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ABSTRACT The accurate estimation of three-dimensional (3D) object pose is important in a wide range of
applications, such as robotics and augmented reality. The key to estimate object poses is matching feature
points in the captured image with predefined ones of the 3D model of the object. Existing learning-based
pose estimation systems utilize a voting strategy to estimate the feature points in a vector space for improving
the accuracy of the estimated pose. However, the loss function of such approaches only takes account
of the direction of the vector, resulting in an error-prone localization of feature points. Therefore, this
paper considers a projection loss function dealing with the error of the vector field and incorporates a
refinement network to revise the predicted pose to obtain a good final output. Experimental results show
that the proposed methods outperform the state-of-the-art methods in ADD(-S) metric on the LINEMOD
and Occlusion LINEMOD datasets. Moreover, the proposed method can be applied to real-world practical
scenarios in real time to simultaneously estimate the poses of multiple objects.

INDEX TERMS Object pose estimation, LINEMOD, occlusion LINEMOD, deep learning, convolutional
neural network.

I. INTRODUCTION
The main purpose of object pose estimation is to describe
the relationship between the object and world coordinates.
Specifically, its goal is to obtain the rotation angle and
translation distance of the object according to the captured
image. The accurate estimation of three-dimensional (3D)
object pose is vital in a wide range of applications, such
as pick-and-placing robotic applications and virtual reality,
thus attracting considerable attention in the field of computer
vision.

Traditional object pose estimation methods can be
roughly categorized into two-dimensional (2D) [1]–[3] and
3D [4]–[6] methods. The former detects the feature points
from 2D images and solves the rotation matrix and trans-
lation matrix using Perspective-n-Point (PnP) algorithms.
The latter matches the point clouds between a predefined
template model and depth image information using ICP
algorithms [7]. Due to the rapid growth of the graphics

The associate editor coordinating the review of this manuscript and

approving it for publication was Charith Abhayaratne .

processing unit (GPU), learning-based techniques have sig-
nificantly improved the overall performance of object pose
estimation in recent years. These approaches [8]–[24] can
be classified into two different types based on the input
data: RGB-D-based and RGB-based methods. RGB-D-based
methods are useful in predicting the translation distance
with available depth information. However, low-quality depth
data are likely to incur negative impacts on pose estimation.
Conversely, RGB-based methods estimate object pose by
matching the feature points in the captured image against
predefined ones of the corresponding 3Dmodel of the object.
Hence, it is important to determine 2D feature points in
images that are related to the designated 3D model points for
RGB-based methods. Such process is termed in the literature
as the localization of 2D–3D correspondence. To provide
a 2D–3D correspondence for the pose estimator, BB8 [11]
aimed at localizing feature points projected from the eight
corners of a 3D bounding box by restricting the range of
pose data for training. Some approaches [19] localized feature
points projected from the designated vertices of an object
point cloud model. However, such localization approaches
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are likely to encounter a mismatch problem when dealing
with occluded objects. If the feature points are not sufficiently
accurate, then the PnP solver will lead to an inaccurate esti-
mate of the object pose. In order to solve this problem, one
of the typical ways is to utilize voting strategies to determine
the feature points in a vector space. If the selected feature
points are determined from the highest hypothesis in the
vector space, then the localization process can overcome
the occlusion scenarios. However, the loss function of such
approaches only takes into account the direction of a vector,
resulting in an error-prone localization of feature points.

Thus, this paper considers a projection loss function to
deal with the errors in a vector field and incorporates a pose
refinement network to revise the predicted pose so as to obtain
a good performance. Our proposed pose estimation systems
make the following main contributions: 1) A projection loss
function is designed to deal with the error of the feature point
localization in a vector space, providing accurate feature
points for the PnP solver. 2) The proposed system integrates
a refinement network controlled by a novel discriminative
strategy for improving the accuracy of pose estimation. 3) Our
proposed pose estimation systems have better performance in
terms of the average distance of model points (ADD) metric
on both the LINEMOD [4] and Occlusion LINEMOD [6]
datasets, outperforming state-of-the-art methods. 4) The pro-
posed method can be applied to real-world practical scenarios
in real time to simultaneously estimate the poses of multiple
objects.

The rest of the paper is organized as follows: Section II
introduces related works, Section III presents the proposed
pose estimation method, Section IV shows the experimental
results, and Section V concludes our work.

II. RELATED WORKS
A. TRADITIONAL METHODS
Traditional object pose estimation depends on match-
ing feature points in an image against those of a 3D
object model. Popular methods that extract feature points
from RGB images, such as SIFT [25], FAST [26],
SURF [27], and ORB [28], have been designed to handle the
feature-extracting task under various environmental factors
such as different camera viewpoints, lighting conditions, and
noisy images. After the feature extraction, object pose can
then be estimated using PnP algorithms. However, traditional
methods may encounter various difficulties. First, the prob-
lem of occlusion scenarios is not well addressed because
features points cannot be successfully detected. Next, the fea-
ture points of texture-less objects cannot be easily localized.
Third, these methods are ad-hoc-designed to serve certain
scenarios that cannot bring out a general model for various
environments. Accordingly, in recent years, deep learning
techniques have been introduced to solve these problems.

B. DEEP LEARINING-BASED METHODS WITH RGB-D DATA
Depth information provides an effective solution to deal with
texture-less objects. With a deep learning model, the relation-
ship between 2D and 3D are learned using the available depth

map or point cloud. Among them, PoseCNN [20] utilized
depth information to improve the accuracy of the predicted
pose with ICP. DenseFusion [8], [24] integrated a pose refine-
ment network into the pose estimation system, where the pose
is estimated with fused RGB-D information and then refined
by an iterative refinement network for a better performance.
However, utilizing the depth information to estimate object
poses faces different challenges. First, the precision of the
depth map depends on the quality of the camera. If the
precision of the captured depth is not sufficiently high, then
the accuracy of the pose estimation will not be appealing.
Next, RGB-D-based methods encounter prediction difficul-
ties when the target object is occluded. This is because the
available depth information cannot be completely matched
with the entire 3D model of the object. Some of the depth
data may also make the pose estimator confused with other
objects, resulting in difficulties to obtain an accurate pose
estimate.

C. DEEP LEARINING-BASED METHODS WITH RGB DATA
The task of RGB-based pose estimation can generally be
divided into two parts: object detection and pose estima-
tion. The former locates the position of target object in
images and collects the required features from the object,
whereas the latter matches the features against those of the
3D object model to estimate poses. To make an accurate pose
estimation, the most important task is to extract adequate
feature points, which best describe the 2D–3D correspon-
dence for the pose estimator. Various methods have been
introduced in the literature to extract features points. SSD-
6D [12] and BB8 [11] focused on extracting the projection
position of the corner vertices of an object’s bounding box.
SSD-6D [12] classified objects from different viewpoints and
directly regressed the 3D bounding box. Thus, it is unreliable
when facing the occlusion problem. BB8 [11] first estimated
the 2D segmentation mask, then predicted the bounding box
via the mask, and finally estimated the pose by the PnP
algorithm. PvNet [9] collected the feature points on the
object’s surface. Pix2Pose [23] obtained the feature points
by directly regressing the 3D coordinates of a 3D object
model. However, directly regressing the feature points from
the image will encounter estimation problems in occlusion
scenarios, which makes the estimation unreliable. To deal
with this problem, PoseCNN [20] firstly proposed a voting
strategy to locate the center point of the object in the vector
space to strength the 2D–3D correspondence when occlu-
sion occurs. Subsequently, PvNet [9] also adopted a voting
strategy to select feature points from the vector field. This
strategy provides better robustness for pose estimation than
the regression approaches, because it allows the feature points
to be selected from the occluded area of the image. However,
such a strategy requires an accurate vector field estimation.
Errors in the vector field will cause a large deviation between
the selected feature points and the ground truth. Such an
impact will definitely degrade the performance of the pose
estimation results.
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FIGURE 1. Architecture of the proposed pose estimation system.

III. PROPOSED METHOD
In this paper, we proposed a pose estimation system built on
top of PvNet [9], taking into consideration of a projection
loss and a discriminative refinement network to obtain a
good performance. Figure 1 shows the architecture of the
pose estimation system that contains 4 stages, including a
feature estimation, pose estimation, feature extraction, and
pose refinement stage. First, the captured RGB image is
fed into ResNet-18 for extracting semantic segmentation and
vector-field data. The projection loss is integrated to ResNet-
18 to increase the accuracy of vector-field data. Then, a vot-
ing strategy [9] is applied to determine the feature points.
Next, a PnP solver makes an initial pose estimate according
to the feature points. Third, the estimated pose, available
object 3D model, and vector-field prediction are utilized to
generate the input data for the refinement network at the sec-
ond feature extraction stage. Specifically, the pose data and
3D model are utilized to generate a transformed 3D model
of the object, and the corresponding vectors of the object
are selected based on the vector-field prediction and the
semantic segmentation. Lastly, an activation strategy deter-
mines whether or not to launch the pose refinement network.
In the following subsections, we will provide more details
on the design of the projection loss, total loss function with
a dynamic weight, pose refinement process, and activation
strategy.

A. PROJECTION LOSS FUNCTION
One of the objectives of this work is to provide accurate
feature points for the PnP solver to estimate object poses.
When a 640 ×480 image is fed into ResNet-18, we obtain
a semantic segmentation for the object and a vector-field
prediction. Here the key to improve the localization results
of feature points relies upon the design of the loss function
of the vector field. However, the original loss function of the
vector field in PvNet only considers the similarity between
the predicted and ground-truth vectors. The loss gradient of
this design seriously degrades when the epoch number is suf-
ficiently large. To improve the learning effectiveness in such
a condition, we add an extra loss function by considering the
distance error d between the position of the predicted vector
Epik and the ground-truth vector Egik , as illustrated in Figure 2,
where we intend to minimize the distance error for increasing
the gradient of loss at the final training stage. Therefore,

FIGURE 2. Illustration of the distance error between the predicted vector
and ground truth. By minimizing the distance error, the predicted vector
can get closer to the ground truth.

we propose a loss function to reduce the distance error as
follows:

Lproj =
∑
k∈K

∑
i∈P

l1

(
wi

(Egik · Enik )
‖Enik‖

)
, (1)

where k ∈ K is the kth keypoint and i ∈ P represents the
ith pixel in the image P. Epik = (pxik , p

y
ik ) is the predicted

vector from the network, Egik = (gxik , g
y
ik ) is the ground truth

vector, and Enik = (pyik , -p
x
ik ) is the normal vector of the

predicted vector Epik , where x and y represent the horizon-
tal and vertical coordinates, respectively. wi represents the
value of pixel i in the predicted mask to limit the vector
to the region of interest, and l1(·) is the standard Pytorch
smooth_l1_loss function. We calculate the distance error d
by projecting the target vector onto the normal of predicted
vector. With this loss function, we can avoid the training
process from gradient vanishing condition after long learning
epochs.

B. TOTAL LOSS FUNCTION WITH A DYNAMIC WEIGHT
By including the projection loss, the total loss function of
ResNet-18 in the proposed system comprises three losses
to determine the segmentation mask and vector-field predic-
tion. To ensure that the three losses properly work together,
we design a dynamic weight to balance the scale of the loss
functions. According to the experimental results, the pro-
jection loss should be launched at longer learning epochs
rather than the beginning of the training process. This is
because the projection loss will be too large at the begin-
ning of the training process and hence dominates the loss
function. Therefore, we design a dynamic weight propor-
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FIGURE 3. Structure of the refinement network with a feature extraction to explain the input data to the refinement network.

tional to the number of learning epoch for the total loss
function:

Ltotal = Lvf + Lseg + βLproj, (2)

where Lvf and Lseg are the loss of vector-field prediction and
semantic segmentation, respectively [9], and β is a weight of
the projection loss, which we empirically determine. In the
beginning, theweight starts from 0.01 to 0.05with an increase
of 0.001 every five epochs. With this strategy, the projec-
tion loss will dynamically increase during the training pro-
cess, allowing the three losses working in an appropriate
scale.

C. POSE REFINEMENT
Motivated by DenseFusion [8], [24], 3D information seems
to bring a strong 2D–3D correspondence for designing a
learning-based pose estimator. Therefore, we integrate a pose
refinement network into the pose estimation system. Because
DenseFusion is an RGB-D-based approach, we only adopt
the pose refinement network that does not require depth
information.

Here, our rationale is to make the refinement network learn
the pose refinement process rather than estimate a new pose.
Figure 3 illustrates the structure of the proposed refinement
network, where the input to the refinement network requires
the 2D and 3D information of the object. However, the pro-
posed RGB-based method can only provide 2D information
from the previous pose estimation network. Thus, we have

to utilize the 3D features of the object 3D model. Particu-
larly, a transformed point cloud can be obtained according
to the estimated pose from the previous network, which
is subsequently utilized as the 3D information for pose
refinement. Furthermore, the selected vector of the object
generated from the previous network is taken as the 2D infor-
mation. After executing the refinement network, the predicted
pose is improved and becomes closer to the ground-truth
pose.

D. REFINEMENT ACTIVATION STRATEGY
Although the refinement network can help improve the pose
estimation performance, it cannot effectively work when
the object was seriously occluded. In this circumstance,
the refinement network cannot correctly perform. To solve
this problem, we control the launch time of the refinement
network through a discriminative strategy according to the
area of the occlusion region, as illustrated in Figure 4. The
process of the proposed activation strategy for the refine-
ment network is shown in Figure 5. First, we project the
point cloud of the object based on the predicted pose data.
Then, we compare the projection with the mask generated
from the semantic segmentation. If the overlapped region
is greater than a pre-defined threshold, then the estimated
pose is sufficiently correct to launch the refinement network.
Figure 6 shows an example of the projection result of the
object ‘Cat’ from the LINEMOD dataset, where the purple
region is the mask from the semantic segmentation, the yel-
low points are the projected points of the object point cloud
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FIGURE 4. Overall process of the proposed pose estimation system.

FIGURE 5. Activation strategy for the pose refinement network.

that overlap with the mask, and the red points are the ones
that do not overlap with the mask. In this figure, most of the
projected points are yellow, which means that the percentage
of the overlapped region between the projection and the mask

FIGURE 6. Projection of the object ‘Cat’ from the LINEMOD dataset in
comparison with the mask according to Figure 5.

FIGURE 7. Object pose estimation incorporating the projection loss
(OPEPL).

FIGURE 8. Object pose estimation incorporating the projection loss with
refinement (OPEPL-R).

FIGURE 9. Object pose estimation incorporating the projection loss and
discriminative refinement (OPEPL-DR).

is high. Hence, we will launch the refinement network in such
case.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
In this paper, we propose three pose estimation systems in
different settings by considering the projection loss func-
tion, refinement network, and discriminative strategy. For
easy understanding, we give each of the methods an abbre-
viation: 1) the base model with the projection loss func-
tion as the Object Pose Estimation Incorporating Projection
Loss (OPEPL). 2) the integration of the refinement net-
work with OPEPL as the Object Pose Estimation Incorpo-
rating Projection Loss with Refinement (OPEPL-R). 3) the
refinement network controlled by a proposed discrimina-
tive strategy as Object Pose Estimation Incorporating Pro-
jection Loss and Discriminative Refinement (OPEPL-DR).
For better clarity, Figures 7, 8, 9 shows the architecture of
each method.

To evaluate the proposed pose estimation systems, we con-
duct our experiments on Intel (R) Core (TM) i7-9700 @
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TABLE 1. Comparison between the proposed method and state-of-the-art approaches in the ADD metric on the LINEMOD dataset.

TABLE 2. Comparison between the proposed method and state-of-the-art approaches in the 2D projection metric on the LINEMOD dataset.

3.0GHz with an NVIDIA GeForce RTX 2070 graphic card,
under Python 3.6 that utilizes PyTorch v1.1 and NVIDIA
CUDA 10 library for parallel computation.

B. DATASETS
We conduct experiments on two well-known 6-degree of
freedom (DOF) pose estimation datasets, i.e., LINEMOD [4]
and Occlusion LINMEOD [6] datasets. LINMOD con-
tains 13 objects and exhibits various estimation challenges,
including texture-less objects and complex environments,
whereas Occlusion LINEMOD uses part of the objects in
LINEMOD to build up occlusion scenarios. We follow
a prior work [9] to split the LINEMOD data: 15% of
images for training and 85% for testing. In addition to the

original LINEMOD dataset, we also expanded the training
data based on the LINEMOD dataset. For each single object,
we rendered 10000 images with random backgrounds and
transformed poses based on the available point cloud data
of the LINEMOD dataset. Then, we generate 10000 fused
images by randomly selecting multiple objects and randomly
transforming the poses of the objects. Thus, the training data
we used contain the original LINEMOD training set, the
10000 rendered images, and the 10000 fused images.

C. EVALUATION METRICS
The ADD [4] and 2D Projection metric [29] are widely
used metrics for evaluating the performance of the 6-DOF
pose estimation. In this work, we adopt both of them to
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FIGURE 10. Object pose estimation results represented by the bounding boxes are drawn in the corresponding scene images from
the LINEMOD dataset by various methods. Target objects in the column from left to right are Ape, Cat, Duck, and Hole puncher.

evaluate the proposed pose estimation systems. The ADD
metric measures the average 3D distance between the points
transformed from the estimated pose and ground-truth pose.
For symmetric objects, we adopt ADD-S [20] to calculate
the distance. Once the distance is less than 10% of model’s
diameter, the estimated pose is considered correct. The 2D
projection metric measures the distance between the projec-
tion model of the estimated and ground-truth poses. If such a
distance is less than 5 pixels, the estimated pose is considered
correct.

D. IMPLEMENTATION DETAILS
The training data are expanded based on the LINEMOD
dataset for better learning performance. To enhance the diver-
sity of the training set, we apply data augmentation strategies,
including random image cropping and rotation. We follow
a prior work [9] by revising ResNet-18 as the feature esti-
mation network, to work together with the refinement net-
work shown in Figure 3. We set the initial learning rate as
0.0001 and halve it every 20 epochs in both networks. Each
model of different objects is trained for 200 epochs in the
OPEPL network. As for the refinement network, each object
is trained for a manually selected epoch number until the
training loss converges within an acceptable value.

E. COMPARISON RESULTS AGAINST THE
STATE-OF-THE-ART METHODS
In Table 1 and Table 2, we compare our methods with
BB8 [11], PoseCNN [20], DPOD [18], and PvNet [9] in

ADD and 2D projection metrics on the LINEMOD dataset,
respectively. From Table 1, we can see that the accuracy of
the proposed three methods are all better than those of the
State-of-the-Art methods. OPEPL reaches 90.93% in ADD
metric, which is better than PvNet [9]. This means that
adding the projection loss does helps to improve the accu-
racy of pose estimation. Conversely, the OPEPL-R reaches
91.68%, indicating that the proposed refinement network
successfully improves the final pose estimation. Note that
the average accuracy of OPEPL-DR is same as that of
OPEPL-R, because the pose refinement process is activated
by the proposed discriminative strategy for most of the test
scenes in the LINEMOD dataset. With reference to Table 2,
although the performance of PvNet is slightly better than that
of the proposed OPEPL-R and OPEPL-DR in 2D projec-
tion metrics, OPEPL with 99.11% accuracy is still the best
among all the methods. To evaluate the proposed methods
in occlusion scenarios, Table 3 shows a comparison of the
proposed methods with YOLO6D [19], PoseCNN [20], and
PvNet [9] in the ADD metric on the Occlusion LINEMOD
dataset. From Table 3, we can see that OPEPL, OPEPL-R,
and OPEPL-DR reach 41.71%, 42.21%, and 42.33% accu-
racy, respectively, outperforming the state-of-the-art meth-
ods. Moreover, the performance of OPEPL-DR is more
accurate than that of OPEPL-R, indicating that the pro-
posed discriminative strategy can make a better choice as to
when to launch the refinement network for occlusion scenar-
ios. Figures 10 and 11 show some of the pose estimation
results using OPEPL and OPEPL-DR compared with the
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TABLE 3. Comparison between the proposed method and state-of-the-art approaches in the ADD metric on the occlusion LINEMOD dataset.

FIGURE 11. Object pose estimation results represented by the bounding boxes are drawn in the corresponding scene images from the
Occlusion LINEMOD dataset by various methods. Target objects in the column from left to right are Ape, Cat, Duck, and Hole puncher.

TABLE 4. Running speed on multi-object pose estimation.

ground truth on the LINEMOD and Occlusion LINEMOD
datasets, respectively. Moreover, OPEPL and OPEPL-DR
can make appealing pose estimates closer to the ground
truth.

F. PRACTICAL IMPLEMENTATION FOR REAL-WORLD
SCENARIOS
To evaluate the proposed method in practical real-world
scenarios, we create our own training data on 3 different
objects, including amouse and two boxes with different sizes.
Moreover, we expand the proposed network dealing with a
single object to train a pose estimation network for multi-
ple objects by adding output layers to ResNet-18 to detect
multiple objects via sematic segmentation. The experiment is
conducted on a personal computer with Intel (R) Core (TM)
i7-9700 @ 3.0GHz, an NVIDIA GeForce RTX 2070 graphic
card, and a Logitech C920 webcam. Table 4 shows the
running speed of the proposed pose estimation system for
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multiple objects appearing on a desk. We can see that the
proposed method can simultaneously estimate the objects in
real time, achieving 24 fps and 20 fps in estimating a single
object and 3 objects, respectively. Thus, the proposed method
can estimate poses for multiple objects in practical real-world
scenarios.

V. CONCLUSION
In this work, we developed an object pose estimation system
that integrates a projection loss and a pose refinement net-
work to the RGB-based pose estimator. The projection loss
reduces the position error of feature points by voting from
vector spaces so that the PnP solver can provide an accurate
pose estimate. Moreover, the refinement network controlled
by the proposed discriminative strategy can dynamically
improve the accuracy of the object pose with 2D and 3D
information effectively. The experimental results show that
the proposed method reaches 91.68% and 42.33% accuracy
in the ADD(-S) metric on the LINEMOD and Occlusion
LINEMOD datasets, respectively, outperforming the state-
of-the-art methods. To solve practical real-world problems,
an adaptive grasping strategy for robot arms based on the
proposed pose estimation methods are currently under inves-
tigation.
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