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ABSTRACT Chest X-ray (CXR) imaging is a standard and crucial examination method used for suspected
cases of coronavirus disease (COVID-19). In profoundly affected or limited resource areas, CXR imaging is
preferable owing to its availability, low cost, and rapid results. However, given the rapidly spreading nature of
COVID-19, such tests could limit the efficiency of pandemic control and prevention. In response to this issue,
artificial intelligence methods such as deep learning are promising options for automatic diagnosis because
they have achieved state-of-the-art performance in the analysis of visual information and a wide range
of medical images. This paper reviews and critically assesses the preprint and published reports between
March and May 2020 for the diagnosis of COVID-19 via CXR images using convolutional neural networks
and other deep learning architectures. Despite the encouraging results, there is an urgent need for public,
comprehensive, and diverse datasets. Further investigations in terms of explainable and justifiable decisions
are also required for more robust, transparent, and accurate predictions.

INDEX TERMS Chest x-ray, coronavirus, COVID-19, deep learning, radiological imaging.

I. INTRODUCTION
Early diagnosis of the coronavirus disease (COVID-19) is
essential to reduce the spread of the virus and provide
care for preventing complications. The daily increments in
COVID-19 cases worldwide and the limitations of the cur-
rent diagnostic tools impose challenges in identifying and
managing the pandemic. Researchers worldwide are actively
participating to find effective diagnostic procedures and
accelerate the development of a vaccine and treatments. As of
the writing of this paper, three diagnostic procedures are
commonly used: blood tests, viral tests, and medical imag-
ing [1]. Blood tests detect the presence of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in
the blood. However, the reliability of this test in diagnosing
COVID-19 is as low as 2% or 3% [2]. Viral tests detect the
antigens of SARS-CoV-2 using samples from the respiratory
tract. The rapid diagnostic test (RDT) is a type of antibody
detection test that is fast and can produce results in 30 min.
However, the availability of RDT test kits is limited, and its
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effectiveness depends on the sample quality and the time of
onset of illness. Furthermore, the test can yield false posi-
tive results because it does not distinguish COVID-19 from
other viral infections; therefore, it is not recommended for
diagnosing COVID-19 [3]. Another commonly used viral test
is reverse transcription polymerase chain reaction (RT-PCR).
RT-PCR is the gold-standard tool used as the first-line screen-
ing choice [4]. However, large-scale studies have found that
the test result sensitivity ranges between 50–62% [4]. This
implies that an initial negative RT-PCR result can be obtained.
Therefore, to ensure the correctness of the test result for
diagnosis, multiple RT-PCR tests are performed over a 14-day
observation period. In other words, an RT-PCRnegative result
for a suspected case of COVID-19 is only considered as a
true negative when there are no positive RT-PCR results after
multiple tests have been taken over the 14-day observation
period [5]. This can be frustrating for the patient and costly for
the healthcare authorities owing to the shortage of RT-PCR
test kits in several countries [6].

Because COVID-19 targets the respiratory system, chest
radiology scans are an important tool for diagnosis and
early management. Chest X-rays (CXR) have been used
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FIGURE 1. CXR findings: (a) GGO and (b) GGO with consolidation [8].

as a first-line diagnostic tool in Italy and various other
countries [7]. The condition of the lungs can be effectively
detected using radiology scans along with the different stages
of illness or recovery [8]. Radiologists have recorded a range
of abnormalities found in the radiology scans of COVID-19
patients. Fig. 1 shows two examples of COVID-19 features
in CXR images, namely, bilateral GGO and bilateral and
multifocal GGO with consolidation.

CXR is a widely available tool in most clinical settings; it
is less time-consuming in terms of patient preparation and
immediate diagnosis. Consequently, CXR can be used for
patient triage, deciding the priority of patient treatments, and
utilizing medical resources.

In the medical imaging domain, deep learning (DL) tech-
niques have been used to improve the performance of
image analysis significantly [9], [10]. For example, DL
has been successfully applied to microscopy images [11],
brain tumor classification [12], MRI images [13], and retinal
photographs [14].

Convolutional neural networks (CNNs) are commonly
used for medical imaging [15], [16]; they have various
architectures and applications. Therefore, since the first few
months of the pandemic, DL approaches have been exten-
sively explored for diagnosing COVID-19 from radiology
photographs. In this paper, we review the latest research
contributions of the application of DL for the detection of
COVID-19 from CXR images by comparing the existing DL
technologies, highlighting the challenges, and identifying the
required future investigations.

To understand how CNNs and other DL architectures
could facilitate the diagnosis of COVID-19 via CXR images,
this paper reviews and critically assesses the preprint
and published reports made available between March and
May 2020 on this topic. The articles were found in several
common research databases, such as PubMed, ScienceDirect,
Springer, IEEE, ACM, Scopus, ArXiv, and MedRxiv. The
keywords used in the search included ‘‘transfer learning,’’
‘‘convolutional,’’ ‘‘deep learning,’’ ‘‘radiograph,’’ ‘‘chest
x-ray,’’ ‘‘CXR,’’ ‘‘COVID,’’ and ‘‘Coronavirus;’’ this list

was regularly updated since the beginning of this study.
We reviewed the paper abstracts and excluded those stud-
ies that considered DL for computed tomography images
and those that used traditional machine learning algorithms.
When articles from multiple resources overlapped, only the
most recent articles were considered. Fig. 2 shows a his-
togram of the distribution dates of the papers included in this
review.

Section II provides a detailed review of DL applications
for COVID-19 CXR image analysis, including the architec-
tures used and CXR datasets employed. Section III presents
the methodology analysis and performance comparisons of
various application of deep learning modeling. Section IV
highlights the current challenges and discusses the findings
of this survey, including public dataset establishment, model
optimization, model uncertainty, and the unexplained black-
box decisions made by the DL models. Finally, the paper is
concluded with some suggestions for further investigations in
Section V.

II. LITERATURE SURVEY
We reviewed 34 articles investigating the use of DL mod-
els to examine CXR images with SARS-CoV-2 viral infec-
tions. The vast majority of the studies (71%) implemented
transfer learning using publicly available CNN architectures
trained on the ImageNet dataset. These architectures with
their parameters and hyperparameter settings are publicly
available [17]. However, 29% of the studies went beyond
using off-the-shelf tools and implemented novel architec-
tures. In the following subsections, we provide a general
overview of the main approaches and datasets that were used
in the research works reviewed in this survey.

A. CLASSIFICATION TASK FORMULATION
The COVID-19 detection results are given by classifying
the CXR images into 2–4 classes, i.e., binary or multi-
class classification. Each class represents one or more labels:
‘‘healthy,’’ ‘‘no finding,’’ ‘‘bacterial pneumonia,’’ ‘‘viral
pneumonia,’’ or ‘‘COVID-19.’’ Two-class classification
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FIGURE 2. Distribution of the reviewed articles in the months of 2020.

FIGURE 3. Distribution of studies according to classification task formulation.

is called binary classification, and its results include
the COVID-19 label and either of the following labels:
‘‘healthy,’’ ‘‘no finding,’’ ‘‘bacterial pneumonia,’’ or ‘‘viral
pneumonia.’’ The three-class results include ‘‘COVID-19,’’
‘‘healthy or no finding,’’ and ‘‘pneumonia.’’ The four classes
results include ‘‘COVID-19,’’ ‘‘healthy or no finding,’’ ‘‘bac-
terial pneumonia,’’ and ‘‘viral pneumonia.’’ Most of the
reviewed research used two or three classes. Fig. 3 shows the
number of reviewed studies grouped by the number of classes
used in the classification task.

B. DATASETS
In the reviewed articles, 14 different datasets were used.
A summary of these datasets is presented in Table 1. Each row
specifies the reference, dataset name, a brief description, and
whether the dataset contains COVID-19 samples. According
to our survey, COVID-19 Image Data Collection [18] is the

mostly cited dataset. It contains images extracted from vari-
ous online publications and websites in an attempt to provide
AI researchers with COVID-19 photographs to develop deep
learning-based models. Each image in this dataset is accom-
panied by a set of attributes such as sex, age, date, survival,
and clinical notes.

Table 2 reveals the quantitative values related to the
datasets including number of records, image resolution,
types, and the URL. The URL is the address to access the
dataset, which offers opportunity for researchers to reuse
the dataset, compare the results, and enhance their knowl-
edge. Table 2 shows that Github.com and Kaggle.com are the
mostly used platforms to store and make datasets available
online.

It is worth noting that, some studies referred to the same
dataset by a different name; for instance, the COVID-19
Image Data Collection [18] has been referred to as the
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TABLE 1. Description of the COVID-19 datasets used in the reviewed research.

TABLE 2. COVID-19 dataset sizes, formats, and download links.

‘‘Montreal database collection’’ in some studies, although the
original name is used in most of the reviewed research. This

dataset is composed of images from different sources, includ-
ing Radiopaedia.org [19], the Italian Society of Medical and
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Interventional Radiology (SIRM) COVID-19 Database [65],
and Figure1.com [20]. Note that these resources were used in
some studies with the COVID-19 ImageData Collection [18],
creating the possibility of data duplication in the combined
datasets.

The COVID-19 Radiography Database [21], which is
the winner of the COVID-19 Dataset Award, is a dataset
composed from six different sources, including the SIRM
COVID-19 Database, COVID-19 Image Data Collec-
tion, Twitter COVID-19 CXR Dataset, RSNA Pneumonia
Detection Challenge dataset [22], Kaggle CXR Images
(Pneumonia) [23] and other CXR images from multiple
published studies. Rahman et al. [21] stated that they only
gathered images from published work and addressed redun-
dancy by comparing the CXR images from different stud-
ies with those in the COVID-19 Image Data Collection to
eliminate duplications. Other datasets, such as the datasets
obtained from Peshmerga Hospital, Erbil, Kurdistan [24],
were obtained from local hospitals and are not publicly
available.

C. TRANSFER LEARNING
Transfer learning has been widely adopted in medical imag-
ing applications [15], [25]. Transfer learning is beneficial in
situations where the training examples are insufficient for
training a model from scratch. Tajbakhsh et al. [25] demon-
strated that a pre-trained CNN with adequate fine tuning
might outperform or perform as well as a CNN trained from
scratch. Consequently, and because of the limited training
datasets, transfer learning has been actively explored for the
detection of COVID-19 from CXR images.

In this survey, the reviewed works that utilized transfer
learning can be categorized into three groups. In the first
group, a pre-trained CNN on a large-scale natural image
dataset was used to initialize the weights of a new network
that will be trained on the target CXR data. For instance,
models trained on ImageNet were used in [26], [27], and [28].

The second group consists of studies wherein some of the
early layers of the pre-trained model on large-scale natural
image dataset were frozen and their weights kept unchanged
while the final layers were finetuned [29]. This practice is
based on the fact that the early layer features are more generic
(e.g., edges), whereas the later-layer features are more spe-
cific to a particular task or dataset [17]. Examples of works
that implemented the finetuning approach for the radiological
photographs can found in [26], [27], [30], and [31].

In the third group of studies, transfer learning was imple-
mented using a model pre-trained on a similar target domain;
for example, Afshar et al. [31] trained a model on a radiog-
raphy dataset of patients with and without pneumonia. They
then trained the model further on COVID-19 CXR images.
The studies in this group claimed that the use of mod-
els trained on ImageNet is not the best option for medical
applications because the source (natural images) and target
domains (e.g., CXR images) are different [30], [31]. How-
ever, the results of a comparative study by Cheplygina [29]

did not fully support this assumption; the study examined
12 articles that compared the use of medical images to natural
images in transfer learning in medical imaging research. The
goal of the study was to determine which source images
are better in medical transfer learning tasks: natural images
such as ImageNet or medical images. Among the 12 articles
examined, the study found that six articles supported each
claim, i.e., each claim is supported equally; therefore, the
study concluded that the selection of the model and source
data depends on the task at hand among other factors.

D. CNN ARCHITECTURES
In recent years, CNN architectures [9] have managed to
achieve human expert-level performance in a wide range of
complex visual tasks, including medical image assessment
and pathology detection. Numerous CNN architectures have
been proposed in the literature since the very first successful
CNN in 1998. Known as LeNet and developed by Yann
LeCun, it was widely used for handwritten digit recogni-
tion [32]. Compared to current models, LeNet is considered
to be a shallow architecture; it contains three convolutional,
two average pooling, and two fully connected layers. In the
following subsections, we briefly describe the CNN architec-
tures used in the reviewed studies along with their usage and
results for COVID-19 detection from CXR images.

1) AlexNet
AlexNet [33] is similar to LeNet, but it is deeper and con-
tains three stacked convolutional layers. AlexNet won the
2012 ILSVRC challenge and achieved a top-five error rate
of 17%. To overcome the overfitting problem, the authors
used a dropout regularization technique and data augmenta-
tion in AlexNet.

Razzak et al. [34] used AlexNet for the binary and
multiclassification of COVID-19 cases. They achieved a
test set accuracy of 97.04% for COVID-19/healthy binary
classification and 63.27% for COVID-19/healthy/bacterial
pneumonia/viral pneumonia multiclassification tasks.

Kumar and Kumari [35] used AlexNet as a feature extrac-
tor to feed a support vector machine (SVM) classifier and
achieved an accuracy of 93.0%. Abbas et al. [36] also used
AlexNet for the feature extraction of three classes, namely,
normal, COVID-19, and SARs. However, in their work, they
proposed that a class decomposition layer should be added to
partition each class into multiple sub-classes. These subsets
were reassembled to produce the final predictions. They used
AlexNet to find features for the proposed decomposition layer
and achieved an accuracy of 95.12% for their proposedmodel
DeTraC.

2) GoogleNet
GoogleNet [37] won the 2014 ILSVRC challenge and
achieved a top-five error rate of 6.67%. This network is
significantly deeper than the previous CNNs; in addition to
the pooling and convolutional layers, GoogleNet contains an
inception module (IM). This module acts as a small network
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and can learn cross-channel correlations (depth-wise) along
with spatial correlations. It consists of six convolutional
layers: four 1× 1 convolutional layers, one max pooling
layer, and one concatenation layer [37]. The IM serves as
a bottleneck layer and induces several advantages. First, it
enables the training of significantly deeper models while
reducing the number of learnable parameters by nearly ten
times. Second, the output of an IM is configured to be
smaller than its input in terms of the number of feature maps.
Thus, the IM reduces the dimensionality. Third, an IM can
capture complex patterns at multiple scales along with the
spatial and depth dimensions. Other variants of GoogleNet
have been proposed using slightly different inception compo-
nents, and they have achieved better performances. Examples
include Inception-V2, Inception-V3 [38], Inception-ResNet,
and Inception-v4 [39].

Razzak et al. [34] used GoogleNet in a similar man-
ner as AlexNet, i.e., for the binary and multiclassification
of COVID-19 cases, and the test set accuracy improved
to 98.15% for COVID-19/healthy binary classification
and 75.51% for COVID-19/healthy/bacterial-pneumonia/
viral-pneumonia multiclassification tasks.

Similarly, Kumar and Kumari [35] used GoogleNet as
AlexNet for feature extraction and achieved an accuracy
of 93% using an SVM classifier.

3) VGGNet
VGGNet [40] was proposed by the Visual Geometry Group
(VGG) at Oxford University and was the runner up of
the 2014 ILSVRC challenge; it achieved a top-five error
rate of 7.3%. With a total of 16 or 19 convolutional
layers, VGGNet has the advantage of architectural simplic-
ity [40]. However, it used three times more parameters than
AlexNet [38].

Moutounet-Cartan () [41] evaluated five different CNN
architectures followed by a flat multi-layer perceptron. They
found that VGG16 yielded the best test accuracy of 70.6% for
detecting COVID-19 cases over three classes of COVID-19/
no findings/other pneumonia, followed by VGG19 with an
accuracy of 70.2%; meanwhile, the InceptionResNetV2 and
InceptionV3 architectures yielded significantly lower accu-
racies of 45.7% and 47.7%, respectively. Rahaman [42] also
found that VGG19 achieved the highest testing accuracy
of 89.3% compared to the 14 other deep CNN architectures.

Kumar and Kumari [35] also used VGG16 and VGG19 to
extract the features of COVID-19 to feed the SVM with the
final accuracies of 92.7% and 92.9%, respectively.

4) ResNet
ResNet [43] introduced a residual learning component to the
CNN architecture. The residual unit (RU) consists of a regular
layer with a skip connection. The skip connection allows the
input signal of a layer to traverse the network by connecting it
to the output of that layer. Thus, the RUs enabled the training
of an extremely deep model of 152 layers, which won the
2015 ILSVRC challenge and achieved a top-five error rate

of under 3.6%. Other variants of ResNet have 34, 50, and
101 layers.

As shown in Fig. 4, ResNet was the most widely utilized
CNN architecture in the reviewed papers. Minaee et al. [28]
applied ResNet18 and ResNet50 on an imbalanced dataset
of 100 COVID-19 images and 3000 non-COVID images;
they achieved a sensitivity of 98% for both architectures.
ResNet50 yielded an accuracy of 89.2% for detecting
COVID-19 from CXR in [44]; Kumar and Kumari [35]
used three variants of ResNet with an SVM classifier
including ResNet18, which provided an accuracy of 91%.
ResNet50 provided an accuracy of 95% and ResNet101 pro-
vided an accuracy of 89.2%.

5) XCEPTION
Xception [45] was proposed by Francois Chollet, and it
outperformed Inception-V3 on a huge image classification
task comprising 350 million images and 17,000 classes.
In contrast to the IM of GoogleNet, the main concept of
Xception involves learning the cross-channel and spatial pat-
terns separately. Thus, in Xception, the IM is replaced with a
special layer called depth-wise separable convolution. Com-
pared with a traditional convolutional layer, the separable
convolution layer has fewer parameters, lower computational
cost, and an overall better accuracy of 79% in comparison to
Inception-V3 (78.2% accuracy) on the ImageNet dataset [45].

El-Din Hemdan [46] used Xception to diagnose
COVID-19 in normal patients. Xception obtained the highest
precision among the deep learning classifiers for detect-
ing only positive COVID-19 cases; however, it exhibited
significantly worse performance in classifying the normal
cases. In [35], Xception yielded a precision and sensitiv-
ity of 0.830 and 0.894 in identifying COVID-19 patients,
respectively.

6) SENet
The Squeeze and Excitation Network (SENet), proposed by
Hu et al. [47], was the winner of the 2017 ILSVRC Chal-
lenge with a top-five error rate of 2.251%. SENet extends
the GoogleNet IM and ResNet architectures and boosts their
performances. SENet introduced a new component, namely,
the SE block. This block has been added to every IM or RU
in ResNet. The extended versions are called SE-Inception
and SE-ResNet, respectively. The SE block consists of three
simple layers, a layer for global average pooling across the
feature maps, a squeeze dense layer, and a dense layer. The
output of the SE block recalibrates the feature maps generated
by the IM or RU in a way that downscales the irrelevant
feature maps and retains the relevant features. Note that the
SE block focuses on the cross-channel patterns, instead of
the spatial patterns, and learns the features that are active
together. In other terms, it learns the objects in the images
that usually appear together.

Razzak et al. [34] used SENet for COVID-19 detection and
achieved accuracies of 98.89% and 94.39% for binary and
multiclassification tasks, respectively.
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FIGURE 4. CNN architectures used in the reviewed work.

Minaee et al. [28] used SENet as a ResNet variant on a
highly imbalanced dataset and achieved similar sensitivity
of 98%, but improved specificity of 92.9% in comparison to
90.7% and 89.6% of the ResNet models, respectively.

7) DenseNet
DenseNet [48] connects each layer to every other forward
layer in the network. Therefore, instead of L connections
between L layers in the regular CNN architecture, DenseNet
contains L(L+1)/2 layer connections. All subsequent layers
use the feature maps generated by any layer in the network,
which enables all layers to reuse and propagate features,
including the final ones. On ImageNet, DenseNet achieved
a top-five error rate of 6.12%; however, it requires fewer
parameters and less computational cost than other state-of-
the-art CNN architectures, such as ResNet.

As shown in Fig. 4, DenseNet with its variants is
the second most used architecture in the reviewed studies.
Razzak et al. [34] used DenseNet and achieved accuracies
of 98.75% and 93.46% for binary and multiclassification,
respectively. In [28], the application of DenseNet resulted
in similar sensitivity as the aforementioned architectures,
but a lower specificity of 75.1%. Kumar and Kumari [35]
and El-Din Hemdan et al. [46] used DenseNet201 for
COVID-19 detection and achieved accuracies of 93.8% and
90%, respectively.

8) MobileNet
MobileNet [49] is a lightweight CNN designed for mobile
and embedded vision systems. MobileNet utilizes depth-wise

separable convolution to generate a lighter architecture and
introduces two trade-off hyperparameters to balance the
latency and accuracy. MobileNet has been shown to perform
well across a wide range of applications [49].

MobileNet was used for COVID-19 detection from the
CXR images in [34] and [46], achieving accuracies of 96.30%
and 60%, respectively.

9) ShuffleNet
Other advanced CNN architectures include ShuffleNet [50],
which outperformed MobileNet on the ImageNet classifica-
tion task. Compared with AlexNet, ShuffleNet achieved a
speedup of 13 times with comparable accuracy. To reduce
the computational cost, ShuffleNet introduces channel shuffle
and pointwise group convolution operations.

From the reviewed studies, Alqudah et al. [51] used Shuf-
fleNet for the automatic extraction of features, which were
then fed to four different classifiers: Random Forest, Soft-
max, SVM, and KNN. The accuracies achieved by these
classifiers with the ShuffleNet features were 80%, 99.35%,
95.81, and 99.35%, respectively.

E. OTHER DL ARCHITECTURES
In this survey, we found two additional DL architectures that
are not based on the basic CNN components but were also
suggested for COVID-19 detection, namely, autoencoder and
Capsule Network (CapsNet).

An autoencoder [52] is a type of unsupervised neural
network. The features learned by autoencoders, also called

VOLUME 9, 2021 20241



H. S. Alghamdi et al.: DL Approaches for Detecting COVID-19 From CXR Images: A Survey

codings, are a compressed representation of the input image.
This makes the autoencoders useful for feature extrac-
tion, dimensionality reduction, and pre-training supervised
models.

Autoencoders were used by Khobahi et al. [53] for the
detection of COVID-19 and achieved an accuracy of 93.50%.

CapsNet was first introduced by Hinton et al. [54]. It con-
tains a special arrangement of neurons, called a capsule; a
traditional neuron outputs a scalar and a capsule output a
vector. The length of the vector represents the existence of
an object in the image and the vector orientation represents
the object properties [55]. CapsNet has been demonstrated to
be a powerful and promising tool for managing the variations
in the orientation, position, and lighting.

CapsNet was used by [31] for identifying the COVID-19
cases. By pre-training with a dataset of X-ray images,
CapsNet in [31] provided an accuracy of 98.3%.

III. METHODOLOGY ANALYSIS
As discussed in previous sections, various DL architectures
(CNNs in particular) have been proposed for the detec-
tion of COVID-19 from CXR images in a relatively short
time. In this section, we provide in-depth insights about the
reviewed studies.

A. DATASETS
Table 3 details some well-known CNN architectures applied
for COVID-19 classification along with the datasets used.
All reviewed studies used publicly available datasets, except
the studies of Iqbal Khan et al. [90] and Gomes et al. [24].
Most of the studies combined datasets to enlarge the train-

ing set. However, due to the limited number of available
COVID-19 samples, an imbalance problem occurs, which is
one of the major challenges. The table also illustrates that
most of the studies employed a number of different archi-
tectures to compare the classification result or to build an
ensemble model to achieve better performance.

The dataset collected by Cohen et al. [18] was used in
more than 85% of the articles surveyed here. The collection
of CXR images in the dataset of Cohen et al. was obtained
from online publications rather than from original medical
sources, which may have reduced the image quality and led
to undesirable learning models. This dataset also does not
provide lesion or infected area annotation. Visual annotation
would help to get more insights regarding the reasons of the
prediction decisions made by human experts and would help
in comparisons with deep learning architectures.

The disagreement between human annotators should be
also provided to allow better model evaluation.

B. DEEP LEARNING MODELS CONSTRUCTING
The review indicates that transfer learning was preferred
by most researchers, and broad interest in this approach
continues. DL, particularly transfer learning, enables rapid
model development while outperforming other approaches.
ResNet [43], DenseNet [48], Inception [38], and VGG [40]

are among themost utilized pre-trained architectures. A prop-
erly trained transfer learning model will usually outperform
a model trained from scratch. The smaller the dataset, the
better the performance. However, as the number of labeled
COVID-19 CXR images is currently limited, common pre-
trained models such VGG or ResNet, with millions of param-
eters, can easily overfit the training data. Thus, particular
attention should be paid towards choosing the appropriate
metrics for evaluation and for selecting appropriate and rep-
resentative testing data.

Some studies investigated more than one version of the
same base CNN, VGG16, and VGG19. As shown in Fig. 4,
most authors employed a ResNet followed by DenseNet.
In the iplementation of transfer learning, a new model
requires a pre-trained network chosen from among the widely
adopted networks that are trained on the ImageNet dataset as a
starting point. Although most studies exploited architectures
trained on ImageNet, Duchesne et al. [58] and Bassi and
Attux [59] applied transfer learning using ChexNet [60].
ChexNet is a 121-layer dense CNNmodel (DenseNet) trained
on the ChestX-ray14 dataset [22], which contains 112,120
frontal-view CXR images labeled with 14 different tho-
racic diseases, including pneumonia. In ChexNet, the final
DenseNet fully connected layer is replaced with a fully con-
nected layer whose output is produced using a nonlinear
sigmoid function. The weights of the network were initialized
with weights from a model pre-trained on ImageNet.

Table 4 summarizes the contributions and novelty of some
articles reviewed in this survey along with the datasets they
used for evaluation. The approaches applied varied from
building frameworks and models from scratch to exploiting
transfer learning alongwith some advanced feature extraction
methods. For example, in [53], autoencoders were used for
feature extraction. In [26], the authors combined anomaly
detection scores with classification scores in the last layer
of the network. The anomaly detection component was
used to generate a large anomaly score of CXR images
with COVID-19. The authors demonstrated that this hybrid
approach outperforms other individual task learning models.
The authors of [61] proposed to automatically generate a new
deep architecture named COVID-Net, which has been tai-
lored particularly for COVID-19 CXR image classification.
COVID-Net is open source along with its COVIDx dataset,
comprising 13,975 CXR images. The main advantage of this
approach is that the architectural design choices made by
generative synthesis can achieve a balance between multiple
objectives such as performance and computational cost. This
approach can be further investigated and applied to other
medical image classification tasks by specifying the require-
ments such as the desired sensitivity and specificity.

C. PERFORMANCE COMPARISONS
It was difficult to compare the studies included in this survey
owing to the variations in the size of the testing sets and the
lack of standard performance measures, which further com-
plicated the identification of the most efficient DL models
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TABLE 3. Well-known CNN architectures used for the detection of COVID-19.

for detecting COVID-19 from CXR images. Most authors
evaluated the DLmodels in terms of accuracy, sensitivity, and
specificity metrics. However, the difficulty of comparing dif-
ferent approaches increases when non-standard metrics and
datasets from multiple sources are used. Thus, it is essential
to develop a public COVID-19 dataset that is comprehensive
and accessible by the AI research community. In addition,
standards for evaluating the performance of prediction mod-
els must be established.

Table 5 shows the results of the reviewed articles in terms
of the classification metrics such as accuracy, precisions,
recall, AUC, and F1-score. The reader can refer to the glos-
sary appendix for the definition of these terms.

It can be observed from the table that most of the mod-
els achieved high accuracies; however, as demonstrated
in Table 4 , most of these results were obtained over a
limited number of COVID-19 samples. Thus, the results
are not representative unless the study considered the class
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TABLE 4. Articles proposing novel methods for COVID-19 detection via CXR images.

imbalance problem in the test set. Fig. 5 illustrates the
results of the studies that presented the most common
metrics, i.e., accuracy, specificity, and sensitivity. As evi-
dent, Alqudah et al. [56] achieved the highest performance
with respect to all measures. The methods proposed by
Razzak et al. [34] and Kumar et al. [57] also achieved com-
parable results for all metrics; as demonstrated in Table 5,
these two studies dealt with class imbalance by including

an equal number of samples for each class and employing
the synthetic minority oversampling (SMOTE) technique,
respectively.

IV. DISCUSSIONS
Despite the encouraging results of the DL architectures,
there exist several issues that must be addressed to ensure
that the diagnostic process is more accurate, transparent,
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TABLE 5. Performance metrics of the methods used in the reviewed research.

and trustworthy. In this section, we emphasize the cur-
rent research challenges associated with the detection of
COVID-19 from CXR images.

A. CLASS IMBALANCE PROBLEM
COVID-19 datasets encounter the problem of class imbal-
ance. The uneven distribution of classes raises concerns
related to the robustness of the machine learning algo-
rithm. Some studies, such as the study of Kumar et al. [57],
proposed the use of SMOTE to mitigate this problem.
Another approach suggested by Ucar and Korkmaz [78]
and Rajaraman and Antani [74] involved the implementation

of data augmentation to enlarge the number of images
obtained from the limited number of COVID-19 cases. Mul-
tiple datasets consist of images containing unrelated visual
features and misleading artifacts, which are not usually
addressed by the studies covered in this review.

Table 6 lists the number of samples used for the train-
ing and testing sets by the studies included in this survey.
As shown, the size of the datasets varies widely. COVID-19
cases range from 11 to 1,536 cases, whereas the total sample
sizes range from 50 to 224,316 cases.

As shown, the size of the datasets varies widely. Moreover,
the COVID-19 cases are limited and significantly small in
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FIGURE 5. Performance comparison of the results of the reviewed research.

number compared to the total number of samples. Thus,
several studies considered the class imbalance problem by
employing different techniques. Alqudah et al. [56] handled
this problem by keeping the number of samples in each class
equal to 310. Other studies such as [59] and [61] utilized
data augmentation. Razzak et al. [34], Castiglioni et al. [77],
El-Din Hemdan et al. [46], Hall et al. [44], and
De Moura et al. [76] also considered using a fixed num-
ber of samples for each class. Khobahi et al. [53] and
Duchesne et al. [58] used a class-weighted entropy loss func-
tion. Kumar et al. [57] used the SMOTE technique; Medhi
and Hussain [81] and Han et al. [83] employed cost-sensitive
learning.

B. EXPLAINING DEEP MODEL PREDICTIONS
In most studies covered in this review, DL architectures
are used as black-box classifiers, and an explanation of the
model decisions is lacking. Explainable AI is an emerging
AI subfield that refers to the techniques and methods used
to understand the paths taken by machine learning models
for decision making. The GSInquire approach [92] was used
by Wang and Wong [61] to highlight the areas used by
the DL classifier to drive predictions. None of the studies
considered defining a region of interest for detecting the
symptoms or infections related to COVID-19. However, deep

neural network architectures contain numerous optimization
parameters; therefore, they heavily rely on large annotated
datasets to avoid overfitting.

With the increased adoption of the DLmodels, the demand
for explaining how these DL models make decisions has also
increased [92]. The lack of transparency and interpretability
in DL models hinders their adoption, especially in situations
where transparency is crucial, such as in CXR diagnostic
scenarios [92]. In the reviewed literature, 11 out of 26 studies
(42%) applied DL visualization techniques; Fig. 6 illustrates
the number of studies that utilized explanatory techniques.
Table 7 summarizes the techniques used and studies that
implemented them. As seen in Table 7 , the most used method
is GRAD-CAM, and next most used is the CAM method.
Table 8 shows examples extracted from the reviewed stud-
ies showing the explanatory methods used in each work.
As illustrated, the GRAD-CAM and CAM methods work in
a similar manner, using heat maps, while the other methods
each highlight the affected area differently. In the next sub-
sections, we briefly explain each of these techniques.

1) GRAD-CAM
Grad-CAM is the most widely used technique by the
reviewed studies, as illustrated in Fig. 6; it was implemented
in [30], [73], [74], [26], [82], and [80]. Grad-CAM is a visual
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TABLE 6. Sizes of the datasets used in the reviewed research.

explanation technique that distinguishes between classes in
the visualization task [93], and it offers several features that
might have encouraged the reviewed studies to use it. First,
Grad-CAM does not require any changes in the architec-
ture, unlike other techniques such as CAM, which alter the
architecture of the CNN [93]. Second, Grad-CAM is highly
class-discriminative, i.e., it not only highlights the regions

attended to by the classifier during classification but also
differentiates between the classes.

2) CAM
CAM is a visualization technique that replaces the fully
connected layers with the global average pooling and
convolutional layers to create class-specific feature maps
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FIGURE 6. Number of studies utilizing explanatory techniques.

TABLE 7. Methods used for explaining classification decisions.

because the global average pooling layer enables localization
in CNNs [70]. CAM was employed in three studies— [73],
[51], and [78]—as shown in Fig. 6.

3) GSInquire
This technique is based on generative synthesis, which is an
algorithm that can produce generators that create deep neural
networks automatically [92]. This method was adopted by
Wang and Wong [61].

4) GUIDED BACKPROPAGATION
In guided backpropagation, the process of finding the dis-
criminative part in an image starts with a high-level feature
map. Next, the algorithm reverses the data flow of the net-
work, starting from neuron activation in a given layer back
to the image. Consequently, the created image highlights
the part of the input image that is responsible for activating
the neuron [96]. Guided backpropagation was employed by
Ghoshal and Tucker [73].

5) LRP
LRP employs the network weights and the activations cre-
ated by forward propagation to propagate the output back

to the input layer. Thus, pixels that contribute to the output
can be visualized [97]. This method was used by Bassi and
Attux [59].

6) ATTRIBUTION MAPS
Attribution maps, used by Khobahi et al. [53], are heatmaps
that show areas in the input image that are responsible for
the classification output. To construct an attribution map,
a generative model removes parts of the image, where the
attribution value of an input area is approximated by the
changes in the classification probability [98].

7) GRADIENTS
Gradient is a technique used to visualize a deep convolu-
tional network trained using ImageNet [99]. This method was
implemented by Ghoshal and Tucker [73]. A gradient finds
the gradient of the class score for the input image and uses
backpropagation to represent the gradient as a heatmap.

C. MANAGING CLASSIFICATION UNCERTAINTY
Uncertainty in DL represents the level of confidence in
the result obtained by the classifier [73]. Obtaining a high
softmax output does not imply high certainty, even though
the softmax output can be mistakenly confused with model
confidence [100] [101]. A DL model that considers uncer-
tainty enables uncertain cases to be treated with caution.
Thus, when a model generates a result with high uncertainty,
this suggests that human intervention is recommended to
examine the result further [78]. Ghoshal and Tucker [73]
stated that the estimation of uncertainty in AI solutions can
increase their adoption in clinical settings because it provides
a more transparent solution that can be trusted by physicians.
In the reviewed articles, we found that the study in [73] dealt
with model uncertainty. In this research, drop weights and
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TABLE 8. Examples of explanatory techniques used in the reviewed studies.
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Bayesian CNNs were implemented to compute the uncer-
tainty. The study also implemented transfer learning using
a pre-trained ResNet50V2 model finetuned on COVID-19
data. The model generated the output certainty as low or high
confidence based on the input CXR image, and the authors
illustrated how the confidence level could affect the decision
process when using real COVID-19 radiograph examples.
Their accuracy ranged between 86.02% and 89.82%. The
model showed a relatively high correlation between model
uncertainty and prediction accuracy.

According to this review, more studies are required to
investigate the uncertainty in the predictions made by a
model, which define the level of confidence in the results pro-
duced by the model. In classification problems, the data sam-
ples can be close to a threshold or decision boundaries, which
reduces the confidence accuracy of the classifier regarding
the final decision. However, this is not usually discussed in
the DL medical imaging literature and was only discussed by
Ghoshal and Tucker [73] in the studies included in this review.

D. COVID-19 SEVERITY ASSESSMENT
Other problems that remain to be tackled in the COVID-19
CXR imaging literature include disease progression assess-
ment and prognosis analysis. CXR imaging analysis could
also help in identifying high-risk patients and the areas that
urgently require attention and support. These issues and prob-
lems require more involvement of medical personnel at all
stages of DL model development, evaluation, and validation.

Triage is an important stage during the COVID-19 pan-
demic owing to the growing number of patients who require
rapid and accurate intensive care and resources. DL studies
that aim to predict, track, and assess the progress and severity
of COVID-19 patients help in efficiently triaging patients.
Duchesne et al. [58] and Islam and Fleischer [79] consid-
ered tracking the progress of COVID-19 patients in their
studies. Duchesne et al. [58] monitored and predicted patient
progress using the extracted DL features, which can predict
whether a patient’s case would ‘‘worsen’’ or ‘‘improve’’ with
an accuracy of 82.7%. Islam and Fleischer [79] used feature-
embedded machine learning to distinguish L-type and H-type
patients using their CXR images. Moreover, to detect and
monitor disease progression and recovery, they categorized
multiple images from the same patient.

E. TRAINING DATASET QUALITY
Our findings indicate that it is highly likely that some data
samples overlap. The same images could be used multiple
times in training, particularly when the authors have collected
their data from several online resources that include data
originally from the same source. One solution to this problem
is to run an image similarity assessment process. It is very
crucial to detect the amount of duplication in the training and
test sets to avoid overusing data samples and overfitting. This
problem has not been discussed in any of the works reviewed
in this survey.

Annotation is time-consuming and requires radiologists to
grade images at pixel level to specify the COVID-19 biomark-
ers and complications. Currently, the CXR images found in
public datasets are only labeled as normal/healthy, pneumo-
nia, and COVID-19. Establishing a dataset annotated with
the main characteristics employed by radiologists to derive
their decisions would considerably assist in embedding more
useful features to a DL model; thus, the transparency of the
decisions made by the model can be enhanced and clinically
acceptable automatic detection systems can be obtained. The
pixel-level annotation of COVID-19 signs would also be
beneficial in determining the disease severity for effectively
using resources or prioritizing treatment in heavily affected
regions.

The lack of uniformity in the CXR images is another
problem that must be addressed. Scalable deep neural net-
work classifiers should be built using samples from several
diverse resources. However, image diversity introduces the
problem of preprocessing efficiency, and more investigations
are required in this direction. Moreover, it is essential to
ensure that the CXR images are appropriate for automatic
analysis. Images should be of sufficient quality and free
from misleading features such as descriptive texts or num-
bers. Therefore, including a quality assessment component
in COVID-19 automatic classification systems is highly rec-
ommended. This would also enhance the clinical trust toward
the computer-aided diagnosis system.

F. TRANSFER LEARNING FROM GENERAL OBJECT
RECOGNITION TASK
Despite the advantages of employing transfer learning, most
of the works used deep models pre-trained on general object
recognition tasks such as the ImageNet dataset. Only a
few studies, such as Mangal et al. [89] and Bassi and
Attux [59], used architectures pre-trained on a large dataset
of CXR images. However, even these architectures are based
on networks originally designed for the ImageNet dataset,
which raises several questions about their robustness and
effectiveness when used in practical clinical scenarios. The
automatic selection and optimization of deep neural network
architectures and their hyperparameters is another impor-
tant research domain that could contribute positively to the
COVID-19 classifiers. For instance, a generative synthesis
approach was used in [61] by specifying the human design
requirements.

V. CONCLUSION AND DIRECTIONS FOR
FUTURE RESEARCH
This study presents a comprehensive review of the diverse
DL methods used to detect COVID-19 from CXR images.
The current status of this research is discussed here.
Besides, the most common pretrained CNN architectures
were explained. The datasets that were utilized by different
studies are presented and discussed, and the current chal-
lenges associatedwith the current approaches are highlighted.
This survey indicated the significant potential of DL methods
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in the automatic diagnosis of COVID-19 from the currently
available datasets; however, medical personnel and com-
puter scientists should work together closely and utilize their
complementary expertise to validate the usefulness of DL
techniques.

It was found that CNN-based transfer learning was
used in most studies using the same dataset collected
by Cohen et al. [18]. Despite the encouraging performance
achieved, there is still significant room for improvements.
First, public, comprehensive, and diverse datasets need to be
established. The datasets should be validated by experts and
annotated with the corresponding lesions of lung diseases.
Incorporating the detection of signs with the classification
output would increase both the prediction accuracy and the
models’ transparency. Second, as the medical research to
determine the main characteristics of COVID-19 is still ongo-
ing, it is essential to utilize more features extracted based on
recommendations of medical personnel. Given the small size
of available CXR COVID-19 datasets, integrating domain
knowledge would help create models that mimic human
expert diagnostic patterns and focus on the signs or regions
they pay particular attention to. However, appropriate domain
knowledge should first be determined. The trade-off between
the automatically learned deep features and the extracted
domain knowledge features should be managed to achieve
the desired performance. Third, it is important to measure
the amount of disagreement between radiologists to develop
a benchmark for use in the prediction evaluation of the deep
learning models. Fourth, considering that clinicians often
refer to previous analogous cases to make reliable decisions
regarding diagnoses, we believe that semi-supervised learn-
ing has great potential yet to be unlocked. Semi-supervised
algorithms employ few labeled samples and many unlabeled
data as part of the training set. Semi-supervised modelling
can not only reduce the cost of data annotation, but also
help in discovering hidden patterns and relations in the data.
Fifth, as seen, most studies in this survey utilized traditional
data augmentation operations to deal with the scarcity of
COVID-19 CXR images. The promising results achieved
by generative adversarial networks (GAN) are worth further
investigation. Finally, the promising results achieved by auto-
matically generating a deep CNN architecture tailored for
COVID-19 classification task using GenSynth [60] can also
be utilized when researchers make a larger and comprehen-
sive COVID-19 CXR dataset available.

APPENDIX
Overfitting: This refers to the phenomenon in which a
machine learning model learns a function that fits the train-
ing samples perfectly with low error but high variance.
Such a model would poorly generalize previously unseen
samples.

Regularization: This technique is used for controlling the
overfitting phenomenon by adding an additional penalty term
in the cost function to avoid extreme values of the model
parameters.

Data augmentation: This is a regularization approach
that generates an enormous amount of artificial data samples
through employing multiple transformations such as flip-
ping, rotating, shifting, resizing, and changing the lighting
conditions.

Transfer learning: This is a concept based on represen-
tation learning with the underlying assumption that some
features are common to many different tasks. In this process,
a model that has been trained in a certain setting is used to
improve generalization in another setting [83].

Accuracy: This parameter measures the overall perfor-
mance of a model. It is calculated as the percentage of the
correctly classified data samples by the model.

Sensitivity, recall, or true positive rate (TPR): These
parameters measure the number of positive cases correctly
predicted by the model.

Specificity: This measures the negative cases covered by
the model.

Precision: This measures the accuracy of the model in
predicting positive samples.

F1-score: This is the harmonic mean of precision and
recall.

Receiver Operating Characteristic (ROC): This curve is
a plot that displays the trade-off between precision and recall
over a series of cut-off points. The closer the curve to the top
left corner, the better the classifier.

AreaUnder the Curve (AUC): AUC of the ROC is used to
evaluate a classifier. For a perfect classifier, the AUC would
be equal to one.

Explainable Artificial Intelligence: This includes tech-
niques used to visualize and explain DLmodels, e.g., by high-
lighting important features in the images used by the model
to reach a prediction.

ImageNet: This is a benchmark image dataset organized
according to the WordNet hierarchy and consists of a collec-
tion of 14,197,122 annotated images of numerous everyday
objects such as animals, food, devices, and flowers.

ILSVRC: The ImageNet Large-Scale Visual Recognition
Challenge, which was started in 2010 and ran annually until
2017.
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