353 bug reports and 86690 revision commits shown
in Table 5. These projects differ in domain, scale, and other
characteristics. The bug reports and revision commits are
extracted from their version control system: Git [5] and
issue tracking systems: JIRA [6]. We only study bug reports
having a resolution of fixed. We extracted structural and
semantic dependencies for each version, and identify suspect
dependencies. For these detected results, we investigated the
following research questions:

RQ1: Whether the files in our identified dependencies will
incur high maintenance costs in the subsequent versions?

RQ2: What is the accuracy of our method to detect flaw
structural dependencies?

RQ3: Can our method discover flawed structural depen-
dencies in time?

A. THE MAINTENANCE COST OF SUSPECT DEPENDENCIES
To answer RQ1, we iteratively analyzed all the detected
suspect dependencies of each version, and explore whether
the involved files will incur significant maintenance costs
in subsequent versions. We design two metrics to measure
the impact of these detected dependencies on subsequent
maintenance efforts: future bug frequency (FBF) and future
change frequency (FCF).

For files in suspect dependencies: SD, future bug frequency
(FBF) and future change frequency (FCF) calculate the aver-
age bug fixing/code change frequency of each involved file
from the version: vi to the version: vn.

To measure future bug frequency (FBF) and future change
frequency (FCF), we first collect the related bug fixing/code
change information as two matrices. Both of them are m× n
(file-by-version), where rows represent files in system and
columns represent versions. An element: bf ji or cf ji repre-
sents the number of frequencies of bug fixes/code changes for
Fj in version vi. For a software systemwith n consecutive ver-
sions andm source files, Table 6 demonstrates the related bug
fixing information as a matrix (Bug fixing frequency matrix).
Similarly, Table 7 demonstrates the related code change infor-
mation as a matrix (Code change frequency matrix).

Thus, for a detected file group: SD from version: vi to ver-
sion: vn, the future bug frequency (FBF): FBF(SD, vi, vn) and
future change frequency (FCF): FCF(SD, vi, vn) are defined
as follows:

FBF(SD, vi, vn) =

∑
Fj∈SD

∑n
k=i+1 bf jk
|SD|

(14)

FCF(SD, vi, vn) =

∑
Fj∈SD

∑n
k=i+1 cf jk

|SD|
(15)

VOLUME 9, 2021 28863

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

TABLE 5. The basic information of 15 studied subjects.

TABLE 6. Bug fixing frequency matrix.

TABLE 7. Code change frequency matrix.

where
∑n

k=i+1 bf jk or
∑n

k=i+1 cf jk represents the total
number of bug fixes/code changes for Fj from vi to vn.
FBF(SD, vi, vn) or FCF(SD, vi, vn) represents the average
number of bug fixes/code changes of each file involved in
suspect dependencies:SD from version: vi to version: vn.
For each version: vi of each studied 15 projects, we mea-

sure its future bug frequency (FBF) and future change fre-
quency (FCF) of collected suspect dependencies from the
current version: vi to the latest version: vn. For comparison,
we also measure the future bug frequency (FBF) and future
change frequency (FCF) of all the files (AF) and all the bug-
prone files (ABF) for each version.

The results are demonstrated in Figure 5. We only present
the measurement of eight projects and the full data is also
available online [22]. In each figure, the x-axis presents the
version and the y-axis presents the future bug frequency
(FBF) or the future change frequency (FCF). The red line
represents the results of suspect dependencies (SD), the blue
line represents the results of all the bug-prone files (ABF)
and the black line represents the results of all the files (AF).
Some points on suspect dependencies (SD) or bug-prone
files (ABF) are also highlighted. The percentage marked with

red or blue color demonstrates the increase rate of the result
of FBF/FCF on suspect dependencies (SD) or the bug-prone
files (ABF) compared with the result of FBF/FCF on all the
files (AF).

For each project, we sum up the future bug frequency
(FBF) or future change frequency (FCF) and calculate
the average value of them. We observed that, from these
15 selected projects, the average FBF of suspect dependen-
cies: SD is 6.7, which is 957% higher than the value of all the
files: AF (0.7). The average FCF of suspect dependencies:
SD is 8.4, which is also 1050% higher than the value of all
the file: AF (0.8). Meanwhile, the average FBF of all the bug-
prone files: ABF is 4.0, which is 571% higher than all the
files: AF. The average FCF of all the bug-prone files: ABF is
6.2, which is 775% higher than all the files: AF. According to
our observations, files within suspect dependencies do incur
much higher maintenance costs, including bug fixing and
code change, in subsequent versions. Compared with all the
files: AF and all the bug-prone files: ABF, suspect dependen-
cies (SD) present enough high bug and change frequency for
they may concentrate on the most bug-prone files.

In particular, the FBF and FCF of suspect dependencies:
SD achieves the best results in two subjects: Cassandra (with
the largest number of versions, 170 versions) and Camel (with
the largest number of bugs and change commits: 27547 in
total). In Cassandra, the average FBF of suspect dependen-
cies: SD is as high as 27.4. More importantly, the average
FCF of suspect dependencies: SD is nearly 40.5. In Camel,
the average FBF of suspect dependencies: SD is 9.8, and the
average FCF of suspect dependencies: SD is 14.1. The results
indicate that files within suspect dependencies of these two
projects incur extremely frequent and repeated bug fixes and
code changes.

Obviously, all the curves of suspect dependencies: SD
in Figure 5 is decreasing with the increase of versions.
A possible explanation is that the decrease is caused by
the definition of FBF and FCF. In the last version of each
project, the FBF and FCF are all equal to 0 for the lack of
subsequent versions. Additionally, we also discovered that
some files reported by suspect dependencies: SD are not

28864 VOLUME 9, 2021

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

FIGURE 5. The future bug frequency (FBF) or future change frequency (FCF) of suspect dependencies (SD) (AF represents all the files. ABF represents all
the bug-prone files which are patched in fixing bugs. SD represents files in our detected suspect dependencies.).

frequent enough in bug fixes and changes as we consider.
Actually, these filesmay contain potential bugs andwill cause
maintenance costs later than our observed versions. We are
still tracking these issues now. Moreover, there are 9 versions
in which the FBF of suspect dependencies: SD is lower than
all the files: AF.Meanwhile, there are also 7 versions in which
the FCF of suspect dependencies: SD is lower than all the
files: AF. We manually inspect these files and find that most
of them are actually unstable. Some files are even directly
removed in later versions. As a consequence, the FBF or FCF
decreases because these removed files do not participate in
subsequent revision commits anymore.

Answer to RQ1: Files within detected suspect depen-
dencies do incur frequent bug fixes and code changes in
subsequent versions, which are 957% and 1050% frequen-
cis than average. Thus, the identified suspect dependen-
cie can be considered as flawed structural dependencies
candidates.

B. THE ACCURACY OF SUSPECT DEPENDENCIES
To answer RQ2, we evaluate the accuracy of suspect depen-
dencies from the following four perspectives because there is
no specific ground truth for flawed structural dependencies.
These perspectives are:

VOLUME 9, 2021 28865

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

• BugFrequency: the number of times involved in bug
fixing commits.

• BugChurn: the number of lines of code to in bug fixing
commits.

• ChangeFrequency: the number of times involved in
change commits.

• ChangeChurn: the number of lines of changed code in
change commits.

These data are derived from collected bug reports and revision
history. Thus, for files in each project, we generate four types
of rankings based on the preceding four measures. They are:
• BF(x%): the top x% of the files ranked with the bug
frequency.

• BC(x%): the top x% of the files ranked with the bug
churn.

• CF(x%): the top x% of the files ranked with the change
frequency.

• CC(x%): the top x% of the files ranked with the change
churn.

Specifically, BF(100%) is equivalent to BC(100%), which
represents the files involved in bug fixing commits.
CF(100%) is equivalent to CC(100%), which represents the
files involved in change commits.

As for suspect dependencies, for a project of n ver-
sions, we obtain suspect dependencies (SD) in each version:
{SD1, SD2, · · · , SDn}. Thus, all the detected dependencies
are defined as SDall :

SDall = {SD1 ∪ SD2 ∪ · · · ∪ SDn} (16)

We calculate the precision and recall of SDall . First, we cal-
culate the precision of SDall as BugRate:

BugRate =
|{(i, j)|(i, j) ∈ SDall ∧ i, j ∈ ABF}|

|SDall |
(17)

whereABF represents all the bug-prone files in project, which
can be represented with BF(100%) or BC(100%). BugRate
measures the proportion of detected dependencies in which
both of subordinate files are involved in bug fixing commits.

Then we calculate the recall of SDall using its coverage on
different subsets of top x% bug-prone or change-prone files
as:

CoverageRate(BCF, x%) =
{SDall} ∩ BCF (x%)

BCF (x%)
(18)

where {SDall} represents all the involved files with sus-
pect dependencies. BCF (x%) represents the top x% of files
ranked using the above four measure, which can be the most
bug-prone files with frequency:BF (x%), the most bug-prone
files with churn: BC (x%), the most change-prone files with
frequency: CF (x%), the most change-prone files with churn:
CC (x%).
Selecting the top 10%, 30% and 100% of the above four

measures, we calculate the coverage of {SDall} on these dif-
ferent combinations. Table 8 shows the Bugrate as precision
and the Coverage as recall of these projects. Based on the
collected data, we make the following observations:

1) The files in identified suspect dependencies are limited
(3%-32% of the system). The average proportion of files
within suspect dependencies is the only 14%. The identifi-
cation results are easy for developers to follow and focus on.

2) The average bug rate of suspect dependencies is as high
as 92% of all the projects. From these subjects, the bug rate
of suspect dependencies ranges from 77% to 100%. The true
positive rate is high enough to guide the developer to locate
problematic dependencies.

3) Suspect dependencies participate in a significant pro-
portion (61%-68%) of the most bug-prone and change-prone
files in terms of frequency or churn (top 10%). From this
subject, the average coverage rate of the top 10% bug-prone
files in terms of frequency is 68%. The average coverage rate
of the top 10% bug-prone files in terms of churn is 63%.
Similar results can also be observed in most change-prone
files, the average coverage rate of the top 10% change-prone
files in terms of frequency is 68%. The average coverage rate
of the top 10% change-prone files in terms of churn is 61%.
Thus, our method can discover problematic dependencies
with the most maintenance costs.

4) Suspect dependencies only identify a small propor-
tion (37% and 35%) of all the bug-prone or change-prone
files. The average coverage rate of all the bug-prone files
is 37%. The average coverage rate of all the change-prone
files is 35%. In actual, our method is not designed to
inspect all the bug-prone or change-prone files like state-
of-the-art techniques of bug prediction or change predic-
tion. Our approach identifies problematic dependencies and
related files frequently contributing to the bug-proneness and
change-proneness, which deserves the software practitioner’s
special attention.

Taking Avro as an example, our approach identified 91 dis-
tinct files with suspect dependencies in total over 65 versions
of this project. There are 19 and 18 files capturing the top
10% bug-prone files in terms of frequency and churn. The
coverage rate is 82% and 71%. Meanwhile, there are also
19 and 18 files covering the top 10% change-prone files in
terms of frequency and churn. The coverage rate is 82% and
71%. At the same time, the bug rate of suspect dependencies
is as high as 94%. Our approach does identify flawed struc-
tural dependencies consuming expensive maintenance costs.
Answer to RQ2: Our method presents a high accu-
racy in discovering flawed structural dependencies. Our
detection results capture almost 70% of the most bug-
prone or change-prone files (10%) in terms of fre-
quency or churn with over 92% precision, merely using
14% of files in the system. Our reported results can be
easily followed and focused on by developers.

C. THE TIMELINESS OF SUSPECT DEPENDENCIES
To answer RQ3, we employ our method in an Apache open
project: Flume [9], which is a framework for processing high
throughput data. By conducting a fine-grained analysis of the
detection results, we illustrate the timeliness of our method.

28866 VOLUME 9, 2021

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

TABLE 8. The precision and recall results of suspect dependencies.

TABLE 9. Early detection of groups of flawed structural dependencies in Flume.

We intensively analyzed its 8 versions from 1.2.0 (released
on July 26, 2012) to 1.7.0 (released on October 17, 2016).
As presented in Table 5, there are 624 files and 81k lines of
code involving 862 bugs. We further gather the information
of each report and found that 25944 lines of code are con-
sumed. We collected all the flawed structural dependencies
and constructed its graph. We further use strongly connected
component analysis to automatically detect several groups of
dependencies to assist our exploration. We employed Net-
workx [25], a state-of-the-art graph analysis tool, to support
strongly connected component analysis. Thus, we automati-
cally identified four groups of flawed structural dependencies
shown in Table 9. Each group has only a leading file.We itera-
tively employ hotspot [38] and ourmethod in these 8 versions.
From 1.3.0 to 1.7.0, we compare the detected results of these
two approaches, which are illustrated in Table 9.
Two groups of flawed structural dependencies have been

both detected by hotspot and our method, which are led by
Context and Configurable. These two groups include 8 and
11 files. The revision history records that 4274 and 1851 lines
of code have been spent to fix bugs within these two groups,
which are 17% and 7% of the entire maintenance cost.

The group of flawed structural dependencies led by
Context is long-lived, contributing to significant mainte-
nance costs from 1.3.0 to 1.7.0. Hotspot identifies this
group in 1.5.2 while our method identifies it in 1.3.0.
The group of flawed structural dependencies of Config-
urable also causes a maintenance problem from 1.3.0. Some
files in this group are removed temporarily in 1.5.1 for
some reason but they have soon been introduced again
in 1.7.0. Hotspot only identifies this group in 1.7.0. On the
contrary, our method identifies this group from 1.3.0.
In total, our method presents 5 and 7 versions earlier
than hotspot in these two groups of flawed structural
dependencies.

The other two groups of flawed structural dependencies are
detected by our method but missed by hotspot. These two
groups are led by Event and Sink, including 8 and 11 files.
The revision history records that they consume 1312 and
819 lines of code to fix bugs. Both of these two groups of
Event and Sink are generated for introducing new features
in 1.5.1 and 1.7.0 separately. All of them are missed by
Hotspot. On the contrary, our method does identify them as
they first emerge.

VOLUME 9, 2021 28867

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

We find that there are 8256 lines of code on maintaining
these four groups of dependencies (4274+1851+1312+819).
We assume that the maintenance costs of dependencies and
related files can be saved if they are discovered in the pre-
vious version. Based on this hypothesis, we observed that
our method would save as many as 7878 lines of code to fix
bugs, taking up 95% of all the maintenance costs in this group
(7878/8256). However, hotspot only saves 715 lines of code,
taking 8% of all the maintenance costs (715/8256).
Answer to RQ3: The results show that our method can
detect flawed structural dependencies as soon as they were
first introduced, which is much earlier than the state-of-
the-art technique: hotspot. Our method would help devel-
opers save a large number of lines of code to fix bugs by
early detecting these dependencies.

VI. DISCUSSION
In this section, we discuss the rationale of our method, the
application of our detection result, and the threats to validity.

A. THE RATIONALE OF OUR METHOD
Based on our observations, we discover that the suspect file
pair (SFP) is a typical pattern to hint at the maintenance
problem. It seems plausible that high code lexicon similarity
incurs repeated bugs and changes. However, we are still not
clear why and how it works. To understand the cause of
suspect file pairs (SFP), we manually inspect 300 instances
of suspect file pairs and summarize four possible reasons:

1) Code Clone. One common reason for the suspect file
pair (SFP) is the code clone. There exist several similar
pieces of code fragments between two files with code clones.
when the code in one file is modified, the other file also
needs similar changes to re-synchronize the cloned code. For
example, in Cassandra 3.6.0, we detect almost 40 lines of
cloned code fragments betweenDateTieredCompactionStrat-
egy and TimeWindowCompactionStrategy. These two files
incur repeated changes in the subsequent versions. It suggests
the cloned code should be extracted as the common inter-
face or utility method. Refactoring and managing code clones
is an always challenging task in the software community.
To the best of our knowledge, the state-of-the-art technique
to refactor clones is using lambda expression [82], which is
proved to be simple and efficient. If developers use version
control system like Git and SVN, this tool can be easy to be
integrated as the plugin to implement just-in-time refactoring
before committing code.

2) Poor Inheritance. Poor inheritance is also a signifi-
cant reason for suspect file pairs. There always exist more
than two subclasses redundantly extended from one base
class. Thus, these subclasses may frequently incur similar
bugs and changes for the overload inheritance. For example,
in Log4j 1.3.0, LiteralPatternConverter and NamedPattern-
Converter are two subclasses inherited from the base class:
PatternConverter. However, these two subclasses share more
than half of the inherited variables and methods. It implies
that the base class should be decoupled into a few sim-
ple interfaces. Thus, the subclasses can flexibly implement

inheritance from them. Thus, in Log4j 1.3.8, these two
subclasses, LiteralPatternConverter and NamedPatternCon-
verter, are refactored by implementing a lightweight inter-
face: LoggingEventPatternConverter.
3) Implicit Dependency. The implicit dependency, e.g.

reflection and multi-thread, is also a reason for suspect
file pair (SFP). In actual, some identified suspect file
pairs (SFP) are connected with the implicit dependen-
cies, which are missed by our employed detection tool:
Depends. Since these dependencies are unconscious to
discover, it may frequently cause underlying maintenance
problems. For example, in PDFBox 2.0.1, XMPBasicSchema
and XMPSchemaFactory have the relevance of reflection
(a type of implicit dependencies), which are not captured
by Depends. The revision history demonstrates these files
consuming increasing costs.

4) Developer Preference. Developer preference is a
human reason for suspect file pairs (SFP). Suspect file pairs
in this category are caused by neither code clone nor implicit
dependencies. The involved files always have a higher com-
plexity. In the modification requests and comments, these
files are discussed together by developers. It seems that these
file pairs share similar functionality. From the view of pro-
gram semantic, they should be refactored together in time. For
example, in Hadoop 0.4.0, DataNodeInfor and DataNodeRe-
port are a suspect file pair (SFP) which are often discussed
by developers in comments. As a consequence, they are also
soon to be reconstructed.

In summary, we manually inspect 300 instances of suspect
file pairs (SFP) and summarize four possible explanations
of suspect file pairs (SFP). The proportion of each reason is
demonstrated in Figure 6. We observed that the code clone
captures the most cases (48.7%). A large amount of these
suspect file pairs (SFP) are triggered by poor inheritance
(25.3%) and developer preference (10.6%). Only 6.7% of
them are caused by implicit dependencies. With the assis-
tance of these four summarized reasons, we can explain the
98.3% of the sampled suspect file pairs (SFP). Automatically
classifying reasons for SFP with machine learning techniques
is our ongoing work. We design this workflow as follows:
First, we collected the dataset including suspect file pairs
and related reasons. Then, we employ state-of-the-art code
embedding techniques such as PathMiner [83] to extract fea-
tures for a file pair. Finally, we use classification techniques
like CNN and RNN to implement automatic classification of
reasons for suspect file pairs.

B. APPLICATIONS OF OUR DETECTION RESULTS
Although there exist several differences between our method
and DL measurement or hotspot detection, our detection
results can be combined to improve these techniques.

For the DL measurement, since our method is not design-
ing a metric to improve measurement, our method cannot
support the comparison of various projects like DL.When we
use the DL measurement and our method to keep observing
a project, our detection results can be combined to diag-
nose. Our results can be combined with the variation of DL

28868 VOLUME 9, 2021

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

FIGURE 6. Four possible explanations for suspect file pairs (SFP) (Each
explanation contains three items: the name, the number of instances and
its proportion).

measurement to illustrate and locate the dependency problem.
Our results can also be combined with the stability of DL
measurement to implement early warning.

For hotspot detection, whenwe use ourmethod and hotspot
detection to keep monitoring a project, our detection results
can further assist to prioritize the hotspot results. We clas-
sify the interaction of our method and hotspot into three
categories: 1) detection results captured by both hotspot and
our method. These results should be assigned to the high-
est priority. It implies that these results have caused severe
consequences and may have a persistent impact on software
maintenance in the future; 2) detection results captured by
our method not hotspot. These results should be added and
assigned with moderate priority. It means that these results
should be furthered observed and can be fixed if possible;
3) detection results captured by hotspot not our method.
These results should be assigned to the lowest priority. A pos-
sible reason is that they have been already fixed. We should
keep tracing them and prioritize them in case. In summary,
leveraging our method to further improve the existing tech-
nique: hotspot is our ongoing work.

C. RUNTIME ANALYSIS
We conducted a competitive analysis of hotspot and our
method in run time. The experiment environment is a 3.2GHz
i7-3930K desktop with 12 logical cores, 6 physical cores, and
32GB of memory. We measure the run time of 8 versions
of Flume [9] in Section V.C using hotspot and our method
separately. The results suggest that, on average, for a version
of Flume, hotspot consumes 69.6 seconds to finish the com-
plete detection while our method merely takes 30.4 seconds.
The performance of ourmethod improved by 128% compared
with hotspot. One possible reason is that hotspot relies on the
design rule hierarchy [40] technique to analyze all the depen-
dencies while our method uses the efficient graph analysis.
To further investigate the impact of different components in
our method on performance is our ongoing work.

D. LIMITATIONS AND THREATS TO VALIDITY
First, we conducted a large-scale detection of flawed struc-
tural dependencies candidates in more than 800 versions
of the 15 open source projects. Because all of the selected
subjects are Apache projects, it is unclear whether our

approach will generalize to other open source projects in a
different community or closed source projects. In order to
minimize this bias as much as possible, we choose projects
of different sizes and domains. In our future work, we will
apply our method to more subjects.

Second, it is difficult to define what is the flawed struc-
tural dependencies. To limit this threat, we evaluate it from
the maintenance cost including bugs and changes during
evolution. In our paper, we consider that if a pair of files
with dependencies are frequently involved in bug fixes, intro-
duced with new features or updated, it has a high possibility
to be problematic. Additionally, it is also challenging to
evaluate whether our method can identify flawed structural
dependencies in future versions. Thus, we select long-lived
projects with adequate revision commits and bug reports. For
example, in Cassandra, we collect 170 versions, more than
120k bug reports and change commits in total. Besides these
projects, we are also employing our approach in some young
projects and reporting detected flawed structural dependen-
cies to the community.

Third, our approach might be sensitive to the selection of
thresholds. We employ two thresholds in extracting semantic
dependencies. These thresholds are empirically set based on
the work of Bavota et al. [58]. We also manually sampled and
inspected the obtained dependencies to ensure their quality.
The full results of thresholds in our experiments are avail-
able [22]. However, the best thresholds for various projects
may be different. Therefore, automatically determining the
best thresholds is also part of our future work.

Last, we currently evaluate our method to predict future
bugs or changes using past bug fixes and changes. We detect
issues in the past version and evaluate its impact on bugs
and changes in the current version. We are considering using
machine learning prediction techniques to further improve
our evaluation. We also evaluate our method at the file level.
It is imperative to further evaluate at the function level. The
detection results can be validated and combined with cover
coverage tools to report concrete bugs. It is our ongoing work
to improve the effectiveness of our method.

VII. RELATED WORK
Coupling Metrics: The concept of software coupling was
first introduced by Steve et al. [28]. Based on this con-
cept, Chidamber and Kemerer proposed a suite of related
coupling metrics to evaluate the quality of object-oriented
programs [64]. Briand et al. [51] also employed couplingmet-
rics to inform the software high-level design. There are rich
literature in various coupling metrics from multiple prospec-
tives including software syntactic [64], revision history [76],
source code lexicon [65], and dynamic execution [52]. These
coupling metrics are designed to capture various aspects of
software quality. Our work explores the combination of struc-
tural and semantic dependencies (coupling) between files to
inform software quality in time.

Bug Prediction: Over the past decades, a plethora
of research efforts focus on helping practitioners predict

VOLUME 9, 2021 28869

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

bugs [29], [43], [66], [67], [71], [72]. For example, Selby and
Basili [41] employed the dependency structure to improve
the accuracy of predicting bugs. Nagappan et al. [44] made
a comparison of complexity metrics and leveraged them in
bug prediction techniques. Qu et al. [45] studied the structure
of method invocations and their impact on bug prediction.
Wang et al. [77] predict bugs by considering the deep learn-
ing algorithm. All of these works focus on improving the
prediction of individual bug-prone files. However, our study
focuses on detecting problematic structural dependencies.

Software Textual Analysis: Software textual analysis is
widely used in refactoring [57], reverse-engineering [35],
[36], bug localization [68], [69], and code search [70], [73].
By extracting textual features of the source file, software
textual analysis gains new insight into software projects. For
instance, Le et al. [68] leveraged textural features in locating
the relevant files for a bug report. Zhang et al. [70] employed
software textural analysis to improve the efficiency of the
code search. In our work, we derive textual features from
the source code lexicon and measure its similarity using
information retrieval techniques as semantic dependencies.

Code Smell: The concept of code smell, also known
as code anomaly, was firstly introduced by Fowler [50].
The code smell is an effective and efficient method to
hint files with potential issues [46], [47], [53]–[56], [59].
Macia et al. [54] studied flawed dependencies among files by
extending the definition of code smell at the architectural
level. Oizumi et al. [47] studied flawed dependencies by
clustering numerous code smells. In this paper, our detection
results also are overlapped with some typical code smells
such as code clones. We find that part of our results can
also be detected by the clone detection tool: CCFinderx [74]
and CloneDetection [75] for code clone is a reason for sus-
pect file pairs (SFP). However, compared with some state-
of-the-art code smell detection tools such as Sonar [3] and
JDeodorant [4], most of our detected suspect dependencies
cannot be captured.

VIII. CONCLUSION
In this paper, we proposed a method by combining structural
and semantic dependencies to identify flawed structural
dependencies candidates at an early stage during software
evolution. We evaluated our method using 838 versions
of 15 Apache open source projects, involving 33353 bug
reports and 86690 revision commits. The results suggest that
our method can discover the flawed structural dependen-
cies candidates effectively and timely. The detected results
incurred 957% of bug frequencies and 1050% of change
frequencies than average in the subsequent versions. We also
find that our method merely uses 14% of files in the system to
cover 70% of the top 10% bug-prone files with high precision
(92%). These observations indicate the suspect dependencies,
detected by our method, are shown to have the potential risk
of causing maintenance problems. By early detecting and
refactoring these dependencies in time, our method can assist
software practitioners to save significant maintenance costs.

REFERENCES
[1] Depends. Accessed: 2020. [Online]. Available: https://github.com/

multilang-depends/depends
[2] Srcml. Accessed: 2020. [Online]. Available: https://www.srcml.org
[3] Sonarqube. Accessed: 2020. [Online]. Available: https://www.

sonarqube.org
[4] JDeodorant. Accessed: 2020. [Online]. Available: http://www.

jdeodorant.com
[5] Git. Accessed: 2020. [Online]. Available: https://git-scm.com
[6] JIRA. Accessed: 2020. [Online]. Available: https://issues.apache.org
[7] Avro. Accessed: 2020. [Online]. Available: http://avro.apache.org
[8] Cassandra. Accessed: 2020. [Online]. Available: http://cassandra.

apache.org
[9] Flume. Accessed: 2020. [Online]. Available: http://flume.apache.org
[10] Hadoop. Accessed: 2020. [Online]. Available: http://hadoop.apache.org
[11] HBase. Accessed: 2020. [Online]. Available: http://hbase.apache.org
[12] Log4j. Accessed: 2020. [Online]. Available: http://logging.apache.org
[13] Mahout. Accessed: 2020. [Online]. Available: http://mahout.apache.org
[14] Mina. Accessed: 2020. [Online]. Available: http://mina.apache.org
[15] OpenJPA. Accessed: 2020. [Online]. Available: http://openjpa.apache.org
[16] Pdfbox. Accessed: 2020. [Online]. Available: http://pdfbox.apache.org
[17] Pig. Accessed: 2020. [Online]. Available: http://pig.apache.org
[18] Tika. Accessed: 2020. [Online]. Available: http://tika.apache.org
[19] Zookeeper. Accessed: 2020. [Online]. Available: http://zookeeper.

apache.org
[20] Cxf. Accessed: 2020. [Online]. Available: http://cxf.apache.org
[21] Camel. Accessed: 2020. [Online]. Available: http://camel.apache.org
[22] Dataset. Accessed: 2020. [Online]. Available: https://github.com/

cuidi34/EarlyDetectionData
[23] Scikit. Accessed: 2020. [Online]. Available: https://scikit-learn.org
[24] RefactoringNavigator. Accessed: 2020. [Online]. Available: https://github.

com/llmhyy/Refactoring-Navigator
[25] Networkx. Accessed: 2020. [Online]. Available: https://networkx.org
[26] Simens. Accessed: 2020. [Online]. Available: https://siemens.com
[27] D. Cui, T. Liu, Y. Cai, Q. Zheng, Q. Feng, W. Jin, J. Guo, and Y. Qu,

‘‘Investigating the impact of multiple dependency structures on software
defects,’’ inProc. IEEE/ACM41st Int. Conf. Softw. Eng. (ICSE),May 2019,
pp. 584–595.

[28] W. P. Stevens, G. J. Myers, and L. L. Constantine, ‘‘Structured design,’’
IBM Syst. J., vol. 38, nos. 2–3, pp. 231–256, 1974.

[29] N. Nagappan and T. Ball, ‘‘Use of relative code churn measures to predict
system defect density,’’ in Proc. 27th Int. Conf. Softw. Eng. (ICSE), 2005,
pp. 284–292.

[30] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and
A. Shapochka, ‘‘A case study in locating the architectural roots of technical
debt,’’ inProc. IEEE/ACM37th IEEE Int. Conf. Softw. Eng., vol. 2. Firenze,
Italy: IEEE Press, May 2015, pp. 179–188.

[31] M. Yamamoto and K. W. Church, ‘‘Using suffix arrays to compute term
frequency and document frequency for all substrings in a corpus,’’Comput.
Linguistics, vol. 27, no. 1, pp. 1–30, Mar. 2001.

[32] R.Mo, Y. Cai, R. Kazman, L. Xiao, andQ. Feng, ‘‘Decoupling level: A new
metric for architectural maintenance complexity,’’ in Proc. 38th Int. Conf.
Softw. Eng., May 2016, pp. 499–510.

[33] L. Xiao, Y. Cai, and R. Kazman, ‘‘Design rule spaces: A new form of
architecture insight,’’ in Proc. 36th Int. Conf. Softw. Eng., May 2014,
pp. 967–977.

[34] Y. Cai, H. Wang, S. Wong, and L. Wang, ‘‘Leveraging design rules to
improve software architecture recovery,’’ in Proc. 9th Int. ACM Sigsoft
Conf. Qual. Softw. Archit. (QoSA), 2013, pp. 133–142.

[35] J. Garcia, I. Ivkovic, and N. Medvidovic, ‘‘A comparative analysis of
software architecture recovery techniques,’’ in Proc. 28th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2013, pp. 486–496.

[36] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai, ‘‘Enhanc-
ing architectural recovery using concerns,’’ in Proc. 26th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2011, pp. 552–555.

[37] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, ‘‘Identifying and quan-
tifying architectural debt,’’ in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 488–498.

[38] R. Mo, Y. Cai, R. Kazman, and L. Xiao, ‘‘Hotspot patterns: The formal
definition and automatic detection of architecture smells,’’ in Proc. 12th
Work. IEEE/IFIP Conf. Softw. Archit., May 2015, pp. 51–60.

[39] Y. Cai and K. Sullivan, ‘‘Modularity analysis of logical design models,’’
in Proc. 21st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), 2006,
pp. 91–102.

28870 VOLUME 9, 2021

D. Cui: Early Detection of Flawed Structural Dependencies During Software Evolution

[40] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi, ‘‘Design rule
hierarchies and parallelism in software development tasks,’’ in Proc.
IEEE/ACM Int. Conf. Automated Softw. Eng., Nov. 2009, pp. 197–208.

[41] R. W. Selby and V. R. Basili, ‘‘Analyzing error-prone system structure,’’
IEEE Trans. Softw. Eng., vol. 17, no. 2, pp. 141–152, Feb. 1991.

[42] H. Gall, K. Hajek, and M. Jazayeri, ‘‘Detection of logical coupling based
on product release history,’’ in Proc. Int. Conf. Softw. Maintenance, 1998,
pp. 190–198.

[43] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, ‘‘Predicting fault
incidence using software change history,’’ IEEE Trans. Softw. Eng., vol. 26,
no. 7, pp. 653–661, Jul. 2000.

[44] N. Nagappan, T. Ball, and A. Zeller, ‘‘Miningmetrics to predict component
failures,’’ in Proc. 28th Int. Conf. Softw. Eng. (ICSE), 2006, pp. 452–461.

[45] Y. Qu, X. Guan, Q. Zheng, T. Liu, L. Wang, Y. Hou, and Z. Yang,
‘‘Exploring community structure of software call graph and its applications
in class cohesion measurement,’’ J. Syst. Softw., vol. 108, pp. 193–210,
Oct. 2015.

[46] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, ‘‘Identifying
architectural bad smells,’’ in Proc. 13th Eur. Conf. Softw. Maintenance
Reeng., 2009, pp. 255–258.

[47] W. Oizumi, A. Garcia, L. da Silva Sousa, B. Cafeo, and Y. Zhao, ‘‘Code
anomalies flock together: Exploring code anomaly agglomerations for
locating design problems,’’ in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 440–451.

[48] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity,
vol. 1. Cambridge, MA, USA: MIT Press, 2000.

[49] D. L. Parnas, ‘‘On the criteria to be used in decomposing systems into
modules,’’ Comm Acm, vol. 15, no. 3, pp. 1–50, 1972.

[50] M. Fowler, Refactoring: Improving the Design of Existing Code. Berlin,
Germany: Springer, 2002.

[51] L. C. Briand, S. Morasca, and V. R. Basili, Defining and Validating
Measures for Object-Based High-Level Design. Piscataway, NJ, USA:
IEEE Press, 1999.

[52] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, Predicting the Prob-
ability of Change in Object-Oriented Systems. Piscataway, NJ, USA:
IEEE Press, 2005.

[53] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa, ‘‘Supporting
the identification of architecturally-relevant code anomalies,’’ inProc. 28th
IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2012, pp. 662–665.

[54] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa, ‘‘On the
relevance of code anomalies for identifying architecture degradation symp-
toms,’’ in Proc. 16th Eur. Conf. Softw. Maintenance Reeng., Mar. 2012,
pp. 277–286.

[55] I.Macia, J. Garcia, D. Popescu, A. Garcia, N.Medvidovic, andA. von Staa,
‘‘Are automatically-detected code anomalies relevant to architectural mod-
ularity?: An exploratory analysis of evolving systems,’’ inProc. 11th Annu.
Int. Conf. Aspect-Oriented Softw. Develop. (AOSD), 2012, pp. 167–178.

[56] W. Oizumi, A. Garcia, M. Ferreira, and A. Von Staa, ‘‘When code-anomaly
agglomerations represent architectural problems? An exploratory study,’’
in Proc. Softw. Eng., 2014, pp. 91–100.

[57] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, ‘‘Software re-
modularization based on structural and semantic metrics,’’ in Proc. 17th
Work. Conf. Reverse Eng., Oct. 2010, pp. 195–204.

[58] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, ‘‘Using structural and
semantic measures to improve software modularization,’’ Empirical Softw.
Eng., vol. 18, no. 5, pp. 901–932, Oct. 2013.

[59] N. Zazworka, A. Vetro’, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, ‘‘Comparing four approaches for technical debt identification,’’
Softw. Qual. J., vol. 22, no. 3, pp. 403–426, Sep. 2014.

[60] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, ‘‘The structure and
value ofmodularity in software design,’’ACMSIGSOFT Softw. Eng. Notes,
vol. 26, no. 5, pp. 99–108, Sep. 2001.

[61] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Professional Computing
Series), vol. 49, no. 2. Addison-Wesley, 1995, pp. 241–276.

[62] N. Kambhatla, ‘‘Combining lexical, syntactic, and semantic features with
maximum entropy models for extracting relations,’’ in Proc. ACL Interact.
Poster Demonstration Sessions, 2004, p. 22.

[63] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, ‘‘To camelcase or
under_score,’’ in Proc. IEEE 17th Int. Conf. Program Comprehension,
May 2009, pp. 158–167.

[64] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 11, pp. 197–211, Jun. 1994.

[65] D. Poshyvanyk and A. Marcus, ‘‘The conceptual coupling metrics for
object-oriented systems,’’ in Proc. 22nd IEEE Int. Conf. Softw. Mainte-
nance, Sep. 2006, pp. 469–478.

[66] A. E. Hassan, ‘‘Predicting faults using the complexity of code changes,’’
in Proc. Int. Conf. Softw. Eng, 2009, pp. 78–88.

[67] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, ‘‘High-
impact defects: A study of breakage and surprise defects,’’ in Proc. ACM
SIGSOFT Symp. Eur. Conf. Found. Softw. Eng., 2011, pp. 300–310.

[68] T.-D.-B. Le, R. J. Oentaryo, and D. Lo, ‘‘Information retrieval and spec-
trum based bug localization: Better together,’’ in Proc. 10th Joint Meeting
Found. Softw. Eng., Aug. 2015, pp. 579–590.

[69] J. Zhou, H. Zhang, and D. Lo, ‘‘Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug
reports,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012, pp. 14–24.

[70] F. Lv, H. Zhang, J. G. Lou, S. Wang, D. Zhang, and J. Zhao, ‘‘Codehow:
Effective code search based on api understanding and extended Boolean
model (e),’’ in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng., 2015,
pp. 260–270.

[71] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan,
‘‘Understanding the impact of code and process metrics on post-release
defects: A case study on the eclipse project,’’ in Proc. ACM-IEEE Int.
Symp. Empirical Softw. Eng. Meas. (ESEM), Sep. 2010, pp. 1–10.

[72] T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, ‘‘Explaining
software defects using topic models,’’ in Proc. 9th IEEE Work. Conf.
Mining Softw. Repositories (MSR), Jun. 2012, pp. 189–198.

[73] S. P. Reiss, ‘‘Semantics-based code search,’’ in Proc. IEEE 31st Int. Conf.
Softw. Eng., May 2009, pp. 243–253.

[74] T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,’’
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.

[75] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, ‘‘Clone detection in source
code by frequent itemset techniques,’’ in Proc. Source Code Anal. Manip-
ulation, 4th IEEE Int. Workshop, 2004, pp. 128–135.

[76] S. Wong and Y. Cai, ‘‘Generalizing evolutionary coupling with stochastic
dependencies,’’ in Proc. 26th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2011, pp. 293–302.

[77] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features
for defect prediction,’’ in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 297–308.

[78] R. Mo and M. Zhan, ‘‘History coupling space: A new model to repre-
sent evolutionary relations,’’ in Proc. 26th Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2019, pp. 126–133.

[79] Y. Zhao, L. Xiao, X. Wang, L. Sun, B. Chen, Y. Liu, and A. B. Bondi,
‘‘How are performance issues caused and resolved?—An empirical study
from a design perspective,’’ in Proc. ACM/SPEC Int. Conf. Perform. Eng.,
Apr. 2020, pp. 181–192.

[80] Q. Feng, R. Kazman, Y. Cai, R.Mo, and L. Xiao, ‘‘Towards an architecture-
centric approach to security analysis,’’ in Proc. 13th Work. IEEE/IFIP
Conf. Softw. Archit. (WICSA), Apr. 2016, pp. 221–230.

[81] W. Jin, Y. Cai, R. Kazman, Q. Zheng, D. Cui, and T. Liu, ‘‘ENRE: A tool
framework for extensible eNtity relation extraction,’’ in Proc. IEEE/ACM
41st Int. Conf. Softw. Engineering: Companion Proc. (ICSE-Companion),
May 2019, pp. 67–70.

[82] N. Tsantalis, D. Mazinanian, and S. Rostami, ‘‘Clone refactoring with
lambda expressions,’’ in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.
(ICSE), May 2017, pp. 60–70.

[83] V. Kovalenko, E. Bogomolov, T. Bryksin, and A. Bacchelli, ‘‘PathMiner:
A library for mining of path-based representations of code,’’ in Proc.
IEEE/ACM 16th Int. Conf. Mining Softw. Repositories (MSR), May 2019,
pp. 13–17.

DI CUI is currently pursuing the Ph.D. degree with
the Department of Computer Science and Technol-
ogy, Xi’an Jiaotong University, Xi’an, China. His
research interests include software maintenance
and evolution, and architecture recovery of soft-
ware systems.

VOLUME 9, 2021 28871

