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ABSTRACT High spatial resolution (HSR) imagery scene classification has become a hot research topic
in remote sensing. Scene classification method based on the handcrafted features, such as the bag-of-
visual-words (BoVW)model, describes an image by extracting local features of the scene and mapping them
to the dictionary space, but usually uses a shallow structure and loses the spatial distribution characteristics
of the scene. The method based on deep learning extracts hierarchical features to describe the scene, which
can maintain the spatial position information well. However, deep features in different levels have scale
recognition restrictions for multi-scale ground objects, and cannot understand complex scenes well. In this
paper, the multi-level convolutional pyramid semantic fusion (MCPSF) framework is proposed for HSR
imagery scene classification. Differing from previous scene classification methods, which integrate the
feature of different levels directly, of which the fusion features have large differences in both sparsity
and eigenvalue magnitude, MCPSF integrates multi-level semantic features extracted by BoVW model and
convolutional neural network (CNN) model. In MCPSF, two convolution pyramid feature expression strate-
gies are proposed to enhance the ability of capturing multi-scale land objects, i.e., local and convolutional
pyramid based BoVW (LCPB) model and local and convolutional pyramid based pooling-stretched (LCPP)
model. The effectiveness of the proposed method is verified on 21-class UC Merced (UCM) dataset and
30-class Aerial Image Dataset (AID). The framework was also transferred toa case study of scene annotation
in Wuhan. The proposed framework significantly improves the performance when compared with other
state-of-the-art methods.

INDEX TERMS High spatial resolution image, scene classification, bag of visual words, feature pyramid,
multi-level, remote sensing.

I. INTRODUCTION
With the development of remote sensing satellite technology,
a large number of high-resolution remote sensing images with
rich spectral and spatial information can be obtained. Diverse
spatial structures form high-level scene semantic information,
which can be available for a wide range of applications, e.g.,
digital city construction and environmental protection. How-
ever, as the resolution increases, it also brings about problems
such as low inter-class disparity and high intra-class variabil-
ity [1]. The pixel-oriented scene classification method has
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been transferred to the object-based information extraction
method [2]–[4]. However, the object-based method usually
focus on the categories of ground objects (such as buildings),
and cannot obtain the scene categories composed of various
objects with specific spatial relations (such as residential
areas) [5]. In this way, the semantic gap between low-level
features and high-level semantics is formed [6]. In order
to bridge the semantic gap, scene classification method has
become one of the most challenging topics in the field of
remote sensing.

Compared to natural images, HSR remote sensing images
have three distinct characteristics in the aspects of the
distribution of ground objects, light condition and channel

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 18195

https://orcid.org/0000-0001-8050-6877
https://orcid.org/0000-0002-0651-4278


X. Sun et al.: MCPSF Framework for High-Resolution Remote Sensing Image Scene Classification and Annotation

numbers. In general, HSR remote sensing images are taken
by looking down from above with sensors on aircraft or satel-
lites, while natural images are taken with cameras by looking
straight forward. In contrast to natural images, HSR images
contain more ground objects and rarely shows significant
spatial direction relations, such as up and down, or back and
forth. In addition, HSR images are always taken in good light
condition while natural images could be got in dawn or dusk.
In other words, the spectral information is much more import
for HSR images in scene classification than natural images.
Thirdly, the channel number of natural color images is three,
of which is much less than HSR images. Considering these
three distinct characteristics of HSR imagery, the feature
extractor and scene classification strategy should be carefully
chosen instead of just using the methods which the natural
imagery are always dealt with.

Different from pixels or simple objects in images, seman-
tic scenes of HSR images [7], [8] refer to specific geo-
graphic regions composed of several ground objects. Dif-
ferent geospatial distributions of the same object may lead
to different high-level semantic interpretation. Hence, scene
classification of HSR images obtain the semantic information
of geographical regions by automatically labeling an HSR
image according to the geographical composition and spatial
distribution of ground objects [7], [9]. The scene classifica-
tion procedure is to extract the features and relate them to
the high-level semantics of the whole scene. Therefore, it is
required to propose an excellent feature extraction framework
to meet the demands of complex scene recognition.

Scene classification based on low-level features usually
utilized either local or global color, structure and texture
features to describe the HSR images. For instance, [10] pro-
posed a content-based soft annotation method, which extracts
and uses SVM for training to define semantic labels for
images. [11] classified the IKONOS satellite images using
scale invariant feature transform (SIFT) and Gabor texture
features. Due to the diversity of object classes and the com-
plexity of spatial location in HSR image scenes, it is difficult
to effectively describe the scene using low-level features.
To enhance the scene classification ability, the bag of visual
word (BoVW) model [12] became the basis of the mid-level
feature scene classification method [13]. For instance, [14]
used the BoVW model to extract the visual words in the
scene and realized the feature extraction based on urban area
segmentation. The probabilistic topic models (PTM), such as
probabilistic latent semantic analysis (pLSA) [15] and latent
Dirichlet allocation (LDA) [16], were developed to extend the
BoVW model. The PTM were also introduced to the HSR
image scene classification [17]. However, the model structure
of the mid-level feature based method is usually shallow and
the extracted features are local, thus lacking descriptions of
global high-level semantics.

By making full use of the low-level features to understand
the scene, the mid-level features can achieve better scene
expression than the traditional low-level features. How-
ever, the mid-level features still have drawbacks in scene

classification, such as ignoring the relationship between
low-level features [18], [19] the lack of transferability
between HSR images [20], [21], and low universality and
efficiency. Based on the automatic feature learning and rep-
resentation framework, deep learning is able to solve the
problems existing in mid-level features. Deep learning tech-
nology has developed rapidly in recent years, mainly in video
analysis [22], object detection [23], especially in image clas-
sification [24]. Convolutional neural network (CNN), as the
most popular deep learning-based network, has shown amaz-
ing performance on different datasets. Castelluccio et al. [25]
trained CaffeNet and GoogLeNet through complete training
and fine-tuning, and verified the effectiveness of the method
on two HSR datasets. Zhang et al. [26] proposed a mixed
classification architecture, combined CNN and pixel-based
shallow structure according to decision rules, and verified
the method on urban and rural image scenes respectively.
Lin et al. [27] used a Generative Adversarial Network (GAN)
to implement an unsupervised training scene classifica-
tion method for small samples of HSR images. However,
CNN-based methods require a large number of sample data
to train models, and remote sensing image samples tend to be
small. Therefore, transfer learning-based scene classification
methods have been proved to be an effective method for HSR
image classification. The pre-trained CNN is usually utilized
to extract deep features to describe the scenes, and can then be
fed into the feature coding or classifier procedure [20], [28].
However, CNN may lack attention to local details of the
scene, and single convolutional or fully-connected level can-
not interpret the multi-scale objects in the scene. Methods
combining the mid-level and deep features have been pro-
posed and achieved satisfactory results. However, the magni-
tude and sparsity of the feature eigenvalues are significantly
different, and the ability to describe scenes is limited when
features are concatenated directly. Different features lead to
different feature descriptors, and they usually differ greatly.
When using K-Means clustering to quantize the vector con-
catenated by multiple feature descriptors, such as spectral,
texture, structure feature, they interact on each other and the
clustering is inadequate to fuse the complementary charac-
teristics of different features. Integrating features that differ
greatly in magnitude, such as 0.001 and 1020, will affect the
performance of the classifier.

In this work, considering the existing shortcomings in
current scene classification methods, a multi-level convolu-
tional pyramid semantic fusion (MCPSF) framework is pro-
posed. In MCPSF, BoVW and CNN are naturally integrated
to build scene features. The combined features can capture
comprehensive information for HSR scenes from local struc-
ture, spectral, and global deep perspectives. The handcrafted
features are first obtained by sampling with the direction
gradient and gray value statistics are calculated, representing
the structure and spectral characteristics of the scene respec-
tively. The BoVW is utilized to enhance the expression ability
of low-level features, such as the SIFT and the mean and
standard deviation (MSD)-based spectral features. To obtain
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the deep features, a pretrained CNN is employed. Since pyra-
mids constructed from multi-scale images can improve the
accuracy of scene recognition, pretrained CNN is utilized to
extract multi-level convolution features. However, because
of the difference between the mid-level and deep features,
directly integrating the two stage features is difficult and
cannot improve the semantic description of scene. InMCPSF,
the BoVW and Pooling method are utilized to implement
feature representation of convolution features with pyramid
characteristics, which can solve the problems of sparsity
and magnitude respectively. Finally, the multi-level features
implement the fusion based on two strategies and support
vector machine (SVM) is utilized for scene classification.

The main contributions of this paper are as follows.
1) An efficient HSR image scene classification frame-

work. The MCPSF framework is proposed to better distin-
guish complex scenes composed of diverse ground objects.
Considering the characteristics of HSR image, MCPSF cap-
ture the local mean and standard deviation (MSD) of the
image as spectral features, and the local directional gradients
scale invariant feature transform (SIFT) as structural fea-
tures. In addition, deep feature is utilized to obtain high-level
semantic representations of HSR images. Features of differ-
ent spaces are naturally fused by efficient transformation.
Finally, automatic scene learning is implement based on com-
prehensive features.

2) Improved convolution pyramid feature expression
method for scene understanding. The deep features extracted
from the convolutional layer of CNN model are usually a
3-dimensional matrix, and cannot be used to describe the
scene directly. This work is inspired by the image pyramid
with the ability to recognize multi-scale objects, and the
knowledge that convolutional layer of the CNN model has
the similar characteristics. In this work, multi-level convolu-
tion features with pyramid characteristics are extracted, and
the BoVW and global Pooling methods based on equalized
sampling are used for dimension reduction expression.

3) Efficient feature fusion strategy for features dimensional
and magnitude difference. In this paper, the feature value
contrast stretching method is adopted to reduce the magni-
tude of different features, and the processed features even
have the same magnitude. In addition, an improved visual
words extraction method is adopted. All features at the same
position in the convolutional feature map are regarded as one
visual word, and the words for all scenes are extracted and
rearranged to form a visual dictionary by clustering method.

Comprehensive evaluations on three distinct datasets,
i.e., the 21-class UC Merced (UCM) dataset and the chal-
lenging 30-class Aerial Image data set (AID), confirm the
effectiveness of the MCPSF framework. In addition, scene
annotation of a large HSR image also confirms the effective-
ness of MCPSF.

The remainder of this paper is organized as follows.
Section 2 describes scene classification methods based on the
BoVWmodel and CNNs in detail. In Section 3, the proposed
framework MCPSF for HSR imagery scene classification

is introduced. The experimental results and analysis are
reported in the Section 4. Section 5 discussed and analyzed
the sensitivity of the experimental parameters. Finally, the
conclusions are provided in Section 6.

II. BACKGROUND
Scene classification methods based on mid-level features and
deep learning are the main methods to bridge the seman-
tic gap [6]. In this Section, the feature selected for HSR
scene classification, the classic mid-level and deep feature
based scene classificationmethods, i.e., BoVW and CNN, are
briefly introduced.

FIGURE 1. HSR scenes that cannot be accurately distinguished by a single
feature: (a) importance of the spectral characteristics for HSR images;
(b) importance of the structural characteristics for HSR images;
(c) importance of the global characteristics for HSR images.

A. FEATURES SELECTED FOR SCENE CLASSIFICATION
Remote sensing scenes tend to be complicated due to the
increasing resolution of remote sensing images. As shown
in Fig. 1(a), it is difficult to distinguish parking lot and harbor
directly by structural and textual features. Due to the different
spectral characteristics of the ocean and the road, the spectral
features play an important role. In Fig. 1(b), the spectral
features of commercial and storage tanks are similar, themain
difference lies in the structure level. In Fig. 1(c), the agri-
culture and forest scenes are similar in both spectral and
structural characteristics, while global characteristics play a
crucial role. Therefore, the features selected in this paper
include Mean and Standard (MSD) features focusing on the
local spectral characteristics, the SIFT features focusing on
local structural characteristics, and the deep convolutional
features focusing on the global features of the scene.

B. SCENE CLASSIFICATION BASED ON BOVW MODEL
Artificial design features [29] refer to the extraction of the
low-level features of the scene, which can be roughly divided
into three categories, spectral, texture, and structural features.
Spectral features of scene classification are usually based on
the mean and standard deviation of gray values [18]. Local
Binary Pattern (LBP) [30] and Gray-level Co-occurrence
Matrix (GLCM) [31] are usually used as the texture features
of the scene. Structural features such as the SIFT [32] feature
proposed by Professor David G. Lowe have been widely used
in HSR scene classification.

The low-level features are dense with redundant informa-
tion [33], and the complex scene cannot be effectively dis-
tinguished. Therefore, scene classification method based on
mid-level features is introduced, establishing the relationship
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FIGURE 2. HSR image scene classification procedure based on BoVW
mode.

between low-level features and high-level semantics. The
methods for constructing mid-level features is developed on
the basis of the BoVW model [11]. The procedure of BoVW
model is shown in Fig 2.

The BoVW model was first proposed and applied to the
field of text processing, and is widely used in scene classifica-
tion of HSR images [34]. BoVW treats the two-dimensional
HSR images as a collection of independent words without
grammatical or lexical order, and obtain a set of represen-
tative words as the visual dictionary by k-means clustering.
K cluster centers are formed after multiple iterations, and then
a visual dictionary can be obtained. Given a dataset consisting
of I images, each scene can be represented by K visual words
in the dictionary. By counting the frequency of each visual
word, the frequency histogram of each image is constructed.
In this way, the image is converted into a one-dimensional
vector, and the length of the vector is the number of words
in the visual dictionary. The BoVW-based scene classifica-
tion method obtains the mid-level feature by mapping the
local low-level feature to the corresponding parameter space.
However, the scene classificationmethod based on the BoVW
model ignores the spatial position relationship of the scene.

C. SCENE CLASSIFICATION BASED ON DEEP LEARNING
The strategies of HRS imagery scene classification based
on deep CNN can be categorized as follows: (1) Training
from scratch [35]–[37]. (2) Semi-training parameter fine-
tuning [20]. (3) Deep feature vector extraction [21], [25].

Deep learning [38] technology has been outstanding
in different fields, such as artificial intelligence, speech,
image processing. Various CNN-based methods have
dominated the field of remote sensing image scene classi-
fication [37], [39]–[41]. The neural network of CNN can
automatically learn and update parameters in training iter-
ations and fine-tune the parameters under supervised training
to obtain a model with good performance. CNN is mainly
composed of convolutional layers, pooling layers and fully
connected layers, and it is a supervised learning network
based on error back propagation (BP) framework. Scene
classification methods based on classic CNN can be divided
into three types: (a) full training of a CNN model from
scratch [35], [36]; (b) parameter fine-tuning based on pre-
trained CNN model [20]; (c) feature vector extraction based

FIGURE 3. HSR image scene classification procedure based on CNN:
(a) Full training. (b) fine-tuning. (c) feature vector.

on pre-trained CNN model [21], [25]. The scene classifi-
cation procedure of the three types is shown in Fig. 3 (a),
Fig. 3 (b), and Fig. 3 (c), respectively.

Training the CNN model from scratch needs to initialize
all the weights randomly, and then train the model based on
HSR images. Due to the depth and complexity of the CNN
model, the network may contain thousands of parameters,
and large amounts of scene images are required for training.
On the one hand, the tasks often involve multiple iterations
to get a more suitable model, which takes a lot of time and
space [21]. On the other hand, training the CNN model is
a supervised method that requires quantities of artificially
labeled semantic scenes, which consumes huge manpower
and resources. When the image dataset is large enough, this
method can achieve the best results because the model train-
ing is performed by HSR images. But in fact, the cardinality
of remote sensing images tends to be small, thusthe data size
required to train CNN model cannot be achieved. Therefore,
the scene classification task for remote sensing images can be
performed by an efficient migration learning method.

Parameter fine-tuning based on pre-trained CNN model
involves fine-tuning parameters and extracting feature vec-
tors. The former keeps some of the parameters (usu-
ally the first few layers) of the model unchanged, and adjusts
the parameters of the partial level to achieve the effect of
the training model. The first few layers of the CNN model
are often general-purpose features. The subsequent levels are
often characterized by categories. Therefore, the method con-
trols the first few levels to be unchanged, and the HSR images
are appropriately trained for subsequent levels. Compared
with the fully trained CNN model, this method requires a
smaller amount of training samples, and the network is easier
to converge, reducing training time and space consumption.

Feature vector mode treats the pre-trained CNNmodel as a
feature extractor for arbitrary images. The features extracted
from the pre-trained CNN model are divided into low-level
and high-level, the low-level features can be re-extracted
by mid-level feature extraction methods such as BoVW to
reduce dimensions; The high-level features can be directly
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FIGURE 4. The flowchart of the proposed MCPSF.

input into the classifier for scene training and prediction. This
method does not require training or fine-tuning parameters,
and can be combined with traditional scene classification
with the advantage of simple scalability [20]. In this paper,
feature extraction method is employed and the VGG-19 net-
work is regarded as the feature extractor, which is pre-trained
by the ImageNet dataset. The convolution layer features with
pyramid characteristics were extracted from the pre-trained
CNN model.

III. METHODOLOGY
In this paper, the MCPSF framework is carefully designed
to enhance the performance of scene classification for HSR
images, which includes four main tasks. First, mid-level
and deep features are extracted by BoVW and CNN-based
method, with the deep feature enhanced by pyramid fusion.
Continuously, the mid-level feature and convolution pyramid
feature are fused based on LCPB (Local Convolutional Pyra-
mid BoVW, LCPB) and LCPP (Local Convolutional Pyramid
Pooling, LCPP) Strategy. Finally, scene labels are acquired
by training fusion features with SVM [42] classifiers. The
flowchart of the proposed MCPSF is shown in Fig. 4.

A. MID-LEVEL FEATURE GENERATION BASED ON LOCAL
EXPRESSION
The low-level features extracted in MCPSF include SIFT
based structural feature and MSD based spectral feature.
The image is divided into uniform sampling patches, each

of which is described by local features. The MSD feature
is calculated using the mean and standard deviation of the
gray value, and the SIFT feature is calculated based on the
direction gradient of the key points. In addition, previous
research by Fei-Fei and Perona [43] indicated that uniform
grid sampling has better performance in image classification
than random sampling when extracting features. As seen
in Fig. 5, the patches are acquired with the patch spacing
during the sampling process for the MSD and SIFT features.
The local refinement level of the scene is determined by the
patch size, and the sampling frequency is determined by the
patch spacing.

FIGURE 5. Patch sampling size and patch spacing for low-level feature
extraction.

In MCPSF, SIFT features is utilized to describe the local
structural properties of image scene. SIFT is invariant to
image rotation and scale, and have a certain robustness to illu-
mination and viewing angle transformation [32]. To acquire
strong scene recognition ability, in this paper, dense SIFT
is extracted based on uniform grid sampling, covering all
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locations of the scene. The generation of SIFT features can be
divided into four steps: (1) Searching the key points in each
sampling space; (2) Positioning stable key points; (3) Deter-
mining one or more directions for key points; (4) Calculating
the direction gradient in the neighborhood of key points. The
sampling patch is divided into 4 × 4 neighborhoods, where
the gradients in 8 directions are calculated. In this way, 4×
4× 8= 128 - dimension vectors is obtained to describe each
image.

Similarly, MSD features is utilized to describe the local
spectral properties of the scene, which reflects the brightness
and variation of the image as well as the object composition.
Based on the sampling method, the MSD features calculate
the first-order and second-order statistics for each channel of
the sampling patches, i.e. the mean and standard deviation
values. Taking an image with three channels as an example,
the 6-dimensional spectral vector can be obtained within each
sampling patch. We let I be the number of pixels in the patch,
and represents the value of the j-th band value of the i-th pixel.
In this way, the mean (Mj) and standard deviation (SDj) of the
sample patch in the j-th band can be obtained as follows

Mj =

∑I
i=1 pij
I

(1)

SDj =

√∑I
i=1

(
pij −Mj

)2
I

(2)

After acquiring the MSD and SIFT features, K-means
clustering method is usually utilized to construct the visual
dictionary. The image patches are clustered to generate
K cluster centers, and a visual dictionary with K visual
words is obtained. The dictionary can be denoted as
D = {V1,V2, . . . . . .Vk}, where Vi(1 ≤ i ≤ k) represents
the visual words in the visual dictionary. Each patch in the
scene is mapped to the dictionary. The image patch with the
smallest distance to one of the visual words can be allocated
to it. The frequency of word occurrence is then calculated for
all the visual words, and an image can be transformed to a
1-D histograms.

B. DEEP CONVOLUTION PYRAMID FEATURE GENERATION
BY CNN
Mid-level feature based method is able to capture the local
significant characteristics for the scene, but it ignores the
spatial information. Constructed based on the hierarchical
feature learning structure, CNN can effectively capture the
spatial arrangements inside the scenes. To obtain deep fea-
tures, a pre-trained VGG-19 based CNN model is employed
in MCPSF, which is trained by ImageNet based on the Ten-
sorflow framework. VGGNet [44], a network developed from
AlexNet [45], mainly modifies the following two aspects
from the AlexNet: 1) The entire network uses the filter size of
3×3 and maximum pool size of 2×2; 2) The network struc-
ture is deepened to improve the performance. VGG-19 [44]
consists of 16 convolutional layers and 3 fully-connected

layers. The convolutional layer is divided into 5 levels, and
each level has a maximum pooling layer to reduce the fea-
ture map size. As a feature extractor, VGG-19 allows arbi-
trary level of features to be extracted from the network.
Before inputting the images into the CNN model for con-
volution and pooling, the grayscale value of each image is
255-normailized. Then a convolution filter is used to slide on
the image for convolution, and the convolution feature map
is regarded as the global feature of the scene. Since the first
two levels of feature maps are large in size and contain more
redundant information, and previous research have proved
that the last layer of each convolution level of VGG-19 is
more adequate for feature description [20], convolution layers
in 3-5 level are extracted in MCPSF.

The scene of HSR images tend to be complicated due to
the scale and content diversity of the ground objects. Feature
pyramids are crucial to the identification of different-scale
objects [27]. Traditional methods are utilized to construct
feature pyramids based on image pyramids, which are mainly
applied to artificial designed feature extraction. CNN has
currently become the mainstream in the field of image pro-
cessing, the image features extracted by CNN have good
robustness, and the hierarchical structure of CNN can fit the
feature pyramid well. The convolution features of each level
have the following characteristics. The low-level convolution
layer focuses on describing the linear and edge features; the
mid-level convolution layer focuses on the characteristics
of the object; the high-level convolution layer focuses on
describing the overall information of the scene [44]. There-
fore, the convolution pyramid structure of VGG-19 is adopted
to replace the image pyramid, and the layers can be divided
into 5 levels. This paper uses the last layer of the 3rd to
5th convolutional levels to construct the feature pyramid.

The convolution features with pyramid characteristics
extracted have different sizes. In order to improve the expres-
sion ability of this feature, the nearest neighbor interpolation
method is adopted to sample the feature maps and resize them
to the same size. Then, the feature maps are longitudinally
fused to obtain a deeper convolution feature, which has both
pyramid and deep convolution characteristics. The nearest
method takes the pixel value closest to a pixel position in the
image as the new value of the pixel. The advantages of this
method are simple, efficient, and does not change the original
image grid value. We let Orgx and Orgy be the coordinates of
the original image,Objx andObjy be the coordinates of target
image. The pixel value of the target image can be filled by the
original image, and the coordinate relationship between two
images is shown in Eq. (2), where Orgw and Orgh represents
the width and height of the images.

Orgx =
[
Objx ×

(
Orgw
Objw

)]
,

Orgy =
[
Objy ×

(
Orgh
Objh

)]
,P(Objx ,Objy) = P(Orgx ,Orgy)

(3)
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C. CONVOLUTION PYRAMID FEATURE EXPRESSION
BASED ON BOVW AND POOLING
The deep convolution feature extracted from the CNN model
has a size of n × x × y × M, where n denotes the number
of images, x, y denotes the size of feature map, and M
denotes the number of feature map. The dimensions of the
5 convolution levels of the VGG-19 [44] network model are
shown in Table 1.

TABLE 1. Convolution feature map size of different level for VGG-19.

Different from the feature matrix obtained by the low-level
feature extraction, the convolution feature has 3 dimen-
sions extracted from the CNN of each scene, which can be
expressed as N l

× nl × nl , where N l denotes the depth of the
convolution feature map, and nl×nl denotes the size of single
convolution feature map. According to the characteristics of
the convolution operation, each position of the current feature
map is a result of convolution calculation of the local region
of the previous layer.

The BoVWmodel is used to re-express the feature, and the
feature value is expressed as the frequency of the word, which
makes the feature of the scenemore abstract and loses the spa-
tial position information of the pyramid [18], [46]. However,
the Pooling method can maintain the essential characteristics
of the scene well, which can be described as follows. The
convolutional feature maps of different scales are sampled,
and then the feature maps of the same size are longitudi-
nally connected. After obtaining the feature maps with the
same size and deeper dimensions, the average value of all
the feature values of each feature map is calculated. Then
all the mean values are connected into a one-dimensional
vector, which is the convolution pyramid feature expression
obtained by the pooling method. In this way, the feature
is more streamlined, has lower dimensions, less redundant
information, and can reflect the essential characteristics of
the scene. The experimental results prove that the feature
expression ability is stronger. By comparing the experimental
results, the classification effect of the convolutional pyramid
feature scene is better than that of single deep convolution
feature. The flowchart is shown in Fig. 6 (b).

D. SCENE CLASSIFICATION BASED ON MULTI-LEVEL
FEATURE FUSION
In MCPSF, mid-level features SIFT, MSD and deep con-
volutional pyramid features based on two enhancement
strategies implement two fusion strategies respectively [1].
These features are denoted as Fs, Fm, Fpb, Fpp. Two scene
understanding frameworks LCPB and LCPP have been estab-
lished for scene classification of HSR images. In LCPB, the

FIGURE 6. The procedure of deep convolution feature expression.
(a) The building of deep feature dictionary. (b) The average values of all
the feature maps with same size are connected into one vector.

SIFT, MSD, and convolution pyramid features re-extracted
by BoVWmodel are combined. In LCPP, the SIFT,MSD, and
improved convolution pyramid features by pooling process-
ing model are combined. The dimension of mid-level features
encoded by BoVW model is L, the convolutional pyramid
enhanced feature dimension extracted by BoVW model is C,
and the feature dimension obtained by Pooling is P. The
mid-level features obtained by BoVW model represent the
occurrence times of visual words, ranging from 0-K. K repre-
sents the size of the visual dictionary, the magnitude is large,
and the convolution layer feature values tend to be small.
Therefore, the convolutional pyramid enhancement features
are normalized and stretched [1]. The feature value range
is normalized to 0∼255, consistent with the level of feature
retention processed by the BoVW model.

The low-level features can be expressed as Eq. (3), where
Si and Mi represent the number of occurrences of the
visual word. si and mi represent the normalized feature
representation.

L = (s1, · · · sk ,m1 · · ·mk)

=

(
S1
K
· · ·

Sk
K

,
M1

K
· · ·

Mk

K

)
× 255 (4)

The expression of the deep convolutional pyramid feature
is shown in Eq. (4), where Ci represents the number of occur-
rences of the visual word, and ci represents the normalized
feature representation.

C = (c1, c2 · · · · · · ck) =
(c1
K
c1
K
· · · · · ·

ck
K

)
× 255 (5)

In the pyramid feature enhancement expression, the con-
volution layer feature can be expressed as x × y × D. The
convolution layer feature map size is x× y, and D represents
the depth of convolution pyramid feature map. The feature
map with D dimension is then input to pooling layer to
obtain the feature expression, as shown in Eq. (5), where sumi
represents the sum of all the values in the feature map, x ∗ y
represents the number of values in the feature map.

P = (p1, p2 · · · · · · pm)

=

(
sum1

x ∗ y
sum2

x ∗ y
· · · · · · ·

summ
x∗y

)
× 255 (6)
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Based on the above description of the feature, the LCPB
can be denoted as {Fs,Fm,Fpb}, and the LCPP can be denoted
as {FS,FM ,FPB}. The fusion result is a one-dimensional fea-
ture vector of two different dimensions. In the task of LCPB
and LCPP classification, LCPB and LCPP with discrimina-
tive semantics are classified by the SVM classifier with a
linear kernel. Finally, the scene label of each image can be
predicted by the two different approaches.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP AND DATASETS
In order to test the performance of the MCPSF framework,
the commonly used 21-class UC Merced dataset [11] and the
30-class AID dataset [8] were evaluated in the experiments.
In the migration experiment, large area satellite images of
Hanyang district in Wuhan were used to annotate the scene.
In this section, the proposed MCPSF is compared to the other
scene classification methods [28], [37], [44], [46], [47]. The
sensitivity analysis of the experimental parameters is also
provided. The datasets used in this experiment are described
as follows.

The UC Merced (UCM) dataset was downloaded from the
USGS National Map Urban Area Imagery collection, which
contain 20 regions of the United States. As shown in Fig. 7,
the images in UCM dataset were cropped into small areas
with a size of 256 × 256, which was divided into 21 land
use categories. Each category contained 100 images with a
1-ft spatial resolution. In the scene classification experiment,
80 images of each category were used for training.

FIGURE 7. Example images from the UC Merced dataset.

The Aerial Image Dataset (AID) is a large-scale remote
sensing image dataset composed from Google Earth. AID
contains 10000 images divided into 30 scene classes. Each
class contains hundreds of images (ranging from 220 to 420)
with the size of 600× 600 pixels in the RGB space. The
spatial resolution ranges from about 8 to 0.5 m. The training
set ratio for each category is set to 20% and 50%, respec-
tively [8]. Fig. 8 shows some examples of the AID dataset.

In the experiments with uniform-grid based region sam-
pling, the patch size and spacing were optimally set to 8× 8
pixels and 4 × 4 pixels, respectively, for the spectral and
structural features of the two datasets. The mid-level features
based on BoVW model are obtained by clustering method,

FIGURE 8. Example images from the AID dataset.

and the change of visual dictionary size K will affect the
classification accuracy. In the experiments, the visual word
number K was set from 100 to 2500 to test the sensitivity
analysis. Too large or small dictionary size will have an
impact on the predicted results, as well as the time and
CPU cost. Hence, in MCPSF, the visual word number K was
optimally set to 2000 for the MSD and SIFT features on
the two datasets, respectively. For deep feature based CNN
method, the images were both resized to 224 × 224 for the
two dataset. The experiment in this paper was carried out on
a personal device containing a NVIDIA GeForce GTX 950,
Intel core i5-6300HQ CPU, RAM: 16GB. The deep feature
based experiment environment was the windows-based GPU
tensorflow framework. The experimental environment for
mid-level feature based scene classification was undertaken
using MATLAB 2018a.

To further validate the practical application for scene anno-
tation, a large satellite image of Hanyang District of Wuhan
in 2009, with a size of 6150×8250 is employed. This dataset
was acquired from the IKONOS sensor with a spatial resolu-
tion of 1 m, and is named asWuhan IKONOS dataset. 8 scene
categories are defined forWuhan IKONOS dataset, including
commercial, industrial, dense residential, idle, medium resi-
dential, parking lot, vegetation and water. To achieve scene
annotation, the size of small images used for large image
segmentation is set to 150×150, and the patch spacing is 100.
This leads to 50 overlapped pixels between adjacent images.
In this way, 4000 scenes were selected to build the Wuhan
IKONOS dataset, and the number of scenes in each category
ranged from 100 to 800. The Wuhan IKONOS dataset uses
20% of the segmented scenes as the training data and the
remaining 80% as the test data. For the BoVW based MSD
and SIFT feature extraction, uniform patch with a size of 8×8
and patch spacingwith a size of 4×4 is adopted. To cluster the
SIFT andMSD feature has been extracted, a visual dictionary
with the size of 1000 is built. All scenes obtained by uniform
grid were resized to 224 × 224, and were input into the
VGG-19 model to extract the multi-level convolution pyra-
mid feature. The Wuhan IKONOS with 8 scene categories is
shown in Fig. 9.

B. EXPERIMENT 1: THE UC MERCED IMAGE DATASET
The performance of single feature based BoVW method,
BoVW-SIFT and BoVW-MSD, deep Conv and Fc features
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FIGURE 9. Example images from the Wuhan IKONOS dataset.

TABLE 2. Overall classification accuracy (%) comparison with the UCM
dataset.

based methods, VGG-19-Conv4, VGG-19-Fc, BoVW-Conv-
pyramid, Pooling-Conv pyramid, and SIFT+MSD+Conv4,
as well as the proposed LCPB and LCPP are shown in Table 2.
Here, BoVW-SIFT and BoVW-MSD refers to the methods
mapping low-level features to mid-level using k-means clus-
tering method. VGG-19-Conv4 refers that the features of the
fourth convolutional layer are used for classified, and the
VGG-19-Fc indicates that the fully connected layer features
are used for classification directly. BoVW-Conv-pyramid
and Pooling-Conv pyramid refers to multi-scale convolution
pyramid features expressed by BoVW and Pooling models.
SIFT+MSD+Conv4 refers to feature fusion with mid-level
and Single-scale convolutional layer features. The perfor-
mance of deep Conv and Fc features based methods are better
than BoVW based methods, which proves that deep feature
has stronger expression ability. The BoVW-Conv pyramid,
Pooling-Conv pyramid are better than that of VGG-19-Conv4
and VGG-19-Fc, which confirms the effectiveness of com-
bining BoVW and CNN. The classification accuracies of the
proposed LCPB and LCPP are the best among all the different
methods, which are 96.66% and 97.54%, respectively. This
indicates that the multi-level convolution pyramid semantic
expression can provide discriminative image representation
for scene classification. The classification results of LCPP are
slightly better than that of LCPB. This implies that encoded

CNN feature using the mid-level feature based methods may
lose crucial information. It also implies that LCPP which
appropriately fused multi-level features, improves the feature
expression ability. In addition, it can be seen that the MCPSF
framework performs better than the other current methods,
such as the mid-level based methods [11], [46] and deep
learning based methods [21], [42].

FIGURE 10. Confusion matrix of LCPB with UCM dataset.

FIGURE 11. Confusion matrix of LCPP with UCM dataset.

The confusion matrices generated by LCPB and LCPP on
the UCM dataset are shown in Figs. 10 and 11, respectively.
The proposed LCPB and LCPP achieved the classification
accuracy of 95% for at least 17 categories. Scene categories
such as airplane, baseball diamond, beach, harbor, all with an
accuracy of 100%, usually have representative objects. This
indicates that the proposed MCPSF can acquire significant
representation for complex scenes. Compared to the confu-
sion matrix of LCPB, the scene categories in the confusion
matrix of LCPP obtain a better performance. For example,
the forest and building scenes are confused in LCPB, but
are fully identified by LCPP. The tennis court and dense
residential scenes are misclassified by both LCPB and LCPP,
which may due to the high variability of these scenes.
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FIGURE 12. Similar target shapes of spectral features in categories within
(a) and (b).

Some scenes categories are confused both in LCPB
and LCPP for the UCM dataset. These categories tend to
have similar target shapes or spectral features. As shown
in Fig. 12 (a), the tennis court is often surrounded by build-
ings and roads, and is similar to the building in shape and
spectral characteristics. Therefore, the tennis court and the
building scene are easily confused in the classification pro-
cess. As shown in Fig. 12 (b), the medium residential, dense
residential and mobile home park classes are also confused
due to the same object classes, i.e., roads, houses, and trees.

TABLE 3. Overall classification accuracy (%) comparison with the AID
dataset.

C. EXPERIMENT 2: THE AID IMAGE DATASET
The classification performance of single feature based BoVW
method, BoVW-SIFT and BoVW-MSD, deep Conv and
Fc features based methods, VGG-19-Conv4, VGG-19-Fc,
BoVW-Conv-pyramid, Pooling-Conv pyramid, and SIFT+
MSD+Conv4, the proposed LCPB and LCPP are shown
in Table 3. The classification results for the proposed LCPB
and LCPP, 91.33% and 93.12%, respectively, are better
than the rest of the methods, i.e., BoVW-SIFT, VGG-19-
Conv4, and SIFT+MSD+Conv4. This demonstrates that the
MCPSF is an effective framework, and the fusion feature of
multi-level is able to improve the classification performance.
In addition, the classification results of methods including
deep feature are better than those without deep feature, which
indicates that the handcrafted features are slightly insuffi-
cient in the semantic expression of the scene. The results of
BoVW-Conv-pyramid and Pooling-Conv pyramid are not

only better than single Conv4 but also better than
SIFT+MSD+Conv4. The results show that the pyramid
character enhance the ability to recognize multi-scale objects
and improve scene understanding. The proposed LCPP,
which integrates the essential features of scene is better
than that of LCPB, which integrates the frequency features.
Previous studies have shown that traditional methods fail to
achieve good results in AID dataset, while CNN-based meth-
ods can significantly improve classification accuracy, such
as [8], [41], [48].

The confusion matrices generated by LCPB and LCPP on
the AID are shown in Figs. 13 and 14, respectively. The pro-
posed LCPB and LCPP achieved the classification accuracy
of 90% for at least 18 categories. Scenes with classification
accuracy up to 99% or completely correct include desert,
farmland, mountain, viaduct, etc., which have obvious spec-
tral or structural features or ground object targets with high
identification. Compared to the confusion matrix of LCPB,
the scene categories in the confusion matrix of LCPP obtain
a better performance. For example, the resort and center
scenes are confused in LCPB, but recognition accuracy has
been greatly improved in LCPP. The school and park scenes
are misclassified by both LCPB and LCPP. The park and
the resort have a strong correlation because resorts usually
include parks. The school scenes contain a lot of buildings,
so it is easy to be confused with commercial and church
scenes.

D. EXPERIMENT 2: THE AID IMAGE DATASET
In the scene annotation experiment, dataset is constructed
from local scenes obtained from image segmentation,
the training set ratio for each category is set to 20%. The
test accuracies of MCPSF and other methods are shown
in Table 4. The experimental results in Table 4 indicate
that the proposed MCPSF framework can be well migrated
to the task of land use classification in urban areas. The
multi-level feature fusion method LCPB and LCPP obtain
a higher accuracy than other single feature methods. Meth-
ods using deep CNN features perform better than those
using mid-level features. These results are consistent with
experiments on public datasets and prove the portability of
this framework. For the Wuhan IKONOS dataset, the LCPB
and LCPP methods achieved 92.28% and 93.78% accuracy,
respectively. Compared with LCPB, LCPP designing appro-
priate multi-level feature fusion strategy improves scene clas-
sification performance. The result confusion matrix obtained
by LCPP method on this dataset is shown in Fig. 15. It can
be seen from the matrix that the identification accuracies of
vegetation, water and industrial are more than 95%, which
may indicate that the MCPSF framework captures the feature
of these categories well. Commercial and parking lot have
low recognition accuracies, and some scenes are incorrectly
identified as industrial due to their similar structural and
spectral characteristics.

The large satellite image of Wuhan IKONOS dataset and
the results of labeling it are shown in Figs. 16 (a) and 16 (b),
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FIGURE 13. Confusion matrix of LCPB with AID.

FIGURE 14. Confusion matrix of ADSSM with the Google dataset of SIRI-WHU.

respectively. It can be seen that using MCPSF framework
to annotate local scenes is roughly correct, but few con-
fused local patches also exist. Due to the similarity between

medium and dense residential in the structure and spatial
distribution of the buildings and their structure, there are
some confusions between two scenes. Similarly, there are
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TABLE 4. Overall classification accuracy (%) comparison with the Wuhan
IKONOS dataset.

FIGURE 15. Confusion matrix of LCPB with the Wuhan IKONOS dataset.

FIGURE 16. (a)Wuhan IKONOS image to be annotated. (b) Scene
annotation results of Wuhan IKONOS image.

confusions between commercial and industrial areas due to
the diversity of their objects and spatial distribution. In addi-
tion, the edge areas of different scenes are easily confused,
and the mixed scenes generated by the uniform grid are
difficult to be accurately identified. However, this paper has
achieved satisfactory results by transferring the scene clas-
sification framework based on public datasets to large-scale
urban image annotation experiments.

V. DISCUSSION
A. SENSITIVITY ANALYSIS
The low-level feature extraction method based on uniform
grid sampling needs to control the patch size and spac-
ing. Whether there are overlaps between grids will affect
the integrity of feature extraction. The core of obtain-
ing mid-level features by using BoVW model is K-means

FIGURE 17. (a) Accuracy of SIFT with different patch spacing on UCM.
(b) Accuracy of MSD with different patch spacing on UCM. (c) Accuracy of
mid-level features on UCM with different dictionary size. (d) Accuracy of
mid-level features on AID with different dictionary size.

clustering algorithm, which calculates the Euclidean distance
between visual words and keeps iterating to find K clustering
centers. Then a visual dictionary with K visual words can
be acquired. According to experiments, the size of dictionary
leads to slight fluctuation of classification accuracy. Too large
visual dictionary scale will lead to a sharp increase for the
time and space consumed, and too small scale will lead to
insufficient understanding of the scene. In this paper, sen-
sitivity experiments are utilized to explore the appropriate
sampling spacing and visual dictionary size. The size of sam-
pling patches with low-level feature extraction is 8×8. When
the patch spacing is 4, 4 pixels will be overlapped between
sampling patches; when the step size is 8, no overlapped area
will be generated. As shown in Figs. 17 (a) and 17 (b), on the
UCMdata set, both SIFT andMSD have higher accuracy than
step size 8 when step size is 4. In the experiments, the visual
word number K was varied over the range of [100, 500, 1000,
1500, 2000] for the UC Merced dataset and the Aerial Image
Dataset. From Figs. 17 (c) and 17 (d), it can be seen that SIFT
and MSD have better expression ability when the scale of
visual dictionary reaches 1500.

B. SENSITIVITY ANALYSIS
VGG-19 feature extractor consists of 5 levels with 16 con-
volutional layers, which can extract features of any layer
in the network. The first two levels contain 4 convolution
layers, and the size of the feature map is relatively large.
In this paper, we focus on the analysis of the expression
ability of 12 convolution layers at levels 3-5. By analyzing the
expression ability of each convolution layer under different
dictionary scales, the optimal dictionary size for expressing
convolution layer features using BoVW model is obtained.
Figs. 18 (a) and 18 (b) show the UCM classification results
of the individual expressions of all convolutional layers at
different dictionary scales and the average performance of
each convolution level at different K values, respectively.
The same analysis results on the AID dataset are shown in
Figs. 18 (c) and 18 (d). According to Fig. 18, when K=100,
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FIGURE 18. (a) Classification accuracy of all convolution layers in UCM
dataset. (b) Average performance of each convolution level of UCM
dataset. (c) Classification accuracy of all convolution layers in AID dataset.
(d) Average performance of each convolution level of AID dataset.

each convolution layer performs poorly, because the scale of
the dictionary is too small to fully describe the scene. When
K=1500, the expression ability of each convolution layer
begins to decline, because the scale of visual dictionary is too
large, resulting in excessive expression of scenes and poor
classification effect. In general, in UCM and AID datasets,
the fourth convolution level performs best on average. For
visual dictionary size, UCM dataset performs better on aver-
age when K=500, while AID data set performs better when
K=1000.

VI. CONCLUSION
In this paper, the multi-level convolutional pyramid seman-
tic fusion (MCPSF) framework has been proposed for
high spatial resolution (HSR) imagery scene classification.
In MCPSF, considering the special solar illumination con-
dition of HSR images, the first and second-order statis-
tics mean and standard (MSD) of pixels are used as the
local spectral characteristics. Considering the special land
coverage of HSR images, scale-invariant feature transform
(SIFT) are used to describe the structural characteristics. Both
handcrafted features are mapped to the mid-layer using the
BoVW model. Experiments with three HSR image datasets
indicate that the MSD works better than the SIFT features,
and the combination of MSD and SIFT can perform bet-
ter. Instead of the mid-level feature, MCPSF represents the
images with high-level features extracted from the pre-trained
CNN model. Features of multi-scale convolutional layer and
fully connected layer are extracted from the CNN model.
Experiments on three datasets show that compared to fea-
ture extracted from single convolutional layer, the feature
of fully connected layer can describe the scene better, but
features of multi-scale Convolutional layer perform best after
fusion. Finally, the proposed LCPP and LCPB methods effi-
ciently fuse mid-level features and multi-scale deep features,
which acquires the best performance for HSR image scene
classification.

However, there is scope for further improving the classifi-
cation performance of the proposed MCPSF framework. The
deep CNN model dedicated to HSR image training is limited
by the number of samples, and remote sensing images tend
to show multi-scale characteristics. In our future research,
the data enhancement method for remote sensing images will
be studied to meet the needs of training specific model. The
CNN network will be appropriately improved, and the model
will be trained through samples of different scales.
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