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ABSTRACT The measurement of heart rate variability (HRV) is the preferred method for assessing the
function of the autonomic nervous system (ANS). Traditional HRV detection requires an electrocardiogram
(ECG) or photoelectric sensor. In this paper, we propose a new method for HRV measurement using a rear
smartphone camera as a sensor. Video signals from the fingertips of 24 college students were acquired using
the rear camera of an HTC M8d smartphone. ECG signals were simultaneously recorded as reference.
The video signals were converted into single-frame image sequences over time. Each image frame was
transformed into point data through superpositioning of pixel color attribute values and averaging according
to space. The point data were sorted by time to obtain a photoplethysmogram (PPG). Finally, the Hilbert
transform was used to extract the pulse-to-pulse interval and the R-to-R interval for the PPG and ECG,
respectively. Sixteen HRV parameters (mean HR, max HR, min HR, SDNN, RMSSD, NN50, pNN50, VLF,
LF, HF, TP, LFnu, HFnu, LF/HF, SD1, and SD2) were analyzed. All 16 HRV parameters were highly
correlated (all rs > 0.95, ps < 0.05), and the effect size (ES) differences were small (ES < 0.175) for
all indices except for RMSSD, HF, and SD1. Compared with the ECG method, the errors of the 13 HRV
parametersmeasured using thismethodwerewithin acceptable ranges. The results suggest that this technique
can be used as a convenient method to assess and quantify ANS activity and balance.

INDEX TERMS Heart rate variability, photoplethysmography, smartphone, camera, video.

I. INTRODUCTION
Over the past decade, the advent of smartphones has revolu-
tionized daily life. Today, smartphones are no longer simple
communication tools; they also have many functions, includ-
ing photography, payment, and entertainment. With advances
in electronic technology and cloud computing, healthcare
fields will likely be transformed by smartphones. Currently,
smartphones can be used for monitoring personal health by
measuring physiological parameters, such as glucose [1],
immunoglobulin G [2], and serum bilirubin levels [3], blood
pressure [4], electrocardiograms (ECGs) [5], and heart rate
variability (HRV) [6], using built-in or external sensors.
Among these parameters, HRV, which measures small dif-
ferences in time between successive normal (sinus) cardiac
cycles, is recognized as the preferred metric for quanti-
tatively evaluating the function of the autonomic nervous
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system (ANS) [7]. Numerous articles have reported inverse
relationships of HRV parameters to age [8], [9] and exer-
cise [10], [11]. HRV parameters significantly decreases dur-
ing disease states, such as diabetes [12], hypertension [13],
and cancer [14]. Therefore, monitoring HRV parameters
offers important reference values for quantitative health
assessment and management.

HRV analysis is generally based on two time series,
namely, the R-to-R interval (RRI) of an ECG and the pulse-
to-pulse interval (PPI) of a photoplethysmogram (PPG) [15].
Studies have shown that time- and frequency-domain HRV
parameters analyzed by PPI are negligibly different from
those conducted using RRI [16]–[18]. Regardless of the
approach, the use of smartphones for HRV measurements
requires external or built-in professional sensors and adds
use-related costs to the user. In recent years, high-definition
cameras have become standard issue in smartphones. Many
scholars have used smartphone cameras as sensors for stud-
ies on heart rate (HR) monitoring and HRV measurements
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using contact or noncontact video PPG (vPPG) technol-
ogy [19]–[26]. In general, the noncontact vPPG is more con-
venient in the application of continuous dynamic monitoring,
but the measurement accuracy of the contact vPPG is higher.
For HR monitoring, the use of the noncontact method meets
measurement accuracy requirements. For example, in 2010,
Poh et al. [19] proposed a method for measuring the HR
using blind source separation (BSS) of facial video imag-
ing. When subjects were at rest, the mean value of the HR
error was only -0.05 bpm, and the range of 95% of the
limits of agreement (LoA) was (−4.6, 4.4) bpm, i.e., nearly
medical-grade levels. Measuring the HRV does not require
continuous monitoring but does require higher PPI accuracy,
which often cannot be met by the noncontact method. Peng
et al. [6] used contact vPPG to analyze 16 HRV parame-
ters. Compared with the ECG method, 14 parameters were
highly correlated (r > 0.7, p < 0.001), and the errors
of seven parameters were within acceptable ranges. Most
existing smartphone camera-basedHRV analysis methods are
algorithmically complex and have limited accuracy. In this
study, a simple video processing algorithm is proposed.
Compared with the ECG method, the analyzed HRV time-
and frequency-domain parameters were highly correlated
(r > 0.95, p < 0.001).

II. METHOD
A. SUBJECTS AND DATA COLLECTION
Twenty-four college students at Bengbu Medical College,
China, participated in this study, with 13 male students and
11 female students. Their mean (± standard deviation) age
was 20.6 ± 1.0 years, their height was 1.69 ± 0.07 m, their
body weight was 61.5 ± 10.4 kg, and they had a body mass
index of 21.5± 2.7 kg/m2. None of the subjects had a history
of heart disease or hypertension, and they were informed of
the purpose and details of the experiment before participating.
The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ethics
Committee of Bengbu Medical College.

Before the tests, we instructed the subjects. They were
asked to keep their fingers clean, apply moderate pressure
on the smartphone camera, and remain quiet during the
test. Approximately 30% of subjects needed to repeat the
test two to three times to obtain a satisfactory signal. Sig-
nal satisfaction was dependent on whether 95% PPI was
extracted. During the experiment, a video signal from the
fingertip of an index finger of each subject was obtained
using the rear camera of an HTC M8d smartphone (HTC,
Taiwan, China) (Figure 1); simultaneously, the ECG signal
of the subjects was recorded synchronously using a HeaLink-
R211B micro-ECG recorder (HeaLink, Ltd., Bengbu, China)
as reference. The rear camera of the HTC M8d was an HTC
4 million UltraPixel camera with the following settings: Full
HD 1920 × 1080 video quality and square (1:1) cropping.
The slow-motion mode was selected when recording. The
sampling rate of the micro-ECG recorder was set at 400 Hz,

FIGURE 1. A video signal of the index fingertip which was obtained by
using the rear camera of an HTC M8d smartphone.

and disposable Ag/AgCl ECG electrodes (Junkang, Ltd.,
Shanghai, China) were used for signal acquisition.

B. VIDEO SIGNAL PROCESSING
The collected fingertip video signals were processed accord-
ing to the following steps, and a flow chart of the entire
process is shown in Figure 2.

First, the acquired video signal is converted to a single-
frame image sequence over time. The video signal acquisition
time is 120 s for each subject. X is the number of frames
of the video. Assuming that the frame rate of the video
acquisition is F frames/s, a video of 120 s will be composed
of 120∗F frame images, and X will be further scaled by a
factor of 4 when filmed in 4x slow-motion mode. The frame
rate F is 25 frames/s for the HTC M8d smart phone. Thus,
X = 12,000 for a video of 120 s taken in 4x slow-motion
mode (i.e., 120∗25∗4).
Second, each frame image in the image sequence is trans-

formed into point data by pixel superposition and averaging
according to the space. For any jth frame image, assuming N
pixels and the ith pixel color attribute value is Pj(i), the pixel
values of all of points are superimposed and averaged such
that the average pixel valuePj of this frame image is obtained.
The formula is expressed as

Pj =

∑N
i=1 Pj(i)
N

. (1)

In this manner, the jth frame image is converted from a
two-dimensional image to point data; then, X frames of the
image is converted to X point data, namely, P1, P2, P3 . . .Px .
Finally, the PPG pulse wave is obtained by sorting these

point data across time.
The waveform of the pulse wave obtained through video

signal processing may experience baseline drift and vari-
ous sources of interference; therefore, further digital filter-
ing of this pulse wave may be necessary. Commonly used
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FIGURE 2. Overall diagram of the video signal processing. The acquired video signal was converted to a single-frame image sequence
over time. Then, each frame image in the image sequence was transformed into point data by pixel superposition and averaging
according to the space. Finally, the PPG pulse wave can be obtained by sorting these point data across time.

FIGURE 3. Comparison of waveforms before and after Chebyshev filtering.

digital filtering algorithms for pulse waves include wavelet
filtering [27], independent component analysis (ICA) [28],
Kalman filtering [29], and mathematical morphological fil-
tering [30]. A Chebyshev type II filter [31] was used in
this study. According to the passband cutoff frequency for
pulse waves, stopband initial cutoff frequency, maximum
passband attenuation decibel, minimum stopband attenuation
decibel, and other requirements, the fluctuation coefficient
and filter order was calculated. Ultimately, the system func-
tion of the filter was obtained. Figure 3 shows the waveform
comparison of pulse waves before and after Chebyshev II
filtering.

C. FEATURE EXTRACTION
Feature value extraction of synchronously acquired ECG
signals and PPG signals is needed for the next step in the

analysis. The ECG signal is used to extract the R wave and
calculate its RRI time series; the PPG signal is used to extract
the peak values and calculate the PPI time series (Figure 4).
In the experiment, we synchronized ourselves with Beijing
time. Manual checks were then performed to ensure that each
pair of RRI and PPI was aligned.

The methods for extracting the feature values of
the ECG and PPG signals include finite difference
method [32], wavelet transform method [33], and morpho-
logical method [34]. In this study, the Hilbert transform was
used for the extraction. The Hilbert transform is a linear
transformation. For signal x (t), the transformation [35], [36]
can be defined as

x̂(t) = H [x(t)] =
1
π

∫
∞

−∞

x(τ )
1

t − τ
dτ (2)
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FIGURE 4. The RRI and PPI extracted from the simultaneously recorded
ECG and pulse wave signals respectively. RRI is calculated based on the R
to R wave of ECG. PPI is calculated from the peak to peak of the pulse
wave.

Equation (2) indicates that the time-independent compo-
nents remain unchanged before and after the transformation;
thus, x (t) can be expressed as the convolution form of x (t)
and (π t)−1,

x̂ (t) =
1
π t
∗x(t). (3)

By performing Fourier transformations on both sides of
equation (3), we obtain

F
{
x̂ (t)

}
=

1
π
F
{
1
t

}
F {x (t)} . (4)

Because

F
{
1
t

}
=

∫
∞

−∞

1
x
e−j2π fxdx = −jπsgnf (5)

where sgn f is a sign function (i.e., 1 when f > 0, 0 when
f = 0, and − 1 when f < 0), the Fourier transform of the
Hilbert transform x (t) from the original signal x (t) can be
expressed as

F
{
x̂ (t)

}
= −jπsgnfF {x (t)} . (6)

Because the Hilbert transform is an odd function, after
the Hilbert transformation of the signal, the inflection point
of the original signal corresponds to the zero-crossing point
of its Hilbert transform signal. For the zero-crossing point,
the extreme point will appear in the Hilbert transform. Using
this property of the Hilbert transform, the position of the
R-wave in the ECG signal or the position of the peak in
the PPG signal is determined such that the RRI and PPI are
calculated (Figure 5).

D. HRV ANALYSIS
The HRV time domain indices include the mean HR, maxi-
mum HR (Max HR), minimum HR (Min HR), the standard
deviation of all normal-to-normal (NN) intervals (SDNN),
the root mean square of the successive differences in the
adjacent NN (RMSSD), the number of pairs of successive
NN intervals that differ by more than 50 ms (NN50), and
the proportion of NN50 divided by the total number of NN

intervals (pNN50). The calculation formulas for HR, SDNN,
and RMSSD are as follows [37]:

HR =
60
RRI

(7)

SDNN =

√
1
N

∑N

i=1
(RRI i − ¯RRI )2 (8)

RMSSD =

√
1

N − 1

∑N−1

i=1
(RRI i+1 − RRI i)2 (9)

The HRV frequency domain parameters include very low
frequency power (VLF), low frequency power (LF), high
frequency power (HF), total power (TP), normalized units
of LF (LFnu), normalized units of HF (HFnu), and the ratio
of LF to HF (LF/HF), where VLF is defined as 0 - 0.04 Hz,
LF is defined as 0.04 - 0.15 Hz, HF is defined as
0.15 - 0.5 Hz, and TP is defined as 0 - 0.5 Hz. All calculations
for the power spectrum density are based on the fast Fourier
transform (FFT).

Most studies use ellipse-fitting methods to analyze
Poincaré plots, and short-axis SD1 and long-axis SD2 are
indicators of quantitative analyses, where SD1 reflects the
difference between adjacent RRIs, representing the instan-
taneous HR change and SD2 reflects the overall degree of
variation in the HR. The calculation formulas for SD1 and
SD2 are as follows [38]:

SD1 =

√
1

N − 1

∑N−1

i=1

(RRI i − RRI i+1)2

2
(10)

SD2 =

√
1

N − 1

∑N−1

i=1

(RRI i + RRI i+1 − 2 ¯RRI )2

2
(11)

In equations (8) – (11), N is the total number of all normal
sinus RRIs, RRIi and RRIi+1 are the ith and the i+1th RRIs,
respectively, and RRI is the average of all N RRIs.

E. STATISTICAL ANALYSIS
Histograms of the HRV frequency domain parameters
showed an obvious right skew; they were expressed as natural
logarithms prior to further analyses. To assess the consistency
between the two measurement methods, matched-pair tests,
Pearson correlation analyses, Bland-Altman analyses, and
effect sizes (ES) were used to process the data between the
groups. In the Pearson correlation analyses, the correlation
coefficient r was used to characterize the degree of corre-
lation between the two sets of data; a larger absolute value
of r indicated a stronger correlation. In the Bland-Altman
analysis, the 95% LoA for the two sets of data was calculated
as themean of the difference between the two± 1.96 standard
deviation. The magnitude of the difference between HRV
parameters was assessed using the ES with smaller values,
which indicated lower differences [39]–[41]. The ES value
is expressed as the difference between the means of the
two samples divided by the pooled variance. The criteria for
defining the magnitude of ES values included the following:
the difference was small when ES ≤ 0.2; the difference was
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FIGURE 5. A typical PPI extraction instance.

FIGURE 6. A representative illustration of PPI error detection.

moderate when ES ≤ 0.5; and the difference was large when
ES ≥ 0.8 [42]. p < 0.05 was considered significant
for all analyses. These analyses were performed using
SPSS (ver. 23.0, SPSS, Inc., Chicago, IL., USA) statistical
software and MATLAB (MathWorks, Natick, MA, USA)
self-programming.

III. RESULTS
The fingertip video and ECG signals of the 24 subjects were
analyzed to obtain 2114 PPIs and 2108 RRIs, respectively.
Of the 2114 PPIs, there were 6 (< 0.3%) misdetections.
Figure 6 shows a typical example of a PPI misdetection.

The primary cause for the six false checks was interfer-
ence. We addressed these false checks by adding two PPI

values. In practical applications, automatic corrections can be
adopted. Here, we used manual corrections. After manually
correcting, a total of 2108 pairs of PPI and RRI values were
obtained. There was a strong correlation between the two sets
of data (r = 0.994, p = 0.000) (Figure 7). The Bland-Altman
analyses showed that the mean of the difference between
the two datasets was -0.2 ms, the 95% LoA range was
(-19.8, 20.2) ms (Figure 8), and ES = 0.001, indicating a
small difference.

The time domain parameters, frequency domain parame-
ters, and Poincaré plot parameters of the HRV were analyzed
for their PPI and RRI values, respectively, and the results are
shown in Table 1. There was an extremely strong correlation
between the two methods for all the HRV indices (r > 0.95,
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FIGURE 7. The correlation between the PPI and RRI (r = 0.994, p = 0.000).

FIGURE 8. Bland-Altman agreement analysis between the PPI and RRI. The mean of the difference between the
two datasets was -0.2 ms, and the 95% LoA range was (-19.8, 20.2) ms.

p = 0.000). Except for the RMSSD, HF, and SD1, the ES
was small (< 0.2) for all evaluated indices between the two
methods.

References [6] and [25] are more consistent with our study.
In reference [6], the 14 HRV parameters from vPPG were
highly correlated (r > 0.7, p < 0.001) with those from ECG,
and only 7 of them were in the acceptable range. However,
our study still has a little difference in accuracy compared
with reference [25].

IV. DISCUSSION
The existing studies based on vPPG technology have pri-
marily focused on applying this technology within the field
of HR monitoring [19]–[23]. For HR monitoring, the high
PPI measurement accuracy is not required but should be
dynamic and in real time. Therefore, a noncontact method has

generally been adopted as the measurement mode. In video
signal processing, techniques such as BSS, ICA, and FFT
analyses must be used to remove noise. The HRV Values
are expressed as the mean (standard deviation). measurement
typically does not depend on long-term continuous monitor-
ing. In practice, it is usually performed with ECG data of
<=5 minutes [7]. However, HRV measurement does require
a high PPI accuracy. It is often difficult to meet the require-
ments using a noncontactmethod; therefore, a contactmethod
has generally been adopted. Unlike the traditional noncontact
video acquisition technology, BSS, ICA, and other denoising
technologies are not required for collecting fingertip video
signals by contact methods when the subject is in a quiet
state. Instead, the spatial pixel attribute values of each frame
are superimposed and averaged; then, the pulse wave signals
are synthesized from a time perspective. Although there is
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TABLE 1. Comparison of HRV parameters between the video and ECG.

some noise in the pulse wave signal, it can be processed
by simple digital filtering. The HRV analysis of these pulse
waves showed that all indices, except RMSSD, HF, and SD1,
were strongly correlated with the results of the ECG mea-
surement with very small differences and within acceptable
ranges of error. The results presented in this study confirmed
the feasibility of the proposed method for HRV analysis.

The periodic systolic and diastolic heart activity causes
blood to enter arteries and return from veins, forming a
blood circulation system. The pulse wave is formed by the
spreading of heart pulsation along arterial blood vessels and
by blood flow to peripheral arteries. From a temporal per-
spective, the PPI lags relative to the RRI; as such, using
the PPI for HRV analysis may produce errors. However,
the existing research has shown that in a resting state, all
of the time- and frequency-domain HRV indices analyzed
with the PPI were negligibly different from those analyzed
with the RRI [16]–[18]. Therefore, there are inherent errors
in using PPI instead of RRI to analyze HRV. But such errors
are negligible.

Another error factor is the PPI accuracy. Generally,
the frame rate of a smartphone camera is approximately
25 f/s, and the sampling rate of the corresponding pulse wave
after processing is 25 Hz. In this study, a 4x slow-motion
mode was adopted to improve the sampling rate to 100 Hz.
The sampling rate of ECG signals for HRV analysis is
recommended to be no less than 250 Hz [7]. Compared
with that of the RRI, the average difference for the PPI,
as calculated by the method proposed in this study, was
0.2 ms, but the range for the 95% limit of agreement reached
from −19.8 to 20.2 ms. Therefore, the low sampling rate
may be the fundamental reason for the large differences in
high-frequency indicators. For undersampled signals, inter-
polation is an effective method for improving the sam-
pling rate. We performed parabolic interpolation and Fourier

interpolation but had little success. The interpolation method
requires further study.

Among the HRV indices, SDNN and LF represent the
coregulation of sympathetic and parasympathetic nerves, and
the LF/HF ratio represents the balance between the sympa-
thetic and parasympathetic nerves [7]. The results of this
study show that the SDNN and LF/HF calculated by the video
technique proposed in this paper have high correlations with
the ECG method to the extent that there is no significant
difference between the two methods. This finding demon-
strates the great potential of applying video technology in
HRV analysis. To date, HRV measurement has been used to
quantitatively evaluate the overall autonomic nerve activity
and to track the balance of the sympathetic and parasympa-
thetic nerves. For example, in patients with heart failure [43]
and terminal illnesses [44], many variables are involved in the
HRV decrease, and thus, HRV has become an independent
prognostic indicator for these diseases. Unlike the traditional
HRV measurement method, the method proposed in this
study enables patients to use smartphones to perform remote
monitoring and evaluation at home. Another example is that
HRV is age related and can be used as a noninvasive biolog-
ical marker for assessing aging [9]. If a big data model of
HRV and age is established with this method, the quantitative
assessment of daily aging can be performed and used for
health guidance.

vPPG is more sensitive to interference and noise than ECG
acquisition. Therefore, there are several obvious limitations
to this study. First, differences in skin tones, skin roughness,
and even fat thickness affected the absorption and reflection
of light to some extent, thus affecting the quality of the PPG
signal. Therefore, the influence of these factors on the accu-
racy of the HRV measurement should be further explored.
Second, due to the influence of subjective and objective fac-
tors, such as the size of the phone, the size of the individual’s
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palm, and the degree of personal tension, the pressure on the
fingers of each person varied. Pressure intensity and stability
greatly influence the PPG signal quality. In extreme cases,
the pulse wave shape may not even be obtained and thus
may need to be measured again. Therefore, further research is
needed to address this issue. Third, although we preliminarily
verified that this method can be used for quantitative evalua-
tions of personal daily ANS values, it is necessary to further
study the ANS level of subjects under different stress states
and evaluate whether the device can capture these changes.

V. CONCLUSION
We proposed a new method for HRV analysis based on the
rear-facing camera of a smartphone. This method abandons
traditional signal separation and time-frequency transforma-
tion methods; instead, this method uses the time-space-time
transformation of the video signal to obtain the PPG and then
applies the Hilbert transform to calculate the PPI for HRV
analysis. There was a very strong correlationwith the RRI and
HRV parameters obtained using the ECG method. Except for
RMSSD, HF, and SD1, the differences for all indices were
very small. These findings suggest that this method can be
used to quantitatively assess the overall activity and balance
of autonomic nerves and for the quantitative management
of an individual’s day-to-day health. Future directions will
include the development of applications based on a smart-
phone platform.
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