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ABSTRACT Orbit codes, as special constant dimension codes, have attracted much attention due to their
applications for error correction in random network coding. This paper is devoted to constructing large orbit
codes by making full use of unitary space. Firstly, we construct a cyclic unitary group of order q2n − 1 by
means of the companion matrix of a primitive polynomial over finite fields Fq2 , and so the corresponding
code is unitary cyclic orbit code. As a special application, a new quaternary orbit code (6, 63, 4, 3) is given.
Secondly, we obtain orbit codes with large size using the external direct product of unitary groups acting on
the direct sum of subspaces. Finally, a table is given for illustrating our codes improve upon those constructed
by Trautmann et al. and Poroch et al.

INDEX TERMS Constant dimension codes, orbit codes, unitary space, unitary group, primitive polynomials.

I. INTRODUCTION
Random network coding plays an important role in coding
theory for its high efficiency in transmitting the information.
However, it has a deficiency of highly sensitive to error
propagation. In order to overcome this deficiency, Kotter and
Kschischang [1] proposed an algebraic approach to random
network coding by considering messages as subspaces of
some fixed vector space and showed how constant dimension
codes can used in random network coding for correction of
errors and erasures.

Different approaches of constructing constant dimen-
sion codes have been investigated in recent years. In [2],
Silva et al. pointed out that lifted maximum rank distance
codes can result in asymptotically optimal constant dimen-
sion codes, and can be decoded efficiently. Xu and Chen [3]
presented an effective construction which can be seen as a
generalization of the lifted maximum rank distance codes.
Heinlein [4] generalized the upper bounds of for constant
dimension codes which contain lifted maximum rank dis-
tance codes. In [5], Luerssen and Troha proposed a new con-
struction coming from Corollary 39 in [6] which was named
as the linkage construction. Li [7] combined the linkage
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construction and echelon Ferrers [8] to obtain some new
lower bounds of constant dimension codes.

This paper at hand is most closely related to refer-
ences [9]–[19]. All these papers study orbit codes, which are
constant dimension codes that arise as an orbit of a subgroup
of the general linear group acting on a subspace in F(n)

q .
Orbit codes were first introduced in [9], where the authors
showed spread codes can be seen as special instances of orbit
codes. In [10], Rosenthal and Trautmann gave the complete
characterization of orbit codes generated by irreducible cyclic
groups. At the same time, Trautmann et al. [11] described
cyclic orbit codes and proposed a decoding algorithm for
cyclic orbit codes arising from irreducible cyclic groups.
Luerssen et al. [12] presented a detailed study of cyclic orbit
codes based on the stabilizer subfields. Trautmann [13] inves-
tigated how message encoding can be done for Desarguesian
spread and cyclic orbit codes. Climent and Requena [14] gave
a construction of an abelian non-cyclic orbit code and it is
partial spread [15].

Recently, Poroch and Talebi [16] determined product of
symplectic groups and its orbit codes, and a decoding algo-
rithm of this code was considered. Gao and Niu [17] con-
structed orbit codes based on the subspaces of type (m, k)
in singular linear spaces over finite fields and derived some
basic properties of these codes. Chen and Liang [18] gave
some methods of constructing large orbit codes from known
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orbit codes by fully applying the sub-orbits of permutation
groups. Chen and Liang [19] presented a new construction of
abelian non-cyclic orbit code bymaking use of the companion
matrix of a primitive polynomial over finite fields and a
spread code was obtained.

Compared with the research results of orbit codes in
Grassmannian, there are few research results of orbit codes
based on typical spaces in the geometry of classical groups
over finite fields with good combinatorial structures (see
wan [20]). Our main motivation is to study how to construct
unitary orbit codeswhich arise as an orbit of a totally isotropic
subspace in unitary space under a unitary subgroup of the
general linear group. In this paper, we firstly construct a
cyclic unitary group of order q2n−1 by using the companion
matrix of a primitive polynomial over finite fields Fq2 , and
so the corresponding code is unitary cyclic orbit code (see
Construction 1). Based on this code, orbit codes with larger
size are derived using the external direct product of unitary
groups acting on the direct sum of subspaces (see Construc-
tion 2). Finally, a comparison is made with the orbit codes
constructed by Trautmann et al. [11] in Grassmannian and
Poroch and Talebi [16] based on symplectic spaces over finite
fields.What is important is that our codes improve upon those
constructed in [11], [16] from TABLE 1. A new series of orbit
codes with good error-correcting performance is obtained.

TABLE 1. The comparison.

The rest of the paper is organized as follows. In Section 2,
the relevant concepts of orbit codes and unitary spaces are
introduced. In Section 3, the concrete construction of unitary
cyclic orbit codes based on the subspaces of type (n, 0) in
unitary space F(2n)

q2
is provided and the related parameters are

computed. In Section 4, orbit codes with larger size are given.
In Section 5, a conclusion is made for this paper.

II. PRELIMINARIES
Let us first recall some basic facts about constant dimension
codes and orbit codes.

LetFq be the finite fieldwith q elements (where q is a prime
power), and F(n)

q denotes the n-dimensional row vector space
over Fq.
Definition 1: ([1]) Given a nonnegative integer k ≤ n,

the set of all k-dimensional subspaces of F(n)
q is called the

Grassmannian and is denoted by Gq(k, n).
The cardinality of Gq(k, n) is given by the Gaussian coef-

ficient

|Gq(k, n)| =
[
n
k

]
q
=

k−1∏
i=0

qn−i − 1
qk−i − 1

.

For any two subspaces U ,V ∈ Gq(k, n), their subspace
distance is defined by

dS (U ,V) = dimU + dimV − 2 dim(U ∩ V)
= 2(k − dim(U ∩ V)). (1)

Definition 2: ([1]) A constant dimension code of length n
is simply a subset C of Gq(k, n). The minimum distance of C
is defined as

dS (C) = min{dS (U ,V)| U,V ∈ C, U 6= V}.

A constant dimension code C of length n, dimension k , size
M (= |C|) and distance dS is referred to a (n,M , dS , k)q-code.
The size M measures the efficiency of the code, the distance
dS is a measure of the error-correcting capability of the code.
It would be nice if bothM and dS could be as large as possible.

A k-dimensional subspace U of F(n)
q can be represented by

a k × n generator matrix U whose rows form a basis of U ,
i.e.,

U = rs(U ) := rowspace(U ) ∈ Gq(k, n).

The subspace distance on Gq(k, n) is also given by

dS (U ,V) = 2rank
[
U
V

]
− 2k (2)

for any U,V ∈ Gq(k, n) and some respective matrix represen-
tations U and V .
We focus on constant dimension codes arising from group

actions, which are simply called orbit codes and which were
introduced in [9].

The set of all invertible n × n matrices over Fq form a
group with respect matrix multiplication, called the general
linear group of degree n, is denoted by GLn(Fq). Elements
of GLn(Fq) can be seen as linear transformations of F(n)

q .
Multiplication by elements ofGLn(Fq) defines a group action
from the right on Gq(k, n) by

Gq(k, n)× GLn(Fq) → Gq(k, n)
(U ,A) 7→ UA.

Definition 3: ([9]) Let U ∈ Gq(k, n) and G a subgroup of
GLn(Fq), then

C = UG = {UA|A ∈ G}

is called an orbit code. Furthermore, the code C is said to be
a cyclic orbit code if G is cyclic group.

Next we introduce the relative contents of unitary spaces
over finite fields.

Let Fq2 be the finite field with q2 elements (where q is
a prime power). Fq2 has an involutive automorphism, i.e.,
an automorphism of order 2

η : α 7→ α = αq

and the fixed field of η is Fq. A matrix Hn over Fq2 is said to
be Hermitian, if tHn = Hn.
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Any n × n nonsingular Hermitian matrix over Fq2 is nec-
essarily cogredient to the n× n identity matrix. And it is also
cogredient to

H2v =

[
0 I (v)

I (v) 0

]
or

H2v+1 =

 0 I (v) 0
I (v) 0 0
0 0 1

 ,
where v is the index of H2v and H2v+1.
Definition 4: ([20]) All n× n matrices over Fq2 satisfying

UHntU = Hn form a group with respect matrix multiplica-
tion, called the unitary group of degree n with respect to Hn,
is denoted by Un(Fq2 ). i.e.,

Un(Fq2 ) = {U ∈ GLn(Fq2 )|UHn
tU = Hn}.

Definition 5: ([20]) F(n)
q2

denotes the n-dimensional row

vector space over Fq2 . There is an action of Un(Fq2 ) on F(n)
q2

defined as follows

F(n)
q2
× Un(Fq2 ) → F(n)

q2

((x1, x2, · · · , xn),U ) 7→ (x1, x2, · · · , xn)U .

The vector space F(n)
q2
, with the above action of the unitary

groupUn(Fq2 ), is called the n-dimensional unitary space over
Fq2 .

Let U be an m-dimensional vector subspace of F(n)
q2
, U ∈

Fm×n
q2

is the matrix representation of U , i.e., U is a m × n
matrix of rank m whose rows form a basis of U . For an n× n
nonsingular Hermitian matrix Hn, it is clear that UHntU is
Hermitian. IfUHntU is of rank r , we say that U is a subspace
of type (m, r) with respect to Hn. Clearly r ≤ m ≤ n. In
Particular, subspaces of type (m, 0) with respect to Hn are
calledm-dimensional totally isotropic subspaces with respect
to Hn.

Denote by M(m, 0; n) the set of subspaces of F(n)
q2

of type
(m, 0) with respect to Hn. Moreover, U ∈M(m, 0; n) if and
only if UHntU = 0.
Theorem 1: ([21]) There is an embedding of GLn(Fq2 ) in

U2n(Fq2 ). Moreover, if h ∈ GLn(Fq2 ) and if H is the matrix
representing hwith respect to some basis, then there is a basis
of F(2n)

q2
such that h maps to the block matrix[

H 0
0 t (H−1)

]
.

III. CONSTRUCTIONS OF CYCLIC ORBIT CODES BASE ON
TOTALLY ISOTROPIC SUBSPACES IN UNITARY SPACE
In this section, we mainly give a construction of cyclic orbit
codes based on n-dimensional totally isotropic subspaces in
unitary space F(2n)

q2
. We begin by giving the following lemma.

Lemma 1: ([11,Lemma 32]) Let g(x) = xn + dn−1xn−1 +
· · · + d1x + d0 be an irreducible polynomial of degree n over
Fq2 , the companion matrixMg of g(x) is given by

Mg =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
−d0 −d1 −d2 · · · −dn−1

 ∈ Fn×n
q2
.

Suppose that β ∈ Fq2n be a root of g(x), then
1) β is an irreducible element of Fq2n and Fq2n can be

represented by

Fq2n ∼= Fq2 [x]/(g(x)) ∼= Fq2 [β] ∼= Fq2 [Mg].

2) The map

ϕ(n) : F(n)
q2
→ Fq2n ∼= Fq2 [β]

(u1, u2, · · · , un) 7→
n−1∑
i=0

ui+1β i

is a vector space isomorphism. Furthermore, for all u ∈
F(n)
q2

we get

ϕ(n)(uMg) = ϕ(n)(u)β. (3)

According to Lemma 1 and some known facts on primitive
polynomials over finite fields [22], we have the following
corollary.
Corollary 1: Let g(x) ∈ Fq2 [x] be a primitive polynomial

of degree n, Mg, β and ϕ(n) are defined as in Lemma 1,
it follows that
1) g(Mg) = 0, g(x) is both a characteristic polynomial and

minimal polynomial ofMg.
2) ord(Mg) = ord(g(x)) = q2n − 1.
3) β is a primitive element of F(n)

q2
, i.e.,

F∗q2n = 〈β〉 = {β
i
|i = 0, 1, · · · , q2n − 2}.

4) For all non-zero element v ∈ F(n)
q2
, there exists i ∈ Zq2n−1

such that

ϕ(n)(v) = β i.

In order to construct cyclic unitary subgroups of
GL2n(Fq2 ), we consider the following matrix of GL2n(Fq2 ):

A =

[
Mg 0

0 t (Mg
−1)

]
∈ F2n×2n

q2
, (4)

where g(x) ∈ Fq2 [x] is a primitive polynomial of degree n
and Mg is the companion matrix of g(x).
Lemma 2: For the matrix A given by (4), let h(x) be the

characteristic polynomial of t (M−1g ) over Fq2 , then
1) A ∈ U2n(Fq2 ) and ord(A) = q2n − 1.
2) h(x) is a primitive polynomial of degree n.
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3) There exists ε ∈ Zq2n−1 such that t (Mg
−1) = Mh

ε,

whereMh is the companion matrix of h(x).
Proof: 1) According to Theorem 1 and AHntA = Hn,

where

Hn =
[
0 I (n)

I (n) 0

]
.

We obtain A ∈ U2n(Fq2 ). Since

ord(t (Mg
−1)) = ord(Mg) = ord(g(x))

= q2n − 1,

it follows that

ord(A) = lcm{ord(Mg), ord(t (Mg
−1))}

= lcm{q2n − 1, q2n − 1}

= q2n − 1.

2) Suppose that h(x) be not irreducible, we can assume that

h(x) = f1(x) f2(x) · · · fk (x),

where fi(x) ∈ Fq2 [x] is irreducible, k ≥ 2. For any i =
1, 2, · · · , k , we have

1 ≤ deg(fi(x)) < n, ord(fi(x)) < q2n − 1.

Since h(t (Mg
−1)) = 0, it follows that there exists i such that

fi(t (Mg
−1)) = 0,

which contradicts to ord(t (Mg
−1)) = q2n − 1. Hence, h(x) is

an irreducible polynomial of degree n. Since

h(t (Mg
−1)) = 0

and

ord(t (Mg
−1)) = q2n − 1,

thus h(x) is a primitive polynomial of degree n.
3) Since h(x) is a primitive polynomial, and

h(t (Mg
−1)) = 0, h(Mh

ε) = 0,

it follows that there exists ε ∈ Zq2n−1 such that

t (Mg
−1) = Mh

ε.

�
Construction 1: Consider the group G = 〈A〉, then

G =

{[
Mg

l 0

0 (t (Mg
−1))l

]
|l = 0, 1, · · · , q2n − 2

}
,

that is, G is a cyclic unitary group of order q2n − 1. Let

V = rs[V1 V2] ∈M(n, 0; 2n),

where V = [V1 V2] is the matrix representation of subspace
V and V1,V2 ∈ Fn×n

q2
. Let

C(n, 0, 2n) = V〈A〉
= {VAl |l = 0, 1, · · · , q2n − 2}

= {rs[V1Mg
l V2(t (Mg

−1))l]|

l = 0, 1, · · · , q2n − 2}. (5)

Then C(n, 0, 2n) is the unitary cyclic orbit code generated by
the action of group G on subspace V . The code C(n, 0, 2n)
has size

|C(n, 0, 2n)| =
ord(A)
|StabA(V)|

,

where StabA(V) = {Al | VAl = V, 0 ≤ l < q2n − 1}, and the
minimum distance

dS (C(n, 0, 2n)) = min
1≤l≤q2n−2

{dS (V,VAl)}.

The following Lemma is convenient for calculating the
minimum distance of C(n, 0, 2n).
Lemma 3: Let β1, β2 be primitive elements of F(n)

q2
, sup-

pose that

ϕ(n,n) : F(2n)
q2
→ Fq2n × Fq2n

(vi1 , · · · , vi2n ) 7→ (ϕ(n)1 (vi1 , · · · , vin ), ϕ
(n)
2 (vin+1 , · · · , vi2n )),

where

ϕ
(n)
1 : F

(n)
q2
→ Fq2n ∼= Fq2 [β1]

(vi1 , · · · , vin ) 7→
n−1∑
j=0

vij+1β
j
1

and

ϕ
(n)
2 : F

(n)
q2
→ Fq2n ∼= Fq2 [β2]

(vin+1 , · · · , vi2n ) 7→
2n−1∑
j=n

vij+1β
j
2

It follows that
1) ϕ(n,n) is a vector space isomorphism.
2) For any non-zero element vi = (vi1 , · · · , vi2n ) ∈ F(2n)

q2
,

there exists ki, ki′ ∈ Zq2n−1 such that

ϕ(n,n)(vi) =


(βki1 , β

ki ′

2 ), if ϕ(n)i (vi) 6= 0,
(βki1 , 0), if vin+1 = · · · = vi2n ,

(0, βki
′

2 ), if vi1 = · · · = vin .

Moreover, ui = viAl for some ui, vi ∈ F(2n)
q2
\{0} if and

only if

ϕ(n,n)(ui) =


(βki+l1 , β

ki ′+l+ε
2 ), if ϕ(n)i (vi) 6= 0,

(βki+l1 , 0), if vin+1 = · · · = vi2n ,

(0, βki
′
+l+ε

2 ), if vi1 = · · · = vin .

where ε ∈ Zq2n−1 such that t (Mg
−1) = Mh

ε.

Proof: 1) If β1, β2 are irreducible elements of F(n)
q2
, then by

Lemma 1, ϕ(n)1 , ϕ
(n)
2 are vector space isomorphisms. More-

over, according to (3), we get

ϕ
(n)
1 ((vi1 , · · · , vin )Mg) = ϕ

(n)
1 (vi1 , · · · , vin )β1.
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ϕ
(n)
2 ((vin+1 , · · · , vi2n )

t (Mg
−1)) = ϕ(n)2 (vin+1 , · · · , vi2n )β

ε
2 .

Therefore, ϕ(n,n) is a vector space isomorphism.
2) For any vi = (vi1 , · · · , vi2n ) ∈ F(2n)

q2
\{0}, we then have

ϕ(n,n)(viAl) = ϕ(n,n)(((vi1 , · · · , vin )Mg
l),

((vin+1 , · · · , vi2n)(
t (Mg

−1))l))

= (ϕ(n)1 ((vi1 , · · · , vin )Mg
l),

ϕ
(n)
2 ((vin+1 , · · · , vi2n )(

t (Mg
−1))l)

= (ϕ(n)1 ((vi1 , · · · , vin )Mg
l),

ϕ
(n)
2 ((vin+1 , · · · , vi2n )Mh

l+ε))

= (ϕ(n)1 (vi1 , · · · , vin )β
l
1,

ϕ
(n)
2 (vin+1 , · · · , vi2n )β

l+ε
2 ).

In Particular, if β1, β2 are primitive elements of F(n)
q2
,

we obtain the desired result by Corollary 1. �
Lemma 4: Let V = {0, v1, · · · , vq2n−1} ∈ M(n, 0; 2n)

and V =
3⋃
i=1

Wi, where

W1 = {vi ∈ F(2n)
q2
\{0}| ϕ(n,n)(vi) = (βki1 , β

ki ′

2 )},

W2 = {vi ∈ F(2n)
q2
\{0}| ϕ(n,n)(vi) = (βki1 , 0)},

W3 = {vi ∈ F(2n)
q2
\{0}| ϕ(n,n)(vi) = (0, βki

′

2 )}.

For any vs, vt ∈ V , if

vsAl = vt ∀l ∈ {1, 2, · · · , q2n − 2},

it follows that vs, vt ∈ W1, or vs, vt ∈ W2, or vs, vt ∈ W3.

Proof: Let

81 : F(2n)
q2
→ F(n)

q2

(vi1 , · · · , vin , vin+1 , · · · , vi2n ) 7→ (vi1 , · · · , vin )

and

82 : F(2n)
q2
→ F(n)

q2

(vi1 , · · · , vin , vin+1 , · · · , vi2n ) 7→ (vin+1 , · · · , vi2n).

For any vs ∈ V , we have

81(vsAl) = 81(vs)Mg
l,

and

82(vsAl) = 82(vs)(t (Mg
−1))l .

Suppose that vs ∈ W1, then 81(vs) 6= 0,82(vs) 6= 0. It
follows that

81(vsAl) 6= 0, 82(vsAl) 6= 0,

which implies that vsAl ∈ W1, that is, vt ∈ W1. Other cases
can be proved similarly. �
For derive the following theorem, we recall that a multiset

is a generalization of the notion of set in which members are
allowed to appear more than once. We will denote multisets
by {{· · · }}. The number of times an element x appears in

the multiset X , denoted by mX (x), is call its multiplicity
(see [11]).
Theorem 2: Let V = {0, v1, · · · , vq2n−1} ∈ M(n, 0; 2n),

consider the difference sets

D1 = {{(λ(s,t) mod (q2n − 1), λ′(s,t) mod (q2n − 1))|

vs, vt ∈ W1, s 6= t, λ(s,t) + ε ≡ λ′(s,t)mod(q
2n
− 1)}},

D2 = {{(λ(s,t) mod (q2n − 1), l)| vs, vt ∈ W2, s 6= t,

l = 1, · · · , q2n − 1, λ(s,t) ≡ l mod (q2n − 1)}},

D3 = {{(l, λ′(s,t) mod (q2n − 1))| vs, vt ∈ W3, s 6= t,

l = 1, · · · , q2n − 1, l + ε ≡ λ′(s,t) mod (q2n − 1)}}

and

D =
3⋃
i=1

Di.

where λ(s,t) = ks − kt , λ′(s,t) = ks′ − kt ′. Suppose that

d = logq2 (max{mD(λ1, λ2)|(λ1, λ2) ∈ D} + 1).

where mD(λ1, λ2) denote the number of times pair (λ1, λ2)
appears in the multiset D. If d < n, then C(n, 0, 2n) is
an (2n, q2n − 1, 2n − 2d, n) unitary cyclic orbit code. In
particular, if D = ∅, C(n, 0, 2n) is a partial spread in F(2n)

q2
.

Proof: First we compute the minimal distance of
C(n, 0, 2n), which is

min{dS (V,VAl)}, ∀l = 1, · · · , q2n − 1.

By (1), we should consider the value of

dim(V ∩ VAl),

for all 1 ≤ l ≤ q2n − 1. Let vs ∈ V , then vs ∈ VAl if and only
if there exists vt ∈ V such that

vs = vtAl .

In the sense of isomorphism, it follows that

ϕ(n,n)(vs) = ϕ(n,n)(vtAl).

According to Lemma 4, {Wi|i = 1, 2, 3} is a partition of V .
We will consider three cases.
Case 1. If vs ∈ W1, then vs ∈ W1Al if and only if there

exists vt ∈ W1 such that

(βks1 , β
ks ′

2 ) = (βkt+l1 , β
kt ′+l+ε
2 ),

for any t ∈ {1, · · · , q2n − 1}. Equivalently,

ks ≡ kt + l mod (q2n − 1)

and

ks′ ≡ kt ′ + l + ε mod (q2n − 1).

That is,

λ(s,t) ≡ l mod (q2n − 1)
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and

λ′(s,t) ≡ l + ε mod (q2n − 1),

and it follows that

λ(s,t) + ε ≡ λ
′

(s,t) mod (q2n − 1).

Therefore,

(λ(s,t) mod (q2n − 1), λ′(s,t) mod (q2n − 1)) ∈ D1.

Case 2. If vs ∈ W2, then vs ∈ W2Al if and only if there
exists vt ∈ W2 such that

(βks1 , 0) = (βkt+l1 , 0),

for any t ∈ {1, · · · , q2n − 1}. Equivalently,

ks ≡ kt + l mod (q2n − 1),

and then

λ(s,t) ≡ l mod (q2n − 1).

Hence,

(λ(s,t) mod (q2n − 1), l) ∈ D2.

Case 3. If vs ∈ W3, then vs ∈ W3Al if and only if there
exists vt ∈ W3 such that

(0, βks
′

2 ) = (0, βkt
′
+l+ε

2 ),

for any t ∈ {1, · · · , q2n − 1}. Equivalently,

ks′ ≡ kt ′ + l + ε mod (q2n − 1),

and we have that

λ′(s,t) ≡ l + ε mod (q2n − 1).

Thus,

(l, λ′(s,t) mod (q2n − 1)) ∈ D3.

Since max{mD(λ1, λ2)|(λ1, λ2) ∈ D} = q2d − 1, we then
have

|V ∩ VAl | ≤ q2d ,

for any l ∈ {1, · · · , q2n − 2}. This shows that

dim(V ∩ VAl) ≤ d . (6)

Using (1),

dS (V,VAl) ≥ 2n− 2d .

Therefore,

dS (C(n, 0, 2n)) = 2n− 2d .

Note that if d < n, then VAl are distinct for any l ∈
{1, · · · , q2n − 2}. It follows that

StabA(V) = {I2n}.

Therefore,

|C(n, 0, 2n)| = q2n − 1.

In particular, if D = ∅, we have that

V ∩ VAl = {0},

for any l ∈ {1, · · · , q2n − 2}, and thus

dS (C(n, 0, 2n)) = 2n.

Hence, C(n, 0, 2n) is a partial spread in F(2n)
q2

. �
Corollary 2: Let d = n in Theorem 2. Suppose that

D′ = {{(λ1, λ2) ∈ D|mD(λ1, λ2) < q2n − 1}}

and

d ′ = logq2 (max{mD′ (λ1, λ2)|(λ1, λ2) ∈ D
′
} + 1),

where λ1 ≡ li mod (q2n − 1), for i = 1, 2, · · · , s.
Then C(n, 0, 2n) is an unitary cyclic orbit code of
size gcd(lcm{l1, l2, · · · , ls}, q2n − 1) and minimal distance
2n− 2d ′.
Proof: Assume that (λ1, λ2) such that

mD(λ1, λ2) = q2n − 1,

we obtain

V = VAli , λ1 ≡ li mod (q2n − 1),

for i = 1, 2, · · · , s. This leads to

StabA(V) = 〈Al1 ,Al2 , · · · ,Als〉
= 〈Alcm{l1,l2,··· ,ls}〉,

and

|StabA(V)| =
q2n − 1

gcd(lcm{l1, l2, · · · , ls}, q2n − 1)
.

Therefore,

|C(n, 0, 2n)| = gcd(lcm{l1, l2, · · · , ls}, q2n − 1).

Since the minimum distance of C(n, 0, 2n) is only taken
between two distinct vector spaces, it follows that

|V ∩ VAl | < q2n,

for any l ∈ {1, · · · , q2n − 2}. We can assume, therefore, that

D′ = {{(λ1, λ2) ∈ D|mD(λ1, λ2) < q2n − 1}}

and

max{mD′ (λ1, λ2)|(λ1, λ2) ∈ D
′
} = q2d

′

− 1.

As we have done in the proof of Theorem 2, we conclude that

dS (C(n, 0, 2n)) = 2n− 2d ′.

�
Example 1: Consider field

F26 = F2[x]/(x6 + x + 1).

Let β be a root of x6 + x + 1 = 0, and let g(x) be a minimal
polynomial of β over F4. Since x6 + x + 1 is a primitive
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polynomial of degree 6 over F2, it follows from Corollary 1
that β is a primitive element of F26 . We then have

g(x) = (x − β)(x − β4)(x − β4
2
)

= x3 − x2 + (β5 + β4 + β3 + β)x2

− (β5 + β4 + β3 + β + 1).

Set λ = β5 + β4 + β3 + β, then λ2 = λ+ 1. Note that λ is a
root of irreducible polynomial x2 + x + 1 over F2, and thus

F4 = F2[x]/(x2 + x + 1)

= {c0 + c1λ| c0, c1 ∈ F2}.

Therefore, g(x) = x3 + x2 + λx + λ + 1 is a primitive
polynomial of degree 3 over F4.
The companion matrix of g(x) is the matrix

Mg =

 0 1 0
0 0 1

λ+ 1 λ 1

 ,
it follows that

t (Mg
−1) =

λ+ 1 1 0
λ 0 1
λ 0 0

 .
By α 7→ α = α2, we get

t (Mg
−1) =

 λ 1 0
λ+ 1 0 1
λ+ 1 0 0

 .
Let h(x) be the characteristic polynomial of t (M−1g ), then

h(x) = x3 + λx2 + (λ+ 1)x + λ+ 1

and h(x) is a primitive polynomial of degree 3 over F4.
Suppose that

A =


0 1 0 0 0 0
0 0 1 0 0 0

λ+ 1 λ 1 0 0 0
0 0 0 λ 1 0
0 0 0 λ+ 1 0 1
0 0 0 λ+ 1 0 0

 ∈ U6(F4),

and

V = rs

λ+ 1 0 1 λ+ 1 0 1
0 λ 1 0 λ 1

λ+ 1 1 0 λ+ 1 1 0

 ∈M(3, 0, 6).

Then 〈A〉 is a cyclic unitary group of order 63. Since VAl are
distinct for any l ∈ {0, 1, · · · , 62}, it follows that

StabA(V) = {Al | VAl = V, 0 ≤ l < 63}

= {I6}.

Let

C(3, 0, 6) = {VAl | l = 0, 1, · · · , 62},

we have that

|C(3, 0, 6)| =
ord(A)
|StabA(V)|

= 63.

Since V 6= VAl , it follows that

3 < rank
[
V
VAl

]
≤ 6

and we can calculate that

rank
[
V
VAl

]
= 5 or 6,

for any l ∈ {0, 1, · · · , 62}. Using (2), we get

rank
[
V
VAl

]
= 6− dim(V ∩ VAl).

This lead to dim(V ∩ VAl) ≤ 1, and d = 1. By Theorem 2,
thus

dS (C(3, 0, 6)) = 6− 2d = 4.

Therefore, C(3, 0, 6) is an (6, 63, 4, 3) unitary cyclic orbit
code. �

IV. CONSTRUCTIONS OF ORBIT CODES USING THE
EXTERNAL DIRECT PRODUCT OF UNITARY GROUPS
In this section, we present a construction of how to use the
external direct product of unitary groups to construct orbit
codes with longer length. We need the following notation.
Definition 6: Let U2ni (Fq2 )(i = 1, 2, · · · ,m) be m unitary

groups. Suppose that

G = U2n1 (Fq2 )× U2n2 (Fq2 )× · · · × U2nm (Fq2 )
= {(A1,A2, · · · ,Am)|Ai ∈ U2ni (Fq2 )}

and define the multiplication in G as follows

AB = (A1B1, · · · ,AmBm),

where

A = (A1, · · · ,Am),B = (B1, · · · ,Bm) ∈ G,

then G form a group with respect matrix multiplication as
defined above, called the external direct product of groups
U2n1 (Fq2 ), · · · ,U2nm (Fq2 ).
Construction 2: For i = 1, 2, · · · ,m, let Vi = rs(Vi) ∈

M(ni, 0, 2ni), Gi = 〈Ai〉 ∈ U2ni (Fq2 ) and

C(ni, 0, 2ni) = ViGi,

where Vi ∈ Fni×2ni
q2

. Suppose that

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm ∈M(n, 0, 2n)

and

G = G1 × G2 × · · · × Gm ≤ GL2n(Fq2 ).

Let di = logq2 (max{mDi (λ1, λ2)|(λ1, λ2) ∈ Di}+1) and di <

ni, where n =
m∑
i=1

ni. Then

C(n, 0, 2n) = VG
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is an (2n,M , dS , n) unitary orbit code, whereM =
m∏
i=1

(q2ni−

1), dS ≥ min
i∈{1,··· ,m}

{2ni − 2di}.

Proof: According to Theorem 2, C(ni, 0, 2ni) is an
(2ni, q2ni − 1, 2ni − 2di, ni) unitary cyclic orbit code.
Now we considerG = {(A1, · · · ,Am)|Ai ∈ Gi}, and define

A by 
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am

 ,
for A = (A1, · · · ,Am) ∈ G. Since Gi ∈ U2ni (Fq2 )(i =
1, · · · ,m) is finite group, it follows that

|G| =
m∏
i=1

|Gi| =
m∏
i=1

(q2ni − 1),

and henceG is an unitary group of order
m∏
i=1

(q2ni−1). Suppose

that

V = V1 ⊕ · · · ⊕ Vm

= rs

V1 . . .

Vm

 ∈M(n, 0, 2n),

where Vi is the matrix representation of subspace Vi, and then

VAl = rs

V1A
l
1

. . .

VmAlm

 .
Note that Vi 6= ViAli for any l ∈ {1, 2, · · · , q

2ni − 2}, we then
have

StabGi (Vi) = {I2ni}.

This leads to

StabG(V) = StabG1 (V1)× · · · × StabGm (Vm)
= {I2n1} × · · · × {I2nm}

= {I2n}.

Therefore,

|C(n, 0, 2n)| =
|G|

|StabG(V)|
=

m∏
i=1

(q2ni − 1).

By (2) and (6), we have

rank
[
Vi
ViAli

]
= 2ni − dim(Vi ∩ ViAli)

≥ 2ni − 2di.

for any 1 ≤ l < q2ni − 1.

For 1 ≤ l <
m∏
i=1

(q2ni − 1) − 1, then there exist γi ∈

{0, 1, · · · , q2ni − 2} such that

l = γi mod (q2ni − 1) and γi 6= 0.

Furthermore, we obtain

dS (V,VAl) = 2rank
[
V
VAl

]
− 2n

= 2rank



V1
. . .

Vm
V1Al1

. . .

VmAlm


− 2n

= 2(rank
[
Vi
ViAli

]
+

m∑
j=1
j6=i

rank
[
Vj
VjAlj

]
)− 2n

≥ 2(2ni − di +
m∑
j=1

nj − ni)− 2n

= 2(n+ ni − di)− 2n

= 2ni − 2di = dS (C(ni, 0, 2ni)).

Therefore,

dS (C(n, 0, 2n)) ≥ min
i∈{1,··· ,m}

{2ni − 2di}.

�
As a straightforward corollary of Construction 2, we have

the following result.
Corollary 3: In Construction 2, let V1 = · · · = Vm, A1 =
· · · = Am, then C(n, 0, 2n) is a non-cyclic orbit code of size
(q2n1 − 1)m and minimal distance 2m(n1 − d1).
Proof: Since A1 = · · · = Am, it imply that n1 = · · · = nm,

we now assume that n = mn1, then

gcd(q2n1 − 1, · · · , q2nm − 1) = q2n1 − 1 6= 1.

and henceG is a non-cyclic unitary group of order (q2n1−1)m.
It follows that

|C(n, 0, 2n)| = (q2n1 − 1)m.

For 1 ≤ l < q2n1 − 1, we have

dS (V,VAl) = 2rank



V1
. . .

Vm
V1Al1

. . .

VmAlm


− 2n

= 2rank(
[
V1
V1Al1

]
+ · · · +

[
V1
V1Al1

]
)− 2mn1

= m(2rank
[
V1
V1Al1

]
− 2n1)

≥ mdS (C(n1, 0, 2n1)).

Since there exists 1 ≤ l0 < q2n1 − 1 such that

dS (V,VAl0 ) = dS (C(n1, 0, 2n1)),
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and thus

dS (C(n, 0, 2n)) = 2m(n1 − d1).

�
Trautmann et al. [11] investigated cyclic orbit codes in

the Grassmannian in detail. Poroch and Talebi [16] con-
structed orbit codes based on the Lagrangian Grassmannian
in symplectic spaces over finite fields. The TABLE 1 gives a
comparison with codes from [11], [16] and this paper. We can
see that our codes have larger size without decreasing the
distance. In summary, our proposed codes have better error-
correcting performance than [11], [16].

V. CONCLUSION
We present two constructions of orbit codes based on totally
isotropic subspaces in unitary spaces F(n)

q2
over finite fields in

this paper. Our results improves Poroch et al. in two direc-
tions: Firstly, the size of cyclic orbit code can be increased up
to q2n − 1 without decreasing the minimum distance 2n−2d

in Theorem 2; secondly, we enlarge the code size
m∏
i=1

(q2ni−1)

using the external direct product of unitary groups in Con-
struction 2. We hope these construction methods can provide
some inspirations for constructing other constant dimension
codes. For further research, we are looking forward to finding
efficient decoding algorithms of these codes in the paper.
Furthermore, an open question is to find systematic ways
to take unions of cyclic orbit codes without decreasing the
distance.
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