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ABSTRACT This paper proposes a linear compensator algorithm to improve the performance of an absolute
multipolar magnetic encoder (AMPME). An AMPME is an absolute magnetic rotary encoder that uses
a multipolar magnet (MPM) to increase the resolution. The resolution can be dramatically increased in
proportion to the number of poles in the MPM. However, various hardware problems that occur during
the encoder manufacturing process degrade the AMPME performance. Also, harmonic components occur
in the raw data due to various problems, such as the resistance error of the analog circuit, magnetic field
overlap between the magnets, position error between the sensor and magnet, and pole-pitch difference. In
particular, during the magnetization process of the MPM, the pole-pitch difference becomes a problem when
the sizes of each pole are not uniform. This problem causes harmonic components that reduce the absolute
position accuracy. To solve these problems, this paper proposes a linear compensation method. The proposed
linear compensator consists of two parts. The first part is the enhanced ratiometric linearization for phase
calculation and calibration. The second is the phase compensator for removing the phase difference via the
pole-pitch difference of the MPM. The linear compensator improves various parameters by precomputing the
offset, amplitude, and phase corrections. After compensating for sinusoidal signals, the linear compensator
applies appropriate parameters at the appropriate times. This method is faster, easier to set up, and more
accurate than the conventional method. Furthermore, this method is experimentally verified against the
existing harmonic rejection method. Experimental results are provided to verify the effectiveness of the
proposed method.

INDEX TERMS Absolute magnetic encoder, calibration, harmonic error, linearization, pole-pitch difference,
multipolar magnet, phase locked loop.

I. INTRODUCTION

An absolute encoder provides an absolute rotation position.
Unlike incremental encoders, an absolute encoder does not
require a home sensor or limit sensor to identify the reference
position. Additionally, the absolute encoder always remem-
bers the physical position without using a battery. In the case
of incremental encoders without a battery, the encoder is not
able to locate its own position when the power is turned off
and then on again. With an absolute encoder, it is possible
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to reduce overall battery management, making it particularly
useful in systems where it is difficult to replace batteries.
For example, robots hanging from the ceiling of an assembly
line and underwater robots have batteries that are difficult to
replace.

Encoders can be divided into optical and magnetic types
according to the detection method. Although the optical
encoder has high accuracy, its structure is complicated. Opti-
cal encoders use light-emitting elements placed in parallel
and light-receiving elements placed to face light-emitting
elements. An optical disk is placed between the light-emitting
element and the light-receiving element. The signal from the
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parallel light-receiving element is binary encoded according
to the position of the detection shaft. The performance of the
optical encoder is determined by the precision of the optical
disc. Its performance is significantly reduced if oil or dust
penetrates the encoder system and covers code area of the
optical disc. Magnetic encoders are structurally simple and
cheaper than optical encoders because they only need to be
placed so that the bipolar magnet (BPM) and magnetic-sensor
face each other. Furthermore, the magnetic encoders do not
affect the magnetic field even if dust or oil penetrates the
system. However, the precision of the magnet is not suf-
ficient, and the magnetic sensor is affected by noise. The
performance of the magnetic encoder is smaller than the
optical encoder. To compensate for this, both BPM and a
multipolar magnet (MPM) can be added on the detection shaft
to increases dramatically [1]-[4].

The absolute multipolar magnetic encoder’s (AMPME)
detection shafts are equipped with both an MPM and
BPM. In this case, the AMPME can divide one revolu-
tion (of 360 degrees) by the number of poles in the MPM.
In other words, since one revolution is expressed by mul-
tiple quadrature sinusoid signals, the resolution increases.
However, the AMPME has hardware problems that impair its
performance. These hardware problems cause harmonic com-
ponents that differ from the main frequency in the quadrature
sinusoid signals. First, the BPM and MPM are close to each
other. Therefore, a magnetic field overlap occurs in each
magnetic sensor. This makes the harmonic component similar
to the period of the BPM input signal in the MPM signal
measurements. Secondly, the harmonic component caused by
the pole-pitch difference of the MPM is the biggest factor
in deteriorating the absolute position accuracy. Additionally,
tolerance issues may occur when assembling the encoder,
causing misalignment between the sensor and magnet. Such
misalignment creates differences in the amplitude and off-
set between the quadrature sinusoid signals. Because the
harmonic components, amplitude difference, and offset dif-
ference will degrade the absolute position accuracy of the
encoder, the AMPME requires compensation and calibration
methods.

The following hardware techniques to reduce harmonic
components have been studied. First, a magnetic shield can
be added between the magnets to prevent the field from over-
lapping [3], [5]. Second, by increasing the number of sensors
and placing them at intervals of equal length, can obtain
the average error of each position [6], [7]. However, these
methods did not completely remove harmonic components.
Further, this method is unsuitable for a magnetic encoder that
emphasizes a low-cost simple structure. Harmonic compo-
nents can be reduced by supplementing the hardware, but this
is not sufficient compared to the increase in complexity.

Therefore, many studies utilized signal processors to
design digital compensators. The signal processor must cal-
culate the phase of quadrature sinusoids that are output from
the magnets and magneto resistor (MR) sensor to determine
the rotation angle. This process requires noise reduction,
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calibration, and phase compensation. First, the signal proces-
sor can use the arctangent function to calculate the phase.
To implement an arctangent function using a digital signal
processor (DSP), an approximation is computed using a Tay-
lor series polynomial. In contrast, the coordinate rotational
digital computer (CORDIC) algorithm performs vector rota-
tions in a two-dimensional plane and has a regular structure.
To reduce the processing time, a modified vector rotational
CORDIC (MVR-CORDIC) algorithm was studied [8]. The
MVR-CORDIC reduces the number of iterations by 50%
using various methods, including *“skip some microrotation
angles” and “‘repeat some microrotation angles’” while main-
taining good performance. However, this arctangent method
is not suitable for high-precision encoders because it only
calculates the phase without countermeasures against phase
errors from the hardware. Also, note that parallelization using
an FPGA can speed up the process dramatically, but the cost
of the encoders will increase significantly. The phase-locked
loop (PLL) method is very effective for calculating phases,
as well as compensating the phase and removing random
noise. Additionally, the computational complexity is low
compared to the arctangent method, making it suitable for
detecting phases in the encoder. Therefore, various studies
have been performed to detect the position using a PLL
[10]-[16]. First, there are studies that accurately and quickly
calculate phases via the quadrature sinusoid (sine and cosine)
outputs from the MR sensors of the AMPME [10]-[12]. The
studies [10] and [11] present a PLL method for detecting
the phases of quadrature sinusoid signals in place of the
arctangent method for DSP. This approach includes methods
for accuracy improvement and calibration. The PLL method
is more efficient for calculating the phase and removing
random noise than the arctangent method. However, it can-
not eliminate harmonic components close to the main fre-
quency band. Further, a PLL is more effective for incre-
mental encoders or resolvers than absolute position detection
because it is most effective for periodic signals with many
samples [13]-[16]. Alternatively, there was a study to find
the absolute position by measuring the magnetic field of a
permanent-magnet synchronous motor (PMSM) without an
encoder [12]. For the PLL case, the encoder can achieve
more accurate results when there are more quadrature sinu-
soid input samples. The PLL can improve the resolution by
applying the input signal and time pulse, thus recovering the
phase error as time passes. The study [16] analyzed a tech-
nique that effectively removes random noise, DC offset, phase
shift, and the waveform distortion of quadrature sinusoids
output from a resolver in a linear motor, thus improving the
resolution using the advanced adaptive digital phase-locked
loop (AADPLL) algorithm. Furthermore, when applied to a
DSP, this algorithm was very effective. However, this study
does not consider hardware-based harmonic components.
Additionally, the AMPME is an absolute position encoder,
so it is necessary to detect the exact position even if no
sample has been input in advance. In other words, the phys-
ical error must be compensated for without any previously
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input data. This is directly related to the problem of elim-
inating harmonic components in the AMPME. Moreover,
the PLL cannot reduce harmonic components due to the
pole-pitch differences and magnetic field overlap. In addition,
if the PLL parameters are set incorrectly, there may be a
delay time or repeatability error when the speed of the detec-
tion shaft changes. Therefore, to use the signal processing
algorithm of AMPME in industrial sites, the following three
requirements must be satisfied. First, the AMPME should
be to improve the accuracy of the absolute position. For
this, it is necessary to remove the harmonic components
with frequencies other than the main frequency. Second,
the processing algorithm should be optimized to reduce the
computation time. The advantage of the AMPME used in
industrial sites is that it has good performance at a low cost.
In other words, the algorithm should use low-cost processors.
Third, the initial setting of the signal processing algorithm
should be easy. When making an AMPME, if parameters to
sets are many and complicated, this can increase the cost and
decrease the stability. And, depending on the parameters to
be set, performance may be significantly affected.

If we compare the existing studies, the arctangent method
cannot compensate for the harmonic components. There-
fore, it is difficult to apply to systems that require harmonic
compensation, such as AMPME. The PLL-based methods
increase in complexity according to the performance require-
ments and an increase in the number of parameters to be set.
Therefore, if there are high performance requirements, it is
necessary to use a high-performance processor. To satisfy all
of the requirements mentioned above, we present a simple,
easy to set up, and accurate linear compensator.

This paper focuses on the patterns of all harmonic com-
ponents and their periodicity. Hence, the encoder stores the
phase size, amplitude, and offset at every cycle of the MPM
signal during one revolution, and applies these parameters
at the appropriate times. To implement this, we propose a
linear compensator. This compensator consists of a phase
compensator and a phase detector that enhances the existing

ratiometric linearization (RL) technique [18].
1) Enhanced ratiometric linearization: This paper presents

a method to remove the random noise, offset, and
amplitude differences by adding a low pass filter (LPF)
and a static calibrator to the ratiometric linearization
process.

2) Phase compensator: The AMPME stores each phase
size for all cycles in a look-up table (LUT) and resizes
the position area of each MPM pole to compensate for
any position errors.

This linear compensator effectively reduces harmonic
components while using few computational resources and an
LUT of word size N, x 18 (N, is the number of poles in the
MPM).

This paper is organized as follows: Section II provides
an overview, an analysis of non-idealities, and the problems
associated with the PLL. Section III explains the enhanced
RL. Section IV explains the phase compensator. Section V
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presents the experimental results. Finally, Section VI con-
cludes this study.

Il. OVERVIEW AND RELATED WORK

A. OVERVIEW OF THE AMPME: IMPROVED RESOLUTION
The AMPME can increase the resolution according to the
number of poles in the MPM [1]-[4]. Fig. 1 shows a block
diagram of the encoder that increases the resolution by adding
an MPM to the shaft. When the tunneling MR (TMR) sensor
is placed on the opposite side of the BPM and the anisotropic
MR (AMR) sensor is placed on the same side of the MPM,
the TMR sensor outputs one cycle for the quadrature sinu-
soid signals. Additionally, the AMR sensor outputs the same
number of quadrature sinusoid signals as the number of poles
of the MPM over a single rotation of the shaft. The signal
Omm 1s the phase of the MPM and directly corresponds to
the resolution. The signal ¢, is the phase of the BPM; it
serves as a reference to find the cycle number of the sig-
nal @;,. Thus, the AMPME uses a 12-bit analog to digital
converter (ADC) and a 24-pole MPM, AMPME can obtain
a resolution of 98304 (360/98304 = 0.003662[deg]). The
high-resolution absolute position of the AMPME can be writ-
ten as follows:

Omm + 27T X n
= 1
Pabs Np ( )
where @5 s the absolute position of the AMPME, ¢,,,,, is the
phase of each quadrature sinusoids obtained from the MPM,
n is the cycle number of ¢y, and N, is the number of poles
of the MPM. The range of n is from 0 to (N, — 1) and is

calculated as:
Pm
= 2
" LG /NPJ @

where 27 /N, is a unit that indicates the phase size of each
pole of the MPM. After determining the current cycle number
n, the AMPME can find the absolute position of the shaft by
multiplying n by the phase size 27 /N, and adding the current
©mm- In practice, the output phase of the MPM contains
various disturbances, which are analyzed in the next section.
Therefore, the absolute position (1) should take into account
these errors.

B. ANALYSIS OF NON-IDEALITIES

Physical factors that hinder the performance of the AMPME
include tolerance, magnetic field overlap, and pole-pitch dif-
ference.
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FIGURE 2. Cycle number mismatch. The red circles shown the cycle
number mismatch. (a) and (d) are graphs of the cycle number n calculated
by the index calculator with ¢p. (b) is a graph of gmm with a phase shift.
(e) is a graph of omm with a phase difference. (c) and (f) are ¢4p¢ wWith
cycle number mismatch relative to (b) and (e).

1) TOLERANCE

The tolerance creates amplitude differences, offsets, and dis-
tortions in the quadrature sinusoid signals. Tolerance can be
divided into electrical tolerance and assembly tolerance. First,
electrical tolerance occurs between the MR sensor and the
ADC in the encoder signal processor. The encoder amplifies
the signal using an operational amplifier (OP-Amp) between
the MR sensor and the ADC. At this time, amplitude and off-
set errors occur due to the resistance error of the OP-Amp gain
and the line resistance of the circuit. Additionally, every elec-
tronic system has random noise. Magnet and sensor positional
errors result in decreased assembly tolerance during encoder
assembly processes. Secondly, the distance error between the
magnet and the sensor results in the amplitude and offset
errors. The magnets and sensors are arranged to face each
other, and sinusoidal distortions occur if the center points are
not aligned with each other. Further, when assembling the
BPM and MPM on the shaft, cycle number mismatch occurs
if the initial positions of the poles of the two magnets are not
synchronized. This is the phase shift of @,,,,. Fig. 2(c) shows
what errors occur in ¢, according to phase shift.

2) THE POLE-PITCH DIFFERENCE

The pole-pitch difference of an MPM is caused by differences
in the intervals of poles. These imbalances cause the sizes
of each period of ¢, within one revolution to be different.
First, the sizes of n and ¢,,, are different, resulting in a
cycle number mismatch. Fig. 2(e) is a graph with a phase
difference added. Therefore, a new cycle number calculation
method is needed to solve this mismatch problem. In section
IV, we present a new index (cycle number) calculator to be
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implemented in the phase compensator. Even if we solve the
abovementioned cycle number mismatch problem, the phase
difference is still a big problem. Furthermore, this is the main
harmonic component that degrades the performance of the
AMPME. Fig. 3 shows an example where this problem is sig-
nificant. The graph shows that different sizes were measured
among signal cycle. For each ideal pole-pitch ratio 1, c[1]
is change by 0.5 times and c[2] by 2 times. This means that
the pole-pitch size is larger or smaller than the reference. The
situation in, Fig. 3 assumes that the detection shaft moves at
a constant velocity. When the signal output from the sensor is
collected by the Signal Processor, the interval of each phase
may be different, as shown in the phase graph. Furthermore,
if the signal processor uses this signal to calculate the absolute
position, it will get a nonlinear result, like the position graph.
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FIGURE 7. The proposed linear-compensator. us, uc are sine, cosine signal of MPM. ums, umc are sine, cosine signal of BPM.

The obtain aim of this paper is to solve this problem. By
applying the hardware method, an increasing number of MR
sensors is used to mitigate the effects of the harmonic compo-
nents, as shown in Fig. 4. However, this method is necessarily
costly. Therefore, this paper includes digital and hardware
methods to improve the accuracy of the AMPME using two
magnetic sensors, as seen in Fig. 4(b). Also, the output signals
can be rewritten as follows:

ug = assin (@) + by + e 3)
ac cos () + b + ec )

Uc

where ag and a. are the amplitudes of the quadrature sinu-
soids inputs, bs and b, are the offsets, e; and e, are random
noise, and ¢, is the output phase of the MPM. However,
the problem related to the pole-pitch difference is not seen
in us and u.. The reason is that the ranges of angles for ¢,
are each different. Thus, the error does not appear in ¢, after
only one period. Therefore, we redefine ¢, again as follows,
taking into the account phase difference.

n—1 .
_ Omm*c[n] 2w x cli]
Pabs = —Np + ;:1 {—Np } (@)

where c[n] is the ratio of phase to pole-pitch difference. This
is the ratio of actual pole-pitch size and ideal signal depending
on pole-pitch difference. The previous phase accumulates
according to the n-th cycle timing. The ¢ ;s formula in Fig. 6
shows the pole of MPM in the 3rd cycle timing. Therefore,
the biggest difference in the proposed method compared to
previous research is that it considers equation (5) to eliminate
errors due to pole-pitch difference.

C. RELATED WORK

Fig. 5 shows this conventional PLL. (CPLL) method for an
absolute magnetic encoder (AME). The advantage of a PLL
is that it can detect the phase in place of the arctangent
functions. And, PLL can compensate signal.

1) HARMONIC ERROR

A technique for eliminating harmonic errors in the MPM
has been previously researched [12]. This method utilizes
technology that can detect the magnetic field signal of a
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permanent-magnet (PM) synchronous motor (PMSM) as well
as its position. This approach can eliminate the harmonic
error generated in the magnetic field signal measured by
each hall sensor, thereby achieving more accurate position
control. However, that research does not mention the phase
differences that can occur when the spacing between the
magnets is not constant.

2) DC ERROR

DC error means that the position results of the encoder are
constantly different from the actual value. This is mainly
caused by input (raw data) measurement delay, signal pro-
cessing for compensation, and communication delay. Fig. 8
shows errors when an ideal frequency step signal is input to
the AMPME using a PLL. As shown in Fig. 8, the CPLL
cannot remove the DC error, and has further issues mitigating
the absolute position errors in the stopped state. The phase
error of the PLL system can be written as:

2

Perr () = §0(S) (6)

2 4 Kvcols Kyco
s$°+ T, s—l—T]

Using the final-value theorem, the steady-state errors of the
CPLL in the phase step (¢(s) = Ag/s), frequency step
(w/s?), and frequency ramp (y /s°) are as follows:

li s) §2 Ag 0 o
m s) = —_r —
s—>0(perr 52 + Kvcolh ¢ 4 Kvco

T T
li (s) - @ ! 8)
1M Perr(S) = - =

2 1 KveoTs Kvco ¢2 Kvco

s—0 s< + T, s+ T S T,
fim err (5) s ! ©
im s) = =00
o Perr s2 4 KvcoDp ¢ | Kvco 3

T T
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From (8), (9), it is clear that the phase output of the CPLL con-
tains DC errors related to the frequency step and frequency
ramp. Therefore, based on the operating characteristics of
AMPMEs, the DC error results in encoder position errors.

This paper presents a linear compensation method that
includes an enhanced ratiometric linearization and compen-
sation algorithms to overcome the PLL problem and improve
the accuracy of the AMPME, as shown in Fig. 7.

IIl. ENHANCED RATIOMETRIC LINEARIZATION

This section describes enhanced ratiometric linearization
(Enhanced-RL). Since we propose a method to replace the
PLL, a new method to calculate the phase of the quadrature
sinusoid signals is necessary. Therefore, we improved the
performance by adding a filter and calibrator to the RL.
Therefore, the Enhanced-RL method performs random noise
filtering, calibration, and phase detection.

A. PRE-FILTER

The Enhanced-RL eliminates random noise using only a very
simple first-order LPF in order to reduce the computation
time and minimize the DC error. Further, the use of a built-in
filter in the ADC module of the signal processor is sufficient
to counter random noise. Therefore, uy and u.r in Fig. 7 are
the results of filtering u; and u. with the LPF. After that,
the Enhanced-RL gets a signal from which the random noise
has been removed.

B. STATIC CALIBRATOR

The static-calibrator calibrates amplitudes and offsets of
quadrature sinusoid signals of all cycles within a revolution
(360 degrees). The basic idea of the static-calibrator is to
calibrate it to each of the parameters for each position. This is
done because the maximum and minimum values of quadra-
ture sinusoid signals for each position in one revolution are
different for each pole of the MPM. In other words, due to
electrical and mechanical distortions, the inputs u; and u,
have variable amplitudes and offsets for each cycle. There-
fore, (3) and (4) can be modified as follows:

— b
(3) —> sin(p) = ity = = (10)
Ay
~ Ue — l;c
(4) —> cos(g) = ile = ~— ()
dc

where a; and a. are the amplitudes of each position, lA)S and
IA)C are the offsets of each position, and e and e, are random
noise. Additionally, the Enhanced-RL approach uses uy and
u¢r that has the random noise removed. When the encoder
already knows the offset and amplitude in advance for each
cycle of ug and u.y, the encoder can calibrate the quadrature
sinusoid signals. Therefore, the purpose is to precompute
and store different amplitudes and offsets for each position.
Thus, to calculate each parameter, the AMPME measured
the signals uy and u.s while rotating the encoder shaft at a
constant frequency. The amplitudes and offsets of the input
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signals are calculated based on the maximum and minimum
points, as shown Fig. 9, 11. This method is presented as
follows:

1) DETECT THE ZERO GRADIENT POINT
AMPME detects the maximum and minimum points of each
cycle while the shaft rotates at a constant frequency. The
moment when the slope of the quadrature sinusoid sig-
nals becomes 0 (zero-gradient) at a constant frequency is a
maximum or minimum point. The following formula is the
zero-gradient for detecting that point.

zero gradient,

Vug el = 0 (12)

The sum of the left slope and the right slope is 0 based on
the current position; this position can be defined as a zero-
gradient. Thus, (12) is defined again, as follows.

(12) —> |(ugf,ef (ns + 1) — ugr o (ng — )| = 0 (13)
where n; is the sampling number of the processing.
store, |(usf,cf(ns +1)— qu,Lf(nS — 1))l < B2 (14)
skip, (st of (ns + 1) — ugr of(ng — 1)) = B2

Therefore, if the gradient value is lower than the threshold 8;,
as described above, the position is temporarily stored as the
maximum or minimum point. The threshold B, is defined as
follows:

] - COS(ND
WT

N

B2 = B1A ) (15)

where $, is the threshold and the slope between the maximum
(or minimum) point and the next point in the quadrature
sinusoid, N, is the number of poles in the MPM, w is the
2
frequency, and T is the sampling time. Thus, cos(Np—];)
w
represents the next sample point immediately after the maxi-
mum point of the quadrature sinusoid. The next sample point
can be defined using w and 7. In the case of an AMPME,
N, poles are required since the number of poles increases the
27
1 — cos(N, —)’ is the

difference between the maximum point and the next sample

quadrature sinusoid cycles. Thus,

VOLUME 9, 2021



J. W. Park et al.: Linear Compensation Method for Improving the Accuracy of an AMPME

IEEE Access

Maximum points of u,,

4000 ms
Centroid
3000 (== maximum point)
o
o
2000 0 0O
Zero-gradient points ul'u,",
1000
09
0 u u
0 2000 4000 ™¢ 1960 1970 1980 me

FIGURE 10. The maximum point of uy by K-means algorithm.

point in the quadrature sinusoid. Multiplying this term by
the amplitude A converts it to the range of input signals.
Finally, B is weight. As B increases, the detection range of
the maximum and minimum points becomes wider. However,
if B1 is too small, no points can be detected. In this paper, B
was set to 3 for stability. Fig. 9 shows the detected maximum
and minimum points. And, this method detects multiple max-
imum or minimum points in one location. So it needs clus-
tering them and calculate the centroid of each zero-gradient

group.

2) FIND REFERENCE POINTS OF EACH

CLUSTER USING K-MEANS

The purpose of this step is to calculate the maximum and
minimum points of each cycle by clustering the measured
zero-gradient points of maximum and minimum positions
and finding their centroid, as shown in Fig. 9. At this time,
the centroid must be detected based on the reference sig-
nal ¢, because the absolute position uses ¢, to separate
each cycle of ug and u.. In this paper, we use the simple
k-means algorithm. If we draw a Lissajous based on ¢,
and list the maximum (or minimum) of each cycle, we can
find the centroid of each maximum (or minimum) points
using the k-means algorithm. Fig. 10 shown the Lissajous
of the quadrature sinusoid and the results of the k-means
algorithm.

3) CALCULATE THE AMPLITUDES AND OFFSETS

Last, using the detected maximum and minimum points,
the amplitude and offset are calculated for each cycle of ¢
and then stored in the LUT. At this time, because u; and u,
are quadrature sinusoid signals and output from one sensor
at the same time, the change of amplitude and offset by
the magnetic field are same. Therefore, the maximum and
minimum points of the quadrature sinusoid signals are used
together to calculate the common amplitude and offset. By
applying the characteristics of quadrature sinusoid signals,
one cycle can be divided into four parts. Fig. 11 shows the
maximum and minimum points divided into four parts for
each cycle. There are two maximum and minimum points in
a cycle. Therefore, the other two are predicted by creating
slopes based on nearby points. Using this method, we can
store the amplitude and offset of each period in advance by
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FIGURE 11. Measured amplitude line and offset line. (a) is the amplitude
line of sine and. (b) is the amplitude line of cosine.

calculating the following:

2
Pc_m[n] - (Pc_n[n] — =sm[nl), ng = 0
Ps_m[n] - (Pc_n[n] — =smlnl), ng = 1
alnllng] = | 3
(Ps_m[nl — Zsnln) — Pc_nlnl,  ng =2
(Ps_m[n] — §Sn[n]) — P ylnl, ng=3
(16)
1 2
E(Pc_m[n] + (Pc_nln] — _Sm[n]))a ng = 0
1
_(Psfm[n] + (Pc_uln] — _Sm[n]))a ng=1
blnlingl = {3 1 3 !
?((Ps,m[n] — =saln]) + Pe_nlnl), ng=2
E((Ps_m[n] - gsn[n]) + Ps_n[n]), ng = 3
a7
where a[n][0], ..., a[n][3] are the amplitude of n — th cycle.

b[n][0], ..., b[n][3] are the offset of the n-th cycle. Ps_,,[n]
and P, ,,[n] are the maximum points of the n — th cycle’s
quadrature sinusoid. P ,[n], and P, ,[n] are the minimum
points of the n — th cycle’s quadrature sinusoid. s, and s, are
temporary values for calculating the predicted value without
maximum and minimum points, as follows.

smln] = Pe_mln + 1] - Py p[n]

(13)
spln] = Pc_n[n] - Ps_n[n —1]

where since each cycle is repeated according to the rotation
of the MPM, the cycle before returned O-th is the (N, — 1)-th
cycle.

These factors are used to pre-calculate and store the
amplitude and offset values of 4 parts for each cycle. So,
static-calibrator is a method of calibrating amplitudes and
offsets with parameters stored in advance for each cycle. The
method is as follows.

a = (alnlingl + Aalnling]x(ry —ng)) (19

b = (blnling + A\blnlinglx (ry —ng))  (20)
2 /4

. (22)

rg = 4x
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FIGURE 12. Simulation results of the static calibrator.

where a is the amplitude that calibrated by each position. b
is the offset that calibrated by each position. As mentioned
above, the sine and cosine signals are output from the same
sensor. And, the sensor is affected by the same magnetic field,
SO the amplltude and offset are the same (a; = a. = a and
by = be = b). r4 is the ratio between each cycle of quadrature
sinusoids. n, is the index number among then the four parts
of the quadrature sinusoid. We can simply get n, by using
rq. ¢[ns — 1] is the MPM phase after applying Enhanced-RL
(the difference is very small even if we use the results from
the previous sample).

Aaln] [n,] is the deviation between a[n][n,] and a[n][n, —
1]. r4 is the ratio of @[ns — 1], which ranges from [0, 4],
the closer it is to the end of the current cycle. Therefore,
rq — ng is inter distance between of n[n][ng] and n[n][n, — 1]
as expressed by ratio [0, 1]. This means the AMPME can
calculate maximum and minimum lines. Thus, the AMPME
can calculate and apply the exact amplitude and offset for
every position. In addition, storing Aa[n] [n4]in the LUTs can
reduce the computational complexity and correct the signal.
Additionally, Ab[n] [ng] is the offset deviation and has the
same calculation method as the amplitude deviation. Fig. 12
shows the result of a static calibrator.

C. RATIOMETRIC LINEARIZATION

After filtering and calibrating using the LPF and static cal-
ibrator, the input sine and cosine signals are normalized to
the range [—1, 1]. Therefore, the triangular wave directly
computed from (i, i.) can be written as:

V ((2) . |’2s| - |Ijic| (23)
: | + ||

while the ideal triangular wave is calculated by:
U SN DA
Viri(@) = ;Ism (@) (24)

The triangular wave V| created by formula (23) differs from
the ideal triangular wave V;,; due to structural problems of
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FIGURE 14. The simulation results of ratiometric linearization. (a) is the
advanced triangular wave V,. (b) is the results of ratiometirc linearzation
using formula (28).

the sine wave (24). By calculating the difference between
V1 and V,; and compensating for it, we can construct the
compensated triangular wave V5, as below:

Va(9) = 2m(kiVi(9) + kacosp — ) + 1)  (25)

lits| — litc| i — a2
\% =2 |k ky =2 ¢ 1 26
2(9) = 7T< 1|Avl Tl + 212%_”4% + (26)

The parameters k; and k> can be determined based on
the shape of the sine wave. Thus, we should design it to
match the sine wave inputs of the hardware, then compute
the Fourier series of the two triangular waves to compen-
sate for the signal compared to the ideal triangular signal
(Fig. 13(c) and (d)).

The last step is to find the value of k; to be applied to V;
that is closest to the ideal triangle. The definitions of k; and
ko are shown below, as described in a previous paper [18].

kiai + ky = by 27

First, k; is determined, and we then apply all possible ki
values to determine the most efficient value. As shown
in Fig. 13(e), we used a k; value of 0.7050 and a k; value
of 0.3015 for the AMPME. (a; and b; are the first terms of
the Fourier series, as shown Fig. 13.) From that, the output
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phase can be obtained as:
V2 (@)
4 b
V(@ R N
a—29 G 0y and G < 0)
4 (28)

(ts > 0) and (4, > 0)

>
I

b
zi‘p), (s < 0) and (4, < 0)
;e

2 — 2;"’), (s < 0) and (4, > 0)

The output phase is directly calculated from the input signals
(its and 7.) via the triangular wave. Therefore, the charac-
teristic DC error of the CPLL during the frequency step and
frequency ramp is removed.

IV. PHASE COMPENSATOR

The phase ¢ of the MPM detected by Enhanced-RL has not
yet removed the phase difference by pole-pitch difference.
Also, the problem remains that the index n (i.e., the cycle
number) must be applied to the LUTs of the Enhanced-RL
and phase compensator with the correct timing. Therefore,
this section describes the phase compensator and index cal-
culator.

A. PHASE COMPENSATION METHOD

The phase compensator can mitigate the error caused by
the phase difference in each signal cycle that results from
the pole-pitch difference of the MPM. The phase of the
cycle signal ¢ differs in each cycle when compared with the
absolute position. The encoder pre-calculates and saves the
ratio of the phase c[n], as already mentioned in Sections II
and Fig. 3, then compensates for the phase using (5). When
calculating the absolute position of the AMPME, we can
apply the pre-calculated ratio of the phase with the correct
timing. Therefore, as shown in Fig. 15, we need to find the
zero points d [n] first. c[n] can be calculated by d[n]—d[n—1].
Accordingly, (5) can be redefined as follows:

Qabs = c[n] x ¢ +d[n] (29)
_ dn] —d[n—1]

where d[n] is the position in ¢, at the zero point when ¢ drops
from 27 to O (i.e., the zero point of each ¢ cycle determines
the position within the reference signal ¢,,). c[n] is the ratio
of each cycle of ¢ to the ideal signal cycle size. These values
represent the phase differences that the encoder detects based
on the physical location. Fig. 15 shows how c[n] and d[n]
are defined in a signal, demonstrating an extreme example of
the pole-pitch difference in the MPM. 27r/N,, is the interval
of each cycle when the signal is ideal. Thus, we can find the
slope c[n] of the error signal using this information.

B. INDEX CALCULATOR

The LUTSs, which store the parameters, are used to increase
the performance of the linear compensator. Even if the LUTs
are well made, their performance can vary depending on what
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FIGURE 16. Simulation of index calculator. (a) is phase of MPM and
icjuster- (b) is an enlargement of (a).

data is selected at which moment from the cyclical signals
of the MPM. Therefore, we designed an index calculator that
applies these parameters in an accurate and timely match. The
conventional method of detecting index is to distribute the ref-
erence signal ¢, equally to each part and compare the current
value to each part, as in formula (2). However, this method
has several problems. First, when the encoder is assembled,
the signals of MPM and BPM cannot perfectly match the
zero-position. Then, the interval of ¢ for each cycle is differ-
ent due to the pole-pitch difference of the MPM. Fig. 2 and
Fig. 15 demonstrate these problems. The proposed method
in this paper is to compare @, and ¢ to return the current
value to zero-points for each cycle at all times. This method
has been studied in a multi-turn absolute encoder using gear
systems [19][20].

Leluster = nOmal(‘/A)m - N (2) 3D
p
2
n= \‘icluster/_nJ (32)
NP

Here, N,, is the number of poles in the MPM, and the ratio of
®m and ¢ differs depending on N,. When AMPME subtracts
¢/N, from the current phase ¢, it is always possible to
correct the phase to the zero-point. If the signal moves onto
the next cycle, then i.j,s.r Will step up that like a step signal.
However, this signal can out the range of 0 to 2x. Thus,
normalization must use the limit function. Fig. 16 shows the
icluster Signal obtained from (31). We can see that this process
correctly matches the zero-position of ¢. The order of each
cycle can be obtained as an index value using equation (32).

V. EXPERIMENTS
To implement the proposed ideas, we developed a 24-pole
AMPME hardware and encoder signal processing system.
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FIGURE 17. Experiment system.
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FIGURE 18. Results of the constant frequency case.
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FIGURE 19. FFT analysis of results.

The processor is STM32F405RG (Cortex-M4F, 168MHz)
and includes a 12bit ADC. Therefore, the encoder can process
a resolution of up to 98304. To compare the accuracy of the
proposed idea with that of a PLL, we used a high-performance
encoder (Heidenhain’s EQI1131). Fig. 17 shows the experi-
mental system for testing the proposed idea. We connected
Heidenhain’s absolute optical encoder EQI1131 and the
AMPME encoder via coupling, then controlled the motor
to rotate the position as desired. Absolute optical encoders
are suitable for the comparative verification of the AMPME
because the optical disk is higher than the pole-pitch precision
of a MPM. The position data of EQI1131 is transferred to
the encoder signal processing system, and then the data is
compared. Through the MCU emulator, AMPME data and
EQI1131 data are transmitted to the PC. To compare these
transmitted data sets, we performed frequency analyses using
Matlab to find the calculated error between these two data
sets. We then repeated the above steps for each algorithm to
compare the two PLL algorithms (CPLL, AADPLL) and the
linear compensator.

Fig. 18 shows the error results of constant frequency
case. The errors of CPLL and AADPLL indicated
that the high-frequency error was eliminated. However,

19136

hOriginal hCPLL hAADPLL hLinearCompensator
0.15
2 Harmonics reduction 4.74% 33.21% 70.23%
20.10r
k=
)
<
=
wh(r.i whc—j wh(rl w wh(*l whc+3 whg+5
Frequency(Hz)

FIGURE 20. Comparison of harmonic components.

(rad),,
=]

o

Position

—
©

=
N
=)

Error
(rad)

N
Error ofabsoluteness
(cannot return to zero)

N
=)
T

Position
(rad)y,
E

o

—~
o

=~
[N
=]

(rad)

Error

N
S
T

0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

FIGURE 21. Results for inconstant frequency signals. (a) is results of the
frequency step case and (b) is results of the accelerating case.

the low-frequency error was still present. On the other
hand, the linear compensators are shown to reduce the
low-frequency errors. As a result, we confirmed that the
error improved: CPLL case, £6.6x107'%(rad); AAD-
PLL case, +3.8x 10~ 10(rad); and linear-compensator case,
+2.5%1019ad). Then, we analyzed the FFT frequency
and confirmed the harmonic rejection. Fig. 19 and 20
show the characteristics of the three compensation meth-
ods and the original error without compensation. CPLL
and ADDPLL reduced the harmonic components outside
of the main-frequency band. However, these methods did
not affect the harmonic components of the main-frequency
band. On the other hand, the proposed linear compensator
slightly reduced the harmonic components outside of the
main-frequency band, and greatly reduced the harmonic com-
ponent of the main-frequency band. Fig. 20 demonstrates that
linear compensators are more effective at reducing harmonic
components in the main frequency band than the CPLL and
ADDPLL approaches. Compared with the harmonic compo-
nents of the AMPME in the main-frequency band before com-
pensation, CPLL reduced the harmonic component error by
5% and ADDPLL by 33%. The linear compensator reduced
the harmonic component error by 70%, making it about twice
as effective as the PLL.

This paper presents an analysis of changes in the per-
formance of non constant frequency case. We measured
AMPME’s position errors by inputting step frequency step
case and accelerating case to the motor. Fig. 21 shows the
resulting DC error. For the step frequency input, the DC error
of the CPLL increased, and an absolute error occurred even
when the rotation stopped. The AADPLL approach never
caused an error when the rotation stopped, but the DC error
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TABLE 1. Comparison of techniques.

Techniques CPLL AADPLL Linear
[16] Compensator

Accuracy (rad) x10~3 6.6 +3.8 +2.5

at constant frequency case

Accuracy (rad) x10~3  £26.0 +9.7 +6.0

at accelerating time case

Accuracy (rad) x1073 424 +1.3 £0.2

at stopped case

Harmonic Reduction 5% 33% 70%

Noise Reduction v v v

(random noise)

Calibration - - v

(amplitudes and offsets)

Phase compensate - - v

(for pole-pitch difference)

Processing time 8us 25us 10us

(Cortex-M4, 168M H z)

increased. And for the accelerating case, both the CPLL and
AADPLL had an absolute position error when the rotation
stopped. On the other hand, the linear compensator had less
DC error, and no absolute error occurred. This means that
unlike CPLL and AADPLL, the linear compensator is not
sensitive to frequency changes. Table 1 shows the comparison
between constant frequency case, accelerating case, and abso-
lute position error after rotation stopped. Also, the calculation
time of the processor used in the AMPME was measured
and compared. This took 8us for CPLL, 25us for AADPLL,
and 10us for the linear compensator. In terms of frequency
change, the linear compensator is the most economical.

VI. CONCLUSION
In this paper, we have described the factors that lessen the
absolute position accuracy of an AMPME, and proposed a
linear compensator to overcome these issues. This method
was more effective than the PLL techniques at compensating
for the signal and did not degrade the accuracy of absolute
position. In particular, we were able to effectively compensate
the pole-pitch difference of the MPM. To demonstrate this,
we developed an AMPME and a Cortex-M4F MCU-based
signal processing system. Then, we compared the absolute
position results with other high-performance encoders.
Table 1 shows the comparison of the PLL methods and
linear compensator. The proposed linear compensator can
effectively eliminate harmonic component errors due to the
hardware problems present in the AMPME. In addition,
CPLL cannot remove DC errors; AADPLL overcomes this
issue. However, the method is sensitive to frequency changes,
cohere a stop after acceleration, decreases the absolute posi-
tion accuracy. This is well explained in the CPLL error for-
mula (6). When a frequency step or frequency ramp input is
applied to (6), the error does not converge to 0 as shown in
formulas (8) and (9). ADDPLL is a higher-order algorithm
than CPLL. Therefore, it is possible to converge the error to
0 in a simple frequency step or frequency ramp input, but it
is not sufficient in situations where the frequency changes
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non-linearly. Graph (b) in Fig. 21 is the motion in which the
frequency of the motor increases or decreases non-linearly.
An additional reason for this problem; it is basic that use the
computation of the PLL algorithm is time-dependent. In PLL
characteristics, the higher is the sampling (i.e., the higher is
the bandwidth of the sensor), the better will be the results.
If the system often checks and adjusts the results, it will obtain
a more accurate result.

We demonstrated that the proposed linear compensator’s
signal compensation has higher performance than the PLL
method and can preserve its absolute position without regard
to frequency change of the shaft. In other words, the linear
compensator is not affected by changes in time or frequency.
This robustness is the most important factor for an abso-
lute encoder. Also, the linear compensator is very simple
compared to other methods. A small lookup table (N, x18
parameters) are used in the static calibrator.

CPLL has achieved adequate results when replacing the
arctangent function (to calculate phase). This is an important
idea in the signal processing technology of encoder. AAD-
PLL improves the performance of the PLL considerably, but
it requires a lot of computation time. This means that the
high-order of the PLL algorithm, the longer will be required
time (because calculation is more complex).

On the other hand, the proposed linear compensator can
calculate the phase by replacing the arctangent or PLL,
which greatly reduces the computation time and does not
decrease performance. This is possible because the encoder
signal processor completed the necessary calculations in pre-
calibration. Therefore, the proposed linear compensator is
relatively simple, fast, and economical compared to the PLL
method.

The biggest drawback of the PLL-based algorithm is
that the absolute position cannot be accurately compensated
if the previous position information is insufficient. How-
ever, the proposed linear compensator does not this problem.
Since parameter values obtained during encoder calibration in
advance are stored (registered), there is no need to maintain
the encoder operation by always maintaining power. This is
very effective for applications involving absolute magnetic
encoders in industrial sites.
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