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ABSTRACT In engineering and scientific disciplines, there are extensive Optimization Application Prob-
lems (OAPs) such as economic dispatch, structural design, and water resources. One of the major OAPs
is the operation of dams and reservoirs to minimize the gap between water supply for irrigation and
demand patterns such as hydropower generation. Drawing optimal operation for dams and reservoirs is
often categorized as discontinuity, multimodality, non-differentiability and non-convexity. Classical math-
ematical programming-based methods for optimization might be inappropriate or unrealizable in drawing
optimal operation rules for dam and reservoir operation. During the last two decades, new optimization
methods-based on nature-inspired meta-heuristic algorithms (MHAs) have motivated hydrologists to inves-
tigate MHAs as better alternative optimization tools for identifying the optimal dam and reservoir operation
rules. To solve the dam and reservoir-optimization applications better, this review presents the past, present,
and prospective research directions using MHAs. The problem of dam and reservoir optimization requires a
fundamental shift of focus towards enhancing not only the problem formulation and decomposition but also
the computational efficiency of MHAs.

INDEX TERMS Meta-heuristic algorithm, reservoir operation, optimization, water resources management.

ACRONYMS
ACO Ant Colony Optimization
BA Bat Algorithm
BBO Biogeography-Based Optimization
CSO Cat Swarm Optimization
CA Cellular Automata
FA Firefly Algorithm
GA Genetic Algorithm
HBMO HoneyBees Mating Optimization
MHA Meta-heuristics algorithm
MSA Moth Search Algorithm
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PSO Particle Swarm Optimization
SSO Shark Smell Optimization
SA Simulated Annealing
WCA Water Cycle Algorithm
WSA Wolf Search Algorithm

I. INTRODUCTION
In the past 20 years, many researchers applied various
nature-inspired MHAs to different classes of dam and reser-
voir water systems. (e.g., single reservoir, single-purpose;
single reservoir, multipurpose; or multi-reservoir, multipur-
pose). The downside to linear programming (LP), for exam-
ple, lies in its linear form rigidity as a prerequisite to perform
well in an application. Linear programming, where a high
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nonlinear function is present, imposes a drawback in the per-
formance rate in providing the optimum and computational
time globally. Using nonlinear programming methods that
are more advanced, they can overcome these limitations of
LP. In the case of dynamic programming (DP), it has been
used successfully in solving a variety of optimization prob-
lems. However, it still faces the problem commonly known
as the curse of dimensionality [1]. When interacting with
the increase in the number of state variables, this significant
concern emerges as it restricts its implementation to deal
with a separable optimization problem. For instance, multiple
reservoir system operations might not be able to utilize the
DP approach as well as in the case of a single reservoir.
Because of the categorization of the reservoir storage portion
as state variables, the number of reservoirs to be managed
is strictly limited. Thus, it motivates many researchers to
create novel approaches to deal with complicated issues to
replace conventional methods. These approaches can develop
the problems more realistically in comparison to traditional
methods [2], [3]. There is no general algorithm for solving
the optimization of the reservoir operation as proved in the
no free lunch theorem, according to Reference [4].

Although previous and current studies have demonstrated
that a particular algorithm could outperform others for a
certain case study using evaluation performance indices, our
understanding of the reasons behind such success is limited.
Therefore, to step further in this area of research, it is neces-
sary to understand the interrelationship between the reservoir
water system’s features of the case study being optimized,
the searching mathematical procedure of the optimization
algorithm, and the performance of the algorithm. With this
understanding, a better conceptual understanding of the rea-
sons behind a particular algorithm with a certain searching
procedure performing worse or better for a particular case
study under conditions could be made possible, instead of
directly identifying and comparing the performance indices
on specific case studies. Furthermore, this insightful assess-
ment could motivate hydrologists to go beyond only knowing
the performance indices of algorithm or case study to attain
the near-full understanding that might be more general to
be applicable for betterment selection of the compatibility
between the optimization algorithm(s) for a certain case
study. In themeanwhile, such reservoir systems need a further
adaptation of the algorithm’s mathematical technique and the
need for them to be combined or hybridized with otherMHAs
to make such a special reservoir water system [5]–[7].

The structure of the paper is basically presented as fol-
lows. Section 2 introduces the main mathematical procedure
for drawing the optimal operation for dams and reservoirs
as the optimization problem. Section 3 discusses two main
elements: 1) the working principle of the algorithms in reser-
voir optimization and 2) how certain aspects of the stan-
dard algorithms have been improved through a hybridization
approach or adding/modifying the mathematical procedure
for the internal operators. Section 4 provides an insight into
how these algorithms play a role in handling problems in

FIGURE 1. Steps in optimization procedure for dams and reservoirs
operation.

this field. Section 5 draws the recommendations for future
research and conclusion.

II. UNDERSTANDING DAM AND RESERVOIR OPERATION:
MATHEMATICAL FORMULATION AND OPTIMIZATION
This section provides a general guideline procedure for the
dam and reservoir system and optimization problem formu-
lation. The following steps are the most common procedure
in the optimization process when classical optimizationmeth-
ods or MHAs are applied, as shown in Fig. 1:

1. Problem formulation (i.e., identification and definitions
of the decision variables and formulation of the objective
function and system constraints’ limits and ranges).

2. Categorization of the ranges of the decision variable
values.

3. Examination of the objective function and the constraint
limits for the chosen decision variable values.

4. Selection of a set of decision variable values (among
the updated set) according to assessment feedback from the
evaluation process utilizing the search method.

5. A repeat of steps 3 and 4 until the performance goal is
achieved or reaches the stopping criterion.

6. Storage of the optimal selection set of the optimal deci-
sion variables’ solutions into an appropriate decision-making
memory process.

Concerning the above stages, the distinct difference
between algorithms is during the step 3 procedure. In this
step, the searching procedure of the algorithm varies from
one another. Generally, MHAs have a few advantages over
the classical optimization-based mathematical programming
methods [8]–[12] It motivates hydrologists to utilize and
adapt the MHAs to dam and reservoir operation applications.

Literally, values for the objective function, which are
bounded by some constraints, are measured, and checked
using a simulation technique for the reservoir. The simulation
procedure could be formulated throughout a certain nonlinear
mathematical procedure or a predefined simulation model
approach. In general, it is free of mathematical errors and
more straightforward in adding/integrating the optimization
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TABLE 1. References with corresponding algorithm in reservoir operation optimization.
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TABLE 1. (Continued.) References with corresponding algorithm in reservoir operation optimization.

procedure to a predefined simulation model approach. If the
MHAs could be easily added/integrated using the predefined
simulation model approach, utilizingMHAs is advantageous.
In this case, MHAs could be capable of addressing dam
and reservoir cases that encounter difficult mathematical fea-
tures without the need for simplifying the problem of the
simulation procedure as required when most of the classical
optimization methods are used and are unable to consider the
nonlinearities.

The release policy for any month m is determined by con-
ducting an online multidimensional search at the beginning
of the month, with the previous month’s inflow and the end-
ing storage being known. The optimization of the objective
function can be characterized by

max or min
Tmax∑
Tmin

P (qt | qt−1) .B (St ,Rt)+ V (St+1), (1)

whereRt is a vector of releases during period t , T is the length
of the operational time horizon, St is the vector of storage in
each reservoir at the beginning of period t , B (St ,Rt) is the
objective to bemaximized orminimized (for E.g., minimizing
total hydropower cost or maximizing irrigation demand), P is
the conditional probability for inflow, qt in any month to be
connected to the outflow in the preceding month, qt−1. V is
the ending storage volume. Storages, releases, and inflows are
related by several continuity relationships. The basic physical
relationship of a reservoir operation study is the continuity
equation:

St+1 = St + It − Rt − Et − Ot , (2)

where St+1 is the final storage during the month, It is inflow
during month t , Et is evaporation loss in the reservoir during
time t , andOt is overflow or surplus from the reservoir during
time t .

Reservoir constraints
• Release constraints

The release from the reservoir in a month should be less
than or equal to an estimated or target release. The release
constraint is expressed as

Rmint ≤ R ≤ Rmax t . (3)

• Reservoir storage constraints

The reservoir storage during a given month should neither
be more than the maximum permissible storage capacity nor
less than the minimum storage capacity. This constraint is
mathematically described as

Smint ≤ St ≤ Smax t , (4)

where Smint is the minimum storage capacity of the reservoir
in million cubic meters (Mm3), and Smax t is the maximum
permissible storage capacity of the reservoir in Mm3.

• Overflow constraints

The overflow constraints take care of the spills Ot as and
when the storage in the reservoir exceeds the maximum
capacity of the reservoir. The relevant constraint can be
expressed as

Ot = St+1−Smax, (5)

or

Ot ≥ 0. (6)

III. APPLICATION OF THE META-HEURISTIC
ALGORITHMS IN RESERVOIR OPTIMIZATION
In this section, several algorithms are presented to show
their effectiveness in reservoir operation optimization in com-
parison with one another using several evaluation metrics
and how lacking in certain aspect of the algorithm can be
solved either by modifying the algorithm itself or through
hybridization with other another algorithm to achieve better
performance. The advantages of one algorithm over the other
are explored in one aspect of the problemwhile the other algo-
rithm complements. In this way, better solutions are achieved
that are superior to using one. To access the performances of
these algorithms, several evaluation metrics were used such
as the number of evaluation function, stability, convergence
speed, exploitation ability, and exploration ability. To further
illustrate the comparison between algorithms, a graphical
method is adopted, as shown in figure 2.
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TABLE 2. A summary of the application of each algorithm along with its hybridization/modification approaches in the optimization of reservoir operation.
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FIGURE 2. The performance evaluation of algorithms in several case studies.
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FIGURE 2. (Continued.) The performance evaluation of algorithms in several case studies.
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A. ANT COLONY OPTIMIZATION (ACO)
In this study of Reference [13], an ACO technique was
applied to optimize an operating rule for the multipurpose
reservoir system. The case study of the Hirakud reservoir was
carried out using ACO in comparison with GA. By convey-
ing information to the next storage class from the previous
storage, it can result in a better solution. The transmission of
information is based on probabilistic transition rules, which
improve the solution in a short amount of time at every
interval. This is substantially useful for obtaining a solu-
tion, especially in long-term planning. Results revealed that
ACO obtained more accurate solutions than GA can with
a smaller number of function evaluations, especially in a
long-term horizon operation where the number of decision
variables and constraints increases in the problem domain.
In this case, the average computational time requirements
for ACO and GA are 32 min 28 sec and 80 min 54 sec
to reach global optimum, respectively. Likewise, Refer-
ence [14] successfully applied the max-min ant system to
solve constraint hydropower reservoir operation. When this
algorithm is compared with Honeybees Mating Optimiza-
tion (HBMO) and GA, the ACO has the least number of
function evaluations due to low computational complexity,
regardless of the number of decision variables. It is due to
having high efficiency in the search space by virtue of a
randomly generated initial population of ant solutions over
the whole feasible region. It helps in maintaining a low
computation burden, which corresponds to a low evaluation
function.

On the other hands, due to the lack of dynamic adjustments
between global searches and local optimization, it is difficult
to maintain high diversity and overcome local optimum prob-
lems for ACO. Like in PSO, no operators can aid in promoting
sudden changes in the set of solutions. Due to an inadequate
global search, there is an increase in iteration times, which
quickly reduces ant colony diversity, trapping the ant in the
local optimum.

For this reason, Reference [15] presented a chaos ant
colony optimization (CACO) algorithm to optimize the
reservoir operation problem with hydropower purposes. The
proposed algorithm was much superior compared to the clas-
sical ACO with the improvement in the stagnation; thus,
it avoided getting trapped in local optima. Given half of
the computation time needed, CACO obtained higher annual
energy production (8582.7 million kw·h) than standard ACO
(8567.8 million kw·h). Following the same trend, Refer-
ence [16] presented a modified ACO algorithm to optimize
the hydropower reservoir operation problem. The addition of
operators such as explorer ants and adaption operators sig-
nificantly improved the basic ACO algorithm effectiveness;
that is, there were chances of generating diverse solutions
even in local trapped conditions regardless of the amount of
pheromone value. The proposed method outperformed the
original ACOR in achieving a better global solution and lower
variance over the best solution due to its stronger global
searching ability.

B. BAT ALGORITHM (BA)
BA practices fine-tuning of frequency like that in the features
used in PSO and HA. Frequency tuning in BA behaves as a
mutation by varying the solutions locally. When optimality
is approaching, the range of frequencies can be decreased,
switch from exploration to exploitation. This provides an
additional benefit of BA as an optimization method compa-
rable to another swarm intelligence algorithm.

Reference [17] employed the BA to optimize a sys-
tem of reservoir operation. The proposed algorithm was
applied on a real case Karoun-4 reservoir operation and
a benchmark of four-reservoir problems. Results showed
that the BA algorithm outperformed GA by having a
higher convergence speed to global optima and lower vari-
ance about global optima due to its BA. This is because
BA can perform automatic zooming, which allows it to
zoom into a region with a high potential to locate good
solutions.

However, standard BA seems to be relatively poor in explo-
ration ability despite its good performance in exploitation
due to the lack of crossover operation (unlike GA and DE).
Consequently, BA maintains the same members of the whole
population through the search procedure. There is a need to
improve the control strategy to switch between exploration
and exploitation at the right moment.

Reference [18] presented an improved BA on optimiza-
tion of a multi-reservoir operation. The proposed method
exploited the hybridization of BA with the DE algorithm.
It has been tested on two benchmark multi-reservoir prob-
lems for the hydropower generation purpose. The proposed
method introduced an additional six mutation strategies to
standard BA for achieving better global optimal. The result
obtained was satisfactory and compared well with that of the
LP method used to solve these problems.

C. BIOGEOGRAPHY-BASED OPTIMIZATION (BBO)
Another evolutionary algorithm is known as BBOwhich opti-
mizes a function by stochastically and iteratively improving
candidate solutions regarding a given measure of quality.
To show the performance of BBO in a water-related field,
Reference [19] simulated the water release from a power-
house using a BBO algorithm to be applied to two reservoir
operation problems. The proposed algorithm could supply
different demands better than GA due to the former the algo-
rithm is better in terms of the parameter-tuning procedure.
Since minor changes in parameters do not have much effect
on the BBO performance, the optimization process turns into
a simpler mechanism that relies on a simpler algorithmic
structure.

Nonetheless, in the mutation of BBO, there is a lack of
exploration in the search process. This is because the BBO
mechanism involves an exact procedure as migration that
induces a random process in the mutation. Owing to the
lack of corresponding exploration to balance its exploita-
tion, BBO is easily trapped in the local optimum. More-
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over, the migration process in BBO manages the solution
directly without using any reproduction strategy such as GA.
Thus, the low diversity of the algorithm is mainly due to
the creation of similar habitats (solutions), leading to slow
convergence and the local optimum. Therefore, the aspect
of exploration in BBO can be the focus to improve its
performance.

D. CAT SWARM OPTIMIZATION ALGORITHM (CSO)
CSO has good local and global search abilities. It avoids the
prolix limits, i.e., the maximum velocities, in all iterations,
and it could discover a better solution than PSO-type algo-
rithms. This enhances the possibility for it to reach the global
optimal solution. Reference [20] employed the cat algorithm
on the application of a single-reservoir optimization (Karun-4
single reservoir) and a benchmark multi-reservoir operation
problem (four-reservoir problems). The proposed method
showed promising results as another alternative optimization
method when compared to GA. Having both the good local
and global search, CSO obtained results with a lower vari-
ance, approximately twice as low as GA.

On the other hand, there is still room for improvement.
For instance, the difficulty of CSO to handle complex opti-
mization problems with many local extreme values. This is
because there is no collaboration in the local exploitation and
global exploration searches when carried out. They perform
independently, resulting in higher computation time to reach
the global optimum.

E. CELLULAR AUTOMATA (CA)
Several studies used CA in the application of reservoir oper-
ation optimization. Reference [21] applied CA on the opti-
mization of a reservoir operation. The proposed method was
applied on a Dez reservoir in Iran for three different periods.
CA is well competent in solving the complex problem as
it does not affect the number of iterations. One reason is
that each cell can comply with complex systems behavior
using a simple rule. This is important as it does not require
any breakdown of the whole system into sub-components.
The algorithms, PSO, GA, and ACO, were used to validate
the performance of CA. The proposed method could pro-
vide a better solution compared to that of the mentioned
methods. Results have shown that in operating long-term
planning rules, CA only requires a low number of function
evaluations as compared to the high number of function
evaluations by the GA, PSO, and ACO algorithms. Another
CA application was also carried out by Reference [22] on
chance-constraint water-supply reservoir operation problem.
The proposed model was tested out on the Dez reservoir
operation to optimize the water supply for three different time
periods. CA outperformed GA by yielding a better solution
with a higher convergence speed in optimizing the water
supply under the constraint condition. This shows that CA
could perform efficiently even in the long-term planning of
reservoir operation.

Another hybrid algorithm called the cellular
automata-harmony search approach was demonstrated by
Reference [23] on a four-reservoir system for hydropower
optimization of different time periods. A standard CA has
difficulty in governing the rules for local updates. An exten-
sive effort is needed for the success of local rule development.
This might formulate an improper rule, which leads to system
failure. It is sometimes not easy to obtain perfect rules
governing the evolution of the system. There is a lack of
comprehensive understanding in the CA model, whether the
system dynamicity has been considered thoroughly or needs a
superficial dynamics component. Therefore, by incorporating
HS into CA, it improved the local search of decomposed
sub-problems whose solutions would then pass to CA itera-
tively. The proposed method showed superiority over other
optimization methods such as GA, PSO, and CA–NLP in
terms of their efficacy to locate the near-local optimal solu-
tion. The results showed that CA–HS performed better than
the mentioned methods.

F. FIREFLY ALGORITHM (FA)
Unlike PSO, FA does not depend on either the historical best
or the global best. This helps to reduce the chance to trap the
potential solutions in premature convergence. This is because
FA does not need to be concerned about the initialization of
velocity, especially at high velocities that are relatively unsta-
ble to control. With this FA ability, Reference [24] applied FA
to the optimization of complex multiple reservoir operations
with multiple purposes: hydropower and irrigation purposes.
As previously described, FA was indeed able to converge to
the global optimal at a much faster rate than GA. Besides,
the local attraction is more robust than the long-distance
attraction. This enables the division of multiple subgroups in
the population, leading to higher chances to reach a global
solution as each generated group has the potential to do so.
This gives the FA more flexibility in searching the problem
spaces effectively, especially in multimodal objectives.

On top of that, Reference [25] further explored the appli-
cation of FA in the optimization of multi-reservoir discrete
variables operation and continuous states. They developed
an improved version of FA and tested out on three bench-
mark reservoir operation problems. These problems were
to maximize the total benefits from hydropower generation.
This modified version of ACO highlighted the downside of
standard ACO, where its performance depends highly on
the parameters’ values that require extensive turning of the
parameters. One of the adjustments made in this study was
that the parameters setting of the standard FA. MFA can set
the parameters more readily and properly than FA. The results
obtained were compared with other alternatives, such as the
BA, the BBO algorithm, LP, differential dynamic program-
ming (DDP), discrete DDP (DDDP), the multi colony ant
algorithm, the GA, the HBMO algorithm and the WCA, and
fund FA to be capable of providing a better global optimal
solution to the test problems.
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G. GENETIC ALGORITHM (GA)
Applications of GA in reservoir optimization are exten-
sive and are usually used as a benchmark for testing other
algorithm effectiveness. Reference [26] conducted a study
to investigate the potential of GA in real multi reservoir
case. This case study was carried out in a continuous domain
without discretization. When the complexity increases,
the amount of discretization work intensifies, resulting in
more computation time. Thus, without discretization, results
showed a significant improvement in computation time to
converge the searching process and quality of solution for GA
compared to NLP.

Reference [27] showed that to decide the optimum oper-
ating rule in a reservoir environment, the combination of a
simulation model and GA works better. The proposed model
tested on the multipurpose Fei–Tsui reservoir, namely for
irrigation, hydropower, and water supply. The objective was
to meet different demands by minimizing the deficit of water
shortage. The proposed method can satisfy the objective
function, demonstrating its superiority in managing complex
reservoir operations.

Despite that, GA has low computation efficiency and slow
optimization speed, especially when dealing with large and
complex problems. Thus, for a large number of chromo-
somes, the chances that they can trap the solution in the
local optimum are very high. Apart from that, it needed a
high amount of computation cost too. Since GA needs a high
number of function evaluations for a large-scale optimization
problem, it increases the time needed to compute the global
optima.Moreover, the lack of the capability tomaintain diver-
sity in GA’s population of the solution has led to a premature
local optimum. In GA, the population has no memory of
its previous state; this results in an independent event for
each generation. ThereforeGA, in general, can have difficulty
obeying equality constraints.

Reference [28] defined a different evolutionary method
with a combination of the GA and LP for optimization of
hydropower reservoir operation. In this proposed method,
in the beginning, GA optimized a set of complicating vari-
ables, then followed up by LP. The hybrid method could
overcome the problem of the long computation time needed
to reach an optimal solution. Reference [29] solved the
application of the reservoir operation problem by developing
an improved version of the simple GA, called the sequen-
tial genetic algorithm (SGA). The proposed method showed
superiority over the conventional GA by having a lower com-
putational run time. The dynamic update of the length of a
chromosome in the SGA is the main contributor to the signif-
icant reduction in computation run time. Reference [30] opti-
mized the reservoir operation rules by developing a varying
chromosome length GA (VLGA). The VLGA has modified
the GA by improving the initial solution by increasing the
chromosome length sequentially. They applied the proposed
method on the 15-Khordad Reservoir in Iran. A modified
version of GA, the direct search (DSGA) approach, proposed
by Reference [31], was used to optimize the multipurpose

reservoir operation, which had higher efficiency than non-
linear programming and the standard GA. NLP initiates the
search from a random single point that needs a good initial
solution to converge to a global optimum, while GA can
search a population of initial solutions in which all these
solutions are evaluated in the search space. Reference [32]
employed an application of a chaos GA on the reservoir oper-
ation problem so that the new method could possess higher
abilities than the simple GA. The annealing chaotic mutation
operation as a replacement to the standard mutation operator
improves the initialization of the solution, thus avoiding the
chances of being trapped in the local optimum. The hybridiza-
tion method obtained a better solution and converged to the
global optimum faster than standard GA.

H. HONEYBEES MATING OPTIMIZATION (HBMO)
HBMO does not impose much difficulty in dealing with
the problem of discrete or continuous decision variables.
Besides, HBMO requires less computational effort in tackling
different problems with different characteristics due to the
utilization of several operators. Reference [33] employed
HBMO on the optimization of a single-reservoir operation.
He demonstrated that the proposed algorithm could compete
well with other heuristic methods, such as GA, in optimizing
reservoir operation with a discrete search space.
Reference [34] also presented an application of the HBMO
algorithm on reservoir operation optimization. The proposed
algorithm produced results, showing that it was not lim-
ited to discrete decision variables. Another application of
the HBMO algorithm on reservoir operation optimization,
performed by Reference [35], was used to compute the
optimal solution for irrigation and hydropower purposes. The
performance of HBMO was computationally more efficient
compared to that of NLP due to the presence of several oper-
ators. Moreover, Reference [36] demonstrated that HBMO
requires less computational effort than an evolutional algo-
rithm such asGAon reservoir-optimization problems through
a sensitivity analysis.

Despite these advantages, the computational work imposed
during the modeling process of the honeybee’s mating ritual
in HBMO is high. This is due to a large number of evaluations
of the objective function required by taking into account
the unsuccessful drones throughout the process. Therefore,
it decreases the search ability at the local level. Besides,
the queen should choose from the existing population instead
of the entire decision space. Thus, there is no direct link
between the current solutions with the previously generated
solution in the iteration process.

Reference [37] presented a newly enhanced HBMO and
evaluated it by solving several mathematical benchmark
problems and amulti-reservoir problem. In terms of computa-
tion efficiency and convergence of global optimal, ENHBMO
outperformed the other mentioned methods. The difference
between the modified proposed method and the standard
method is in the mating process. Instead of performing a
random search on the entire decision space, the ENHBMO
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generates a new solution based on a previously found solu-
tion. Reference [38] proposed an improved version of the
HBMO algorithm in solving the optimization of multi-
reservoir system’s operation. The modified method is a com-
bination of two different algorithms, namely SA and the
queen GA. This hybrid method improves the local search-
ing ability of HMBO. They tested the proposed method on
a benchmark single-reservoir problem in comparison with
real-coded GA and original HBSM. The results showed that
the proposed method could obtain a better solution than the
other comparative algorithms.

I. PARTICLE SWARM OPTIMIZATION (PSO)
PSO has lower computational work than GA due to the ran-
dom order of the fitness solution in the searching process that
reduces computational time, especially for large population
sizes. Another contribution to the computational work is the
simple arithmetic operation of the velocity update parameter
of PSO. PSO is also simpler than GA because of its ability to
communicate globally among the particles without a need for
mutation or crossover operators. Besides, PSO requires much
fewer parameters to tune; this speeds up the convergence rate
and can attain good global searching ability. Moreover, PSO
is less likely to fall into the local minima problem since it
does not rely on the initial population. PSO uses a population
search instead of point searches to identify a wider promising
region in the whole designated space at the initial stage.
Besides, the randomness in the initial set of the solution has
given many credits to derivative-free algorithms as they do
not rely on initial guesses.

Reference [39] presented the Particle Swarm Algo-
rithm (PSO) for a problemwithmulti objective functions. The
results showed that the PSO has a faster convergence speed
than a GA. Reference [40] tested out the performance of GA
and PSO on reservoir operation with multipurpose functions.
Since both algorithms have different features, their perfor-
mances on reservoir operation optimization are varied. If one
preference is on the stability of the solution obtained, GA is a
better choice, whereas, for the computational efficiency and
accuracy to compute a globally optimal solution, PSO can
satisfy the condition better.

Nevertheless, PSO is weak in exploration; this leads to
its convergence to local optima. This is because there is no
operator that can stimulate abrupt changes that can enhance
the exploration in the set of potential solutions; consequently,
the solutions are easily trapped in local minima. Another
major factor to the convergence to local optima is the strong
connection among the particle members.

Reference [41] applied the proposed EMPSO over the
standard PSO and GA to optimize the multipurpose
single-reservoir (Bhadra) system in India. The proposed
weighted approach can alter the velocity of the particle when
handling multiple objectives. This allowed local search to be
supervised in parallel with the global search, thus keeping
the balancing point between them. Through this implemen-
tation of work, the proposed algorithm could easily find

the global optimum. The proposed EMPSO implemented a
new strategy, the elitist-mutation strategy, which replaces
the worst solutions with the best solution during the muta-
tion process. The results showed that EMPSO outperformed
the standard PSO and GA by increasing exploration in the
search space while maintaining the population’s diversity,
resulting in a better solution with higher computation effi-
ciency. Reference [42] applied the EM–MOPSO algorithm to
optimize the multipurpose reservoir operation problem. The
proposed method surpassed the performance of NSGA-II in
providing a wider range of feasible solutions with a higher
convergence rate.

J. SHARK SMELL OPTIMIZATION ALGORITHM (SSO)
One of the advantages is the high exploration and exploitation
ability of the shark algorithm. It is due to momentum-
incorporated gradient-based forward movement and a rota-
tional movement-based local search.

An application of the SSO for optimizing reservoir oper-
ation, presented by Reference [43], was adopted on two
hypothetical reservoir operation problems. For comparison
purposes, two algorithms, PSO and GA, was used to optimize
the same problems. The results obtained demonstrated the
SSO’s superiority over the other methods in locating a better
global solution at a higher convergence speed rate due to its
strong exploration and exploitation process.

However, SSO’s search performance depends on the ran-
domness in the initial population of solutions. Consequently,
it might have the possibility for solutions to be trapped in the
local optima during the searching process. This drawback is
also possibly due to gradient behavior, which is themovement
of solutions along with the objective function, even though
it speeds up the convergence rate. Another probable disad-
vantage of gradient-based methods is that they are weak in
handling problems such as objective functions with noise,
inaccurate gradients, and an irregular shape of problem lay-
out. In addition, gradient-based methods require tremendous
computational work; for example, each time the code is
altered, the adjoint computations may need to be revised.

K. SIMULATED ANNEALING (SA)
SA is flexible and able to approach global optimality. Refer-
ence [44] verified the applicability of SA on a 10-reservoir
problem in comparison with constraint differential dynamic
programming and a hybrid of GA and linear programming
(LP). The proposed SA outperformed the above-mentioned
techniques. He then developed a model using SA as the
optimization method on a multi-reservoir system in Thailand
to minimize irrigation deficits. The result obtained by SA
has shown that SA is more efficient than GA in providing
a better solution and had high computational efficiency. The
performance of SA in the reservoir was quite favorable and
showed a promising sign to address large and complex prob-
lems. Reference [45] applied SA on a single reservoir on
the Havrias River for optimal irrigation reservoir operation.
The developed model consists of two stages: SA initiates the
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search for the optimal global solution, initially, then refined
by the stochastic gradient descent (SGD) algorithm. The
results showed that this approach managed to compute proper
water release to satisfy the irrigation requirement and total
farm income.

In addition, SA can improve its computational efficiency
through hybridization with GA. As reported by Refer-
ence [46], a hybrid GA–SA algorithm was used to optimize
the operation rule based on fuzzy programming of the Shih-
men Reservoir was used in Taiwan. The proposed method
outperformed the existing reservoir operating in terms of
short and long-term reservoir operation performance. TheGA
algorithm strengthened the global search ability, while the SA
algorithm improved the local search ability in the proposed
method. Additionally, the proposed method increased the
chances to converge to the global optimum, and at the same
time, reduced the computational time.

L. OTHER META-HEURISTIC ALGORITHMS
Recently, there are a few algorithms which are relatively
new to the water related field have been used to optimize
the reservoir operation. One of these algorithms is the water
cycle algorithm (WCA). Reference [47] applied the WCA
to optimize a multi-reservoir system in Iran. The proposed
method showed promising results in solving the reservoir
operation problem with a higher convergence speed than GA
in reaching the global optimum. Since there is no direct
link between the current solutions with the previously gen-
erated solution in the iteration process, it reflects a weak
connection between the generated solutions (streams) with
their best solution, followed by the second and third best
solution. Therefore, improving the comparison of the updated
solution (streams/rivers) with their existing conditions can be
the future work.

Another recently implemented algorithm in reservoir opti-
mization was the moth search algorithm (MSA). In this study
of reference [48], they used an improved and standard version
of MSA to optimize the reservoir operation. They compared
with GA, a commonly used algorithm in reservoir operations.
One of the two main working principles is the utilization
of the quazi-opposite method to improve the exploration of
the standard algorithm. The second working principle is the
adoption of a chaos hypothesis to improve the diversity of the
search process. The improvement in the global exploration
search in MSA has a significant impact, especially in terms
of the stability in obtaining global optimum. Results showed
that improvedMSA could yield higher objective function and
lower standard deviation among the mentioned algorithms.

In the same way, another algorithm that was applied in
this reservoir optimization was the wolf search gray algo-
rithm (WSA) by Reference [49]. They tested the efficiency
of the proposed algorithm on a Karun-4 reservoir system.
Three algorithms, namely, GA, BBO, andWCO, were used to
compare with the proposed algorithm. Results revealed that
the strong exploration search of WSA was sufficient for the
proposed algorithm to reach the global optimal efficiently

without getting trapped in the local optimal. The proposed
algorithm can reach 99.91% of the global optimum, while
the other can only reach up to 79, 96, 98, and 99.90% of
the global optimum, respectively. It is also noteworthy that
WCA and WSA have only a slight difference in the result
obtained due to their search process of having a strong global
characteristic.

IV. CHALLENGES IN THE RESERVOIR OPTIMIZATION
As shown in section III, each algorithm has its own merit
and has been successfully applied to reservoir optimization.
These algorithms can be further classified into several cate-
gories in accordance with the way they are used to optimize
the reservoir operation. It is worth noting that the groupings
here are not distinctive as some algorithms can be charac-
terized into different categories at the same time. Generally,
classifications rely to a great extent upon what the focus
or emphasis and the viewpoint might be. Thus, this section
intends to provide insight into how these algorithms play a
role in handling problems in this field.

A. COMPLEXITY
Real-life engineering optimization problems often deal with
problems that involve the regulation of decisions made. This
issue usually determines the number of decisions in accor-
dance with the problem faced [50]. For short-term real-life
reservoir operation, comprises a time step of hours, days,
or at most a week. Operating a short-term reservoir requires
tremendous work as it involves objectives and constraints that
are contradictory to one another, in which decisions must be
taken in real-time [51]. Rapid changes such as floods and
droughts are short episodes of system operation. This helps
in long-term optimization that is intended to improve the
operation of the system on average over a representative range
of wet, dry, and normal conditions [52].

Besides, reservoir operations in real-life cases are complex
and have high time complexity. In fact, the computational
time is also proportional to the cost needed. Practically,
minimizing the computing time and cost can have a drastic
effect on any optimization system [53]. Therefore, many have
brought in nature-inspired algorithms with stochastic search
abilities; by randomly transferring solutions to solutions in a
progressive manner toward a better solution. Although they
are competent in the optimization process, they still need
a large number of function evaluations to reach the global
optimum. It has a major contribution to the intensive com-
putational approach of simulation optimization [54], [55].

In view of the importance of these complexities, algorithms
such as ACO, PSO, and CA that can reduce the number of
function evaluations would contribute greatly to particularly
real-time optimization.

An ACO algorithm analyses the problem slightly more
complex that of than classical evolutionary and genetic algo-
rithms. Instead of formulating the subsequent generation
population using the Markov chain principle, ACO uses
pheromone traces, which evaporate slowly, resulting in a
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longer-term effect. By doing so, the previous iterations solu-
tion has a significance impact on the next iteration’s state.

Similarly, PSO contains fewer parameters, unlike other
evolutionary algorithms (e.g., no crossover, mutation, and
selection). Due to this, its searching process depends solely
on the iteration procedure, which decreases the calculation
burden.

The computing aspect of cellular automation is essential
not only for functional implementation but also for funda-
mental study. It is possible to view cellular automata as a
computer system that processes the information encrypted
in their structure. Their fundamental construction is quite
straightforward and yet their overall performance is highly
complicated and can mimic the phenomena that have been
observed in many physical and other systems.

In most real-world applications, the dynamics of the sys-
tem are continuously changing. The developedmeta-heuristic
techniques should be substantially able to adapt themselves
to these changes and to generate adequate responses and
reactions to them. In other words, they could be applied in
online (real-time) or offline (simulation) learning. Using RL
in online learning from scratch (without any prior knowledge)
could be very expensive and troublesome; therefore, it could
be initially used as offline learning during which a basic
understanding of the environment is achieved. This knowl-
edge could be eventually useful in starting online learning.

B. PARAMETER TUNING PROCESS
Most optimization problems found in the real world can-
not be solved using analytical methods. Most metaheuristics
have their control parameters to modify how the heuristics
perform their search. This is necessary because different
problems may require different search strategies to be solved
effectively. The control parameters allow for the optimiza-
tion algorithm to be adapted to the problem at hand [56].
It is, however, difficult to predict what the optimal control
parameters are for any given problem. The problem of finding
these optimal control parameter values is known as parameter
tuning. The significance of the parameter tuning process
would be great, especially in multi-reservoir cases. Reservoir
optimization is a problem-specific type that varies from case
to case. The conditions faced in each case might not be the
same as those in another; thus, it is time-consuming to find a
new set of parameters for the specific problem.

PSO implementation is simpler and easier than GA as it
deals with few parameters (like position and velocity only).
In contrast to GA, PSO does not use any genetic kind of oper-
ator, i.e., crossover and mutation. Particles update themselves
using the internal velocity, and they also have a memory that
is important to the algorithm. Apart from that, an algorithm
like BBO is slightly different than PSO in terms of segrega-
tion in which clumping the solutions together does not exist
(without following the global best). The relatively slow trans-
fer rate of information avoids the formation of comparable
particles that can clump the solutions together. The presence
of redundant solution can decrease the population diversity.

In HBMO, four arbitrary different crossover operators are
employed. The differences between these four operator types
include the different strategies in generating the new solutions
based on the previous solutions. For instance, in the first and
second types, a one-point cut crossover is applied, but in each
one, the queen’s genes are placed in the right part and left
part of the new solution. In the last two types, a two-point
cut crossover occurs, but the queen’s genes are placed in
the middle and sides of the new solution. Moreover, HBMO
does not require parameters’ sensitivity analysis. It is due to
independence from its related parameters, thus reducing the
tuning process of the parameters.

To sum up, the operation of a reservoir involves a complex
decision that should be made, integrating many variables and
objectives and significant risk [57]–[59]. Inaccurate tuning
of the parameter-specific algorithm on cases such as reser-
voir optimization only intensifies the computation effort or
traps into the local optimal [60]. With respect to the points
mentioned above, algorithms such as WCA, BBO, PSO, and
HBMO can be beneficial in this situation. Since they often
share some parameters, including the number of individual in
the population or random factors to introduce diversity, they
are less likely susceptible to failure in the parameter tuning
process. Thus, if the number of variables and parameters
in this model makes the problem intractable and too large,
existing software or hardware might not be able to find an
optimal solution using conventional optimization methods in
a reasonable time.

C. EXPLORATION AND EXPLOITATION
A meta-heuristic algorithm performs two major searches in
the problem space: a global search is performed to obtain
multiple solutions and local searches in the neighborhoods
of the existing solutions [61], [62]. This allows improvement
to be made in the obtained solutions. Finding a proper bal-
ance between exploitation and exploration makes solving the
problems much more difficult when a certain meta-heuristic
algorithm is used [63], [64]. The difficulty in the adjustment
process is due to the failure of the two processes to occur
simultaneously. However, if a meta-heuristic algorithm can
only perform the best in either one of them, then it is still
relatively lacking in obtaining a good solution. For example,
poor exploitation can reduce the searching ability to conver-
gence to the global optimum, whereas poor exploration can
decrease the chances to escape from the local optimum [65].
Facing a problem with many local optima, the meta-heuristic
algorithm that has poor exploitation will find it hard to get
to the global optimum [66]. It can be seen based on the
previous study, algorithms such as WCA, CA, HBMO, BA,
BBO, PSO, ACO, and FA could solve reservoir optimization
problems even though they are either weak in exploitation or
exploration search ability. And through hybridization or mod-
ification, these algorithms showed even better performance
by enhancing their respective shortcoming.

The algorithm that is strong in both search abilities without
hybridization such as CSO can be proved suitable in han-
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TABLE 3. Criteria based on the reservoir characteristic optimization.

dling reservoirs that contain several conflicting objectives and
constraints. These objective functions are always nonlinear,
nonconvex, and contain multiple local optima [67]. The pres-
ence of multi-objective optimization problems signifies the
importance of MHAs, especially in real-world optimization.
There are always trade-offs between these objectives such
as that between maximizing benefits from hydropower and
fulfilling the demand for irrigation. Such objectives are often
conflicting with each other, resulting in the existence of mul-
tiple optimal solutions [68].

D. STABILITY AND CONVERGENCE SPEED
The conventional algorithms are said to be deterministic, i.e.,
they require gradient information to find function values or
derivatives. Usually, they are also known as gradient-based
algorithms. By contrast, gradient-free algorithms use only
the function values without relying on any derivative
information. In every optimization problem, the objective
function can be considered as a mathematical model (func-
tion) that allocates a fitness value to each solution in the
search space. Meta-heuristic algorithms begin their searching
process with an initial population of variables in the direction
toward themaximum/minimumof the objective function until
a stopping criterion is met. Although each meta-heuristic
algorithm has its specific way of conducting the search pro-
cess, it can find a good solution intelligently. However, there
is no guarantee that the achieved solution is the best.

Reference [69] stated: ‘‘Objective functions used in reser-
voir system optimization models should incorporate mea-
sures such as efficiency (i.e., maximizing current and future
discounted welfare), survivability (i.e., assuring future wel-
fare exceeds minimum subsistence levels), and sustainability

(i.e., maximizing cumulative improvement over time).’’
Sustainability is one popular concept delineated by
Reference [70].

Therefore, it is imperative to find methods that can induce
randomness in their search process and at the same time
obtain global optimum with a fast convergence rate. Among
the mentioned algorithms in section III, there a few algo-
rithms that fit this characteristic. Some algorithms are slow
to convergence at the beginning, while some algorithms con-
vergence faster than the other.

Algorithms that have a high convergence rate would be
BA and FA. In BA, it possesses a unique feature that is
also known as automatic zooming (i.e., higher convergence
speed). This ability allows zooming into a region where there
is a potential solution to be found. BA can perform parameter
control in which the value of the variable can be altered as
iterations proceed. This allows the exploration process to be
switched to an exploitation process as the global solution is
impending. Coupled with the automatic switching, it speeds
up the convergence rate. Similarly, the high speed of con-
vergence is easily attainable in PSO because the process is a
single-directional flow of information, which allows passing
the information from one particle to another. Meanwhile,
FA could perform well without the need of incorporating the
personal and global best of solution like in PSO. This allows
FA to iterate quicker to the global optimal.

V. THE ALTERNATIVE METAHEURISTICS ALGORITHM
FOR RESERVOIR OPTIMIZATION
The JayaAlgorithm applications relatively cover awide range
of domains by many researchers with backgrounds in dif-
ferent fields. The working principle of JA is rather straight-
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forward, where for a given problem, the solution obtained
should move towards the best solution, thus avoiding the
worst solution. The beauty of JA lies in its characteristic
of a parameter-less algorithm. It does not possess specific
control parameters like the above-mentioned algorithms. Like
any other algorithms, it requires typical control parameters,
namely, the number of maximum generation and popula-
tion size. After the parameter setting of population size and
number of iterations, the solution is evaluated based on the
equation below:

Xnew,i,j,k = Xi,j,k + r1,i,j
(
Xi,best,j,k − |X i,j,k |

)
− r2,i,j

(
Xi,worst,j,k − |X i,j,k |

)
. (7)

There are two main operations in Jaya which are the
r1,i,j

(
Xi,best,j,k − |X i,j,k |

)
and r2,i,j

(
Xi,worst,j,k − |X i,j,k |

)
.

The former term moves the candidate solutions towards the
better solution, while the latter term moves the candidate
solutions away from the worse solution. To examine its
efficiency and effectiveness, the Jaya algorithm has been
evaluated in comparison with other optimization methods.
Several case studies have been carried out that involved
dealing with the large-scale optimization problem. Refer-
ence [71] applied the Jaya algorithm to the optimization of
a truss structure with many design variables to be considered
and showed its superiority over other optimization methods.
Despite that the Jaya algorithm prevailed over other MHAs
in many other disciplines, it is still new in water-resource
problems. Its application to the groundwater management
problem was presented by Reference [72]. They optimized
the cropping pattern problem to maximize the net annual
returns by incorporating the Jaya algorithm into a mathemat-
ical model. The results showed that the proposed algorithm
could compete well with the commonly used PSO algorithm
in water-resource management. In addition, the computation
time needed for the Jaya algorithm is less compared to that for
PSO; this showed Jaya algorithm’s applicability to be more
suitable for real-time engineering applications such as the
dam and reservoir water system.

VI. RECOMMENDATIONS AND CONCLUSION
The optimization process of reservoir operation involves
several aspects of the characteristics of reservoir oper-
ation. The tuning process of parameters speeds up the
decision-making process of the release rule. Meanwhile,
as stated by Reference [73], through an exhaustive search
method, the time of finding the exact solution is high, espe-
cially in the NP-hardness problem. Therefore, finding a solu-
tion using metaheuristics involves a compromise between
the speed of finding and the accuracy of the obtained solu-
tion. As aforementioned, several techniques, including the
hybridization approaches, have been seen to work efficiently
in the reservoir operation. Recently, the rapid development
of optimization methods and their application in numer-
ous water-resource systems have successfully overcome the
shortcoming of traditional methods. The commonly known
meta-heuristic methods are evolutionary algorithms such as

the GA and the swarm intelligence-based algorithm (e.g.,
PSO). A common point that these algorithms shared is that
their performances depend heavily on the parameters used.
One of the drawbacks of parameter-tuning process is that
these parameters might lead to the convergence of the local
optima solution or an increase in computational burden if one
fails to tune them properly.

The proposed method for future study can be a fully devel-
oped parameter-less algorithm. It should not possess spe-
cific control parameters like the above-mentioned algorithms.
Having an efficient tuning parameter-less algorithm, the pro-
posed method will overcome the difficulty of finding optima
for tuning specific control parameters. By outperforming the
previous techniques with modern algorithms, the inability
of the former methods to address multidimensional prob-
lems has been successfully dealt with using meta-heuristic
methods. The efficiency of the MHAs at the early stage
of development is considerably low due to limitations in
computation work. As technology advances, complex prob-
lems become solvable by meta-heuristic methods; however,
this requires extensive tuning of parameters; the associated
algorithm is also referred to as the problem-based algo-
rithm. The tuning process of the existing MHAs is seem-
ingly unavoidable. Therefore, the proposed meta-heuristic
algorithm has the potential to be an alternative optimiza-
tion method because of its uniqueness as a parameter-less
algorithm.

In conclusion, a number of meta-heuristic algorithms
are useful for addressing reservoir operation problem. The
strength of these optimization algorithms opens up a new
avenue and many opportunities in the water-related field.
Through a deeper understanding of the applicability of one
algorithm, it allows the algorithm to be modified. The modi-
fication can be the addition of a new operator to the existing
algorithm or incorporation of a different algorithm. Subse-
quently, it improves the efficiency of the modified algorithm
to provide a better solution. The areas of improvement are
usually the computational cost, parameter setting, conver-
gence speed, local and global searching ability.
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