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ABSTRACT A point cloud is an effective 3D geometrical presentation of data paired with different attributes
such as transparency, normal and color of each point. The imperfect acquisition process of a 3D point cloud
usually generates a significant amount of noise. Hence, point cloud denoising has received a lot of attention.
Most of the existing techniques perform point cloud denoising based only on the geometry information of the
neighbouring points; there are very few works considering the problem of denoising of color attributes of a
point cloud, and taking advantage of the correlation between geometry and color. In this article, we introduce
a novel non-iterative set-up for the denoising of point cloud based on spectral graphwavelet transform (SGW)
that jointly exploits geometry and color to perform denoising of geometry and color attributes in graph
spectral domain. The designed framework is based on the construction of joint geometry and color graph that
compacts the energy of smooth graph signals in the low-frequency bands. The noise is then removed from the
spectral graph wavelet coefficients by applying data-driven adaptive soft-thresholding. Extensive simulation
results show that the proposed denoising technique significantly outperforms state-of-the-art methods using
both subjective and objective quality metrics.

INDEX TERMS Point cloud denoising, color denoising, graph signal processing, spectral graph wavelets.

I. INTRODUCTION
Point clouds are considered as an efficient and useful tech-
nique to render volumetric data in 3D space. Point clouds
are unorganized collections of points in space, where a
single point consists of 3D geometric information along
with attribute data, i.e., color, transparency, normals. Point
clouds have now been widely employed in several differ-
ent fields such as navigation of unmanned vehicles, culture
and heritage reconstruction, 3D immersive telepresence, and
3D broadcasting [1].

With the advent of computer vision technology and
optical components, in addition to laser scanning sensors,
low-cost RGB-D cameras have been developed such as Astra,
Astra S, Astra Pro, Intel RealSense [2]–[4] and Microsoft
Kinect [5], [6]. Point cloud acquisition is quite easy using
such cameras or generated by stereo matching algorithms [7]
are typically suffered from non-negligible noise in geometry
and color due to various angles, reflective materials or type
of surfaces of the objects, light intensities, as well as the
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limitation of sensors [8]. The geometry, along with the color
attribute of an object or scene, plays a vital role for several
augmented and virtual reality applications [9]. The color
attribute of a point cloud is considered an essential feature
for applications such as segmentation [10]–[12] and retrieval
of 3D models [13], [14]. Noisy colors may lead to wrong
segmentation and inaccurate retrieval of point cloud models.
In the recent literature, a lot of work has been performed for
denoising the noise in the point coordinates (i.e., geometry
noise) to improved their quality [15]–[18]. However, only one
work is available for the color denoising of a point cloud using
Graph Laplacian regularizer (GLR) coupled with alternating
direction method of multipliers [19]; still, there are various
applications employing both the geometry and color attribute
of a point cloud.

In this article, we present a novel non-iterative algorithm
for the point cloud geometry and color denoising problem,
which jointly uses geometry and color attributes of points.
We note that the color attribute is a powerful and very infor-
mative feature that is indeed correlated with the geometry,
also observed in [12], [19], [20] and discussed in Sec. III.
Knowledge of the color can be exploited to improve the
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denoising process for geometry noise, and indeed geome-
try and color can be jointly employed to remove geometry
and color noise. The proposed technique applies Spectral
Graph Wavelet (SGW) [21], offering a trade-off between
spectral-domain and vertex localization. This enables us to
take the benefit of global smoothness, i.e., most of the
energy lies in the lower frequency bands, while avoiding to
over-smooth discontinuities that represents the large magni-
tude coefficients in the high frequency bands. Extensive sim-
ulation results on synthetic and real-world point clouds show
that our proposed algorithm for color-only and geometry-only
denoising outperforms state-of-the-art techniques using both
subjective and objective quality metrics.

The main contributions of our work are as follow:

1) We provide a statistical analysis to assess the correla-
tion between color and geometry of a point cloud.

2) We propose a 3D point cloud geometry denoising prob-
lem using SGW, for which we have constructed a joint
geometry/color graph. We use data-driven adaptive
thresholding for denoising the point cloud in contrast to
the algorithm described in [22] where the prior knowl-
edge of standard deviation is required for thresholding.
The proposed algorithm is non-iterative, in contrast
with [23] that employs an iterative technique using
convex minimization.

3) We use the same framework for solving the color
denoising problem of a point cloud in a computation-
ally efficient way with respect to the approach dis-
cussed in [24] where the point cloud color is denoised
using an iterative technique.

The rest of the paper is organized as follows. In Sec. II,
an overview of related works is presented. Sec. III contains
the statistical analysis. Sec. IV reviews the basics of graph
signals and describes the graph construction. Sec. V explains
the proposed algorithms which incorporate color-only and
geometry-only denoising. Performance evaluation metrics
are discussed in Sec. VI. The subjective and objective experi-
mental results are presented in Sec. VII. Finally, conclusions
are drawn in Sec. VIII.

II. RELATED WORK
In the literature, point cloud denoising techniques can be
classified into two categories: outlier removal and noise
removal, i.e., surface smoothing techniques. Outlier removal
techniques can be classified into two main approaches: sta-
tistical and model-based.

Statistical approaches: The primary purpose of the statis-
tical methods is to remove the outliers based on the distribu-
tion of each point with respect to its neighbors or the number
of neighbors to each point. The statistical outlier removal
approach proposed in [25] computes the mean distance of
each point from all its neighbors. The mean and standard
deviation identify likely intervals of the global distances, and
all the points whose mean distance is outside the defined
range are counted as noise and eliminated from the point

cloud. An alternate extensively used approach called radius
outlier removal (ROR) is based on the number of neighbors;
here the number of neighbors of each point is computed in
a defined radius and the points whose number of neighbors
are less than a threshold are considered outliers and are
eliminated from the point cloud [26].

Model-based approaches: These approaches employ the
notion that noisy points are generally distant from the sur-
face of the object. Due to the unknown underlying surface,
the general idea is to approximate the surface with some
model, e.g., sphere, plane, square, and so forth, and then
compute the distance of each point to the surface of themodel.
The points having significant distance are considered as noise
and removed [27]. A progressive plane algorithm is described
in [28], whereby using the average normal and 3D coordi-
nates of a given point set, a plane is estimated. A least-square
plane fitting technique is used for computing the distances
between each point and the plane and construct a progressive
plane; a hybrid algorithm is introduced in [29] based on [28].
The issue with these methods is that in complex geometry,
details can be missed because it is hard to fit complex regions
with simple models.

Surface smoothing techniques mainly contain moving
least squares (MLS), locally optimal projection (LOP)-based
methods, sparsity-based methods, and graph based-methods.

MLS-based methods: MLS-based methods typically use
an estimated smooth surface from the given input to fit the
point cloud, and then the points are projected onto the fitted
surface. The MLS projection operator in [30] is used by [31]
to compute the optimal MLS surface of the point cloud and
considered as a reference surface, and then the points are
moved around the surface towards it.

Spherical fitting denoising based on MLS algebraic point
set surfaces is proposed in [32], along with its variant [33].
This method overcomes unstable reconstruction in case of
high curvature and enhances stability at a low sampling rate
in comparison to the MLS-based approach. Several exten-
sions of MLS such as robust MLS [34] and robust implicit
MLS [35] have also been proposed. These MLS-based meth-
ods can provide a smooth surface from significantly noisy
input but are usually prone to over-smoothing, and are very
sensitive to outliers [17], [18].

LOP-based methods: Unlike MLS-based methods, these
methods do not measure specific surface parameters;
LOP [36] enforces uniform distribution over the given input
point cloud and provides a set of points that represent the
underlying surface. Its variant weighted LOP (WLOP) [37]
provides a more uniformly distributed output by modify-
ing the repulse term according to the local density. More-
over, anisotropic WLOP [38] re-models WLOP by using
an anisotropic weighting function for better preservation of
sharp features. Due to the use of local operators, LOP-based
methods are also affected by over-smoothing [17], [18].

Sparsity-based methods: Sparsity-based methods seek a
sparse representation of some features of geometry based
on local planarity assumption. These methods solve a global
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minimization problem in l1 [39] or l0 [17] norm for the
sparse reconstruction of surface normals and minimize a cost
function to update the point positions with surface normals.
Moving robust principal components analysis [16] is an effi-
cient method for solving a minimization problem to update
the position of each point. Weighted l1 minimization helps
to preserve sharp features. These approaches provide state-
of-the-art performance [40]; however, the normal approxi-
mation can be affected by high-level noise, which leads to
over-sharpening and over-smoothing [17].

Graph-basedmethods:Recently, graph-based techniques
have been used for denoising point clouds. The con-
ventional approach is to construct a k nearest neighbor
(k-NN) graph as it makes geometric structure explicit [41].
The points in a given point cloud are considered as
nodes, and each node is connected through edges to its
k nearest neighbors with weights that reflect inter-node sim-
ilarities based on geometric information [42], [43]; an iter-
ative regularization technique (IBR) is employed to enforce
smoothness on the geometry-only graph signal [42]. Mani-
fold denoising through spectral graph wavelet (MSGW) [44]
also employed a geometry-only graph. The robust denoising
of piece-wise smooth manifolds (RPSM) is performed using
a local tangent space-based graph [45]. The disadvantage of
these approaches is that holes are typically formed in the
denoised output (see Fig. 1) as the correct position of a point
is estimated based on the noisy geometry. This can lead to
errors in estimating the local surface as the information of
the manifold is based only on geometry. Data-driven meth-
ods [7], [46] for point cloud denoising have presented good
performance, still may not be convenient to apply where no
dataset of ground-truth point clouds is available. An extension
of the IBR is used in [23], where the convex optimization
is performed for denoising the geometry of a point cloud
using the geometry/color graph signal. In contrast to an
iterative method, a non-iterative technique for point cloud
denoising by exploiting the same geometry/color graph signal
is presented in [22] using the manual setting of threshold
corresponding to the noise level. In this article, we employ
the same method as in [44], but we carefully exploit both
geometry and color to move each point to its actual position,
preventing the artifacts caused by other denoising techniques
employing only geometry information and perform adaptive
thresholding for the noise removal contrary to the threshold-
ing technique described in [22].

More particularly, the proposed technique constructs a
joint geometry/color graph, followed by employing the SGW
to the respective graph signal. Point cloud denoising based
on SGW is very effective, as the constructed graph compacts
most of the energy of smooth graph signals in lower frequen-
cies. Moreover, the joint geometry and color graph offers
better spectral separation between noise and signal, helping in
noise removal. Mostly recent point cloud denoising are itera-
tive based techniques and may also be susceptible to various
parameters selection [16], [32], [35], [42]. On the contrary,
the proposed framework is non-iterative and computationally

FIGURE 1. Asterix model: (a) Noise-free input, (b) denoised with IBR [42].
The noisy points are relocated to their closest neighbors rather than their
original locations, generating holes in the resulting denoised point cloud.

less expensive, which scales linearly with the size of data; and
independent of parameter selection.

The proposed algorithm is different from the technique
described in [44] in the following ways:

• The construction of the graph in [44] is based on
geometry-only, and hence the resulting denoised point
clouds have artifacts. In the proposed algorithm,
we exploit the correlation between geometry and color
in the graph construction, which strongly reduces the
artifacts.

• In the algorithm described in [44], prior knowledge
of standard deviation is needed for performing the
soft-thresholding, which can work with synthetic point
clouds. Still, in real-world point clouds, the stan-
dard deviation is unknown. In our technique, we used
data-driven adaptive soft-thresholding, in which the
prior knowledge of standard deviation is not required.

• The proposed algorithm is also used for color denoising
of the point cloudwith a different set of weights based on
the correlation of the geometry and color. The algorithm
in [44] does not perform color denoising.

Extensive experimental findings depict that the proposed
method effectively utilizes the correlation between geometry
and color to move each point to its original position, avoiding
creating holes caused by other recent approaches. We present
that the proposed method outperforms state-of-the-art tech-
niques using both subjective and objective quality metrics.

III. STATISTICAL ANALYSIS
In this section, we report the statistical analysis results to
study the correlation between geometry and color in a point
cloud. The idea of using joint geometry/color graph construc-
tion is based on the notion that on a smooth surface, the color
is typically smooth; hence the correct location of a point also
depends on the color attribute and not only the geometry of
the neighboring points, as well as on the geometry of the
neighbors.

A point cloud is represented as P = {p1, p2, p3, . . . .., pN}
with pi ∈ R6 containing 3D geometry and RGB color infor-
mation for point pi. The six-dimensional feature of each point
is pi = [Xi,Ci], where Xi = [xi yi zi] ∈ R3 is the geometric
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FIGURE 2. (a) 4arms_monster ground-truth model; (b) Scatterplot Matrix of the correlation result of the geometry and color of (a) shown in Tab. 1.

TABLE 1. Correlation coefficient ρ between geometry and color of
4arms_monster ground-truth model.

coordinate vector and Ci = [Ri Gi Bi] ∈ R3 are the color
attributes. We compute the linear correlation coefficient ρ
between each independent variable of Xi and Ci. If there is
an exact linear relationship between two variables, ρ is equal
to 1 or -1 depending on whether the variables are positively or
negatively related. If there is no linear relationship, the corre-
lation tends towards zero.

Fig. 2-a shows the synthetic point cloud used for this
analysis. In Fig. 2-b, each scatterplot box is illustrated with a
bivariate normal density ellipse.

The results in Tab. 1 and Fig. 2 show the relationship of
individual geometry coordinate to itself (diagonal values of
ρ in Tab. 1 and to other variables. They show that there
exists some correlation between each geometry coordinate
and every individual color attribute of a point. In order to
quantify the relationship between the geometry and color

TABLE 2. Correlation coefficient ρ between geometry and color of a
planar patch in Arco_valentino model.

more precisely and gain some intuition, it is useful to compute
the correlation for a real-world point cloud. A planar patch is
taken into account from an Arco_valentino shown in Fig. 3-a,
for which the correlation coefficient between geometry and
color is computed to obtain more meaningful results. The
results in Tab. 2 and the scatterplot shown in Fig.3-b indicate
that the data points for the individual geometry and color
component are tightly clustered, suggesting that the geometry
and color are highly correlated. This justifies exploiting this
correlation for point cloud denoising.

In Fig. 2-b and Fig. 3-b, each pair-wise correlation of
an individual attribute is shown. The lower and upper tri-
angle across the diagonal is similar. Each pair-wise scat-
terplot matrix represents the bi-variate normal distribution
and is computed using Pearson product-moment correla-
tion (PPMC), which measures the strength of the linear
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FIGURE 3. (a) Arco_valentino model; (b) Scatterplot Matrix of the correlation result of the geometry and color of (a) shown in Tab. 2.

relationship between the corresponding two variables. The
red ellipses in each scatterplot box encompass approximately
95% of the points. These ellipses reflect the correlation
between the variables.

IV. PROPOSED METHOD - GRAPH CONSTRUCTION
A. GRAPH NOMENCLATURE
An undirected weighted graph G = {V, E} contains a con-
fined set of m vertices V and a set of edges E denoted as
(i, j,wi,j), where i, j ∈ V and an individual edge has a positive
weight wi,j ∈ R+ that indicates the affinity between node
i and j. The respective adjacency matrix W (i, j) = wi,j is
a real symmetric m × m matrix. Let the diagonal degree
matrixDwith entriesDi,j =

∑
j wi,j. The combinatorial graph

Laplacian matrix is computed as L = D -W with the given
W and D. The graph signal g(G) for a given graph G is
defined on the vertices of a graph, as g : V → RD for some
dimension D.

B. JOINT GEOMETRY AND COLOR k-NN GRAPH
The generalized procedure is to construct a k-NN graph
based on Euclidean distance to make an explicit geometric
structure [41]. The proposed denoising algorithm constructs
a k-NN graph taking into account both the color similarity
and coordinates proximity of point pi ∈ P .

Construction of k-NN graph based on color-only is not a
good option, since points with the same color and geometri-
cally far may have distinct semantic content, which results in
the generation of a wrong graph. However, the construction
of geometry-only based k-NN graph causes adverse effects
as anticipated in Sec. I. The joint geometry and color graph is
effective as it uses additional statistics about the point cloud.

The weight of the edge between node i and j for a given
point cloud P has to be determined in order to construct
such a graph. A common choice is the threshold Gaussian
kernel [47]:

wi,j =


exp

(
−
‖Xi−Xj‖2

2θ2X
−
‖Ci−Cj‖2

2θ2C

)
if pj ∈ φk (i)

or pi ∈ φk (j)
0 otherwise.

(1)

Here, θX and θC represent the respective contribution of
geometry and color attribute in the joint geometry/color graph
constructionfi. φk (i) and φk (j) represent the set of k nearest
neighbors to point pi and to point pj, respectively. The result-
ing k-NN graph is denoted as G.

V. PROPOSED METHOD - DENOISING
A. SPECTRAL GRAPH WAVELET PRELIMINARIES
In this section, we set up a mathematical notation and the
definition of SGW [21]. The Graph Fourier Transform (GFT)
ĝ for a function g(G) is defined as ĝ(l) = 〈χl, g〉 =∑m−1

i=1 g(i)χl(i), where the eigenvectors of the graph Lapla-
cian L is represented by χl and eigenvalues are denoted as λl
for l = 0, . . . ,m−1. SGW [21] establishes a scaling operator
in the Graph Fourier domain based on λl . Particularly, SGW
are determined using a kernel f , the wavelet operator Tf =
f (L) acts on a given function g by modulating each Fourier
mode as:

T̂f g(l) = f (λl)ĝ(l) . (2)

The inverse transform is defined as:

(Tf g)(n) =
m−1∑
l=0

f (λl)ĝ(l)χl(n). (3)
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At scale s, the wavelet operator is defined as T sf = f (sL).
SGW is then calculated by localizing the operators T sf by
enforcing them to the impulse δ on a single vertex: ψs,n =
T sf δn. For a given graph signal g, the wavelet coefficients are
determined by taking the inner product with these wavelets
as 9g(s, n) = 〈ψs,n, g〉. 9g(s, n) can be estimated from the
wavelet operators T sf using the orthonormality of χ as:

9g(s, n) = (T sf g)(n) =
m−1∑
l=0

f (sλl)ĝ(l)χl(n). (4)

The naive technique for calculating SGW from Eq. 4 needs
explicit computation of the entire χ , which scales inade-
quately for large graphs. Another method for direct com-
putation of SGW transform is to diagonalize L, which is
possible only for the small graphs having less than a thousand
vertices [21]. For the real-world and synthetic point clouds
consisting of a large number of points, the SGW can be
computed with a fast algorithm via low order polynomials,
which estimate the scaled generating kernels. The wavelet
coefficients can be determined at every single scale by apply-
ing a polynomial of L to the underlying data. This leads to
lower computational cost when the graph is sparse. To define
the transform in graph spectral domain, direct calculation
of Laplacian operator via diagonalization is infeasible for
problemswith size exceeding a few thousand vertices. Hence,
the wavelet and scaling coefficients of a given input [m×D]
graph signal are efficiently calculated by employing Cheby-
shev polynomial approximation [21], [48] to avoid the need
for explicit diagonalization of the graph Laplacian and then
mapped these coefficients to [m∗(I−1)×D], where I denotes
the number of wavelet decomposition levels.

B. GEOMETRY DENOISING
A primary aim of the proposed algorithm is to perform geom-
etry denoising by taking advantage of the constructed joint
geometry/color k-NN graph G. The given noisy coordinates
of each point pi can be described as pi = [Xi + ni, Ci], Xi
being the undetermined original position of a point pi and ni
the geometry noise, with Xi, ni ∈ R3. The goal is to approx-
imate Xi for each point in a given point cloud. This can be
achieved by using the proposed denoising algorithm based on
SGW. After an undirected graph G construction using Eq. 1
and defining the graph Laplacian L from W, we compute
the SGW transform by employing low-order polynomials to
establish compact vertex localization of SGW coefficients.
For the respective noisy signal Xi, SGW coefficients are
computed for each SGW band, i.e., 9Xi (s(i)) for 1 ≤ i ≤ I ,
preserving all the wavelet and scaling coefficients, which
corresponds to a low-frequency wavelet band s. Denoising
of 9Xi (s(i), n) is then performed by an adaptive data-driven
wavelet soft-thresholding [49] based on the characteristic that
low-frequency spectral wavelet bands contained most of the
energy of the signal as anticipated in Sec. I. The distribution
of the energy of signal for a noisy Asterix model is shown
in Fig. 4-b. Finally, the denoised point cloudQ is obtained by

FIGURE 4. (a) Noisy Asterix model with µ = 0, σ = 0.2 (b) Normalized
energy of 9Xi

(s(i ),n), where 1 ≤ i ≤ I and n = 1 . . .N .

taking an inverse spectral wavelet transform of the denoised
SGW coefficients 9∗Xi (s(i)). The data-driven adaptive thresh-
old τ is computed as in Sec. V-D.
In order to compare the proposed geometry denoising

algorithm with MSGW [44] and IBR [42], outlier removal
is needed. Outliers have distinct features in that they have
a sparse neighborhood; therefore, outliers detection and
removal are density-based [27], [42]. We follow the ROR
method, in which a sphere with a radius r is formed having
each point pi as its centre. The sphere contains ui number

of points. We then compute ū =

N∑
i=1

ui

N , where N is the total
number of points. A point pj is considered as an outlier if
uj < ū.

C. COLOR DENOISING
For the color denoising problem, we assume that the geome-
try of the point cloud is noise-free or has been denoised using
one of the existing denoising algorithms [19], [42], [44], [45].

We perform color denoising by exploiting the graph G
from geometry and color information of the noisy point
cloud. Each vertex of G is associated with the geometry Xi
and color Ci information of the corresponding point pi. The
input noisy point cloud consists of both geometry and color.
Each point can be expressed as pi = [Xi, Ci + ni], Xi being
the geometry, Ci being the unknown true color and Wi the
color noise. The objective is to estimate Ci for each point
of the point cloud. After the construction, the graph G using
Eq. 1 with the appropriate choice of θX and θC for the color
denoising, we compute the SGW coefficients for each SGW
band, i.e., 9Ci (s(i)), where 1 ≤ i ≤ I for the corresponding
noisy signal Ci and then denoising is performed by following
the procedure described in Sec. V-B.

D. SELECTION OF DATA-DRIVEN ADAPTIVE THRESHOLD
Here, we focus on the estimation of parameters σX and
σC for geometry and color denoising, respectively, which
in turn yields an estimation of individual thresholds τ (σX )
and τ (σC ) for geometry and color denoising application.
These estimated thresholds are adaptive to various sub-band
characteristics
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The geometry/color noise variance σ 2 is required to be
estimated initially, which can be done using robust median
estimator as in [50], [51]:

σ̂ =
Median(|9Xi (s(i))|)

0.6745
, for 5 ≤ i ≤ I . (5)

The variance of the transform coefficients σ 2
9Xi

can be
found empirically:

σ̂ 2
9Xi
=

1
n

3n∑
i=1

92
Xi , (6)

where n = m×(I−1). The threshold is thus computed using:

τ (σ̂X ) =
σ̂ 2

σ̂X
, (7)

where

σ̂X =
√
max(σ̂ 2

9Xi
− σ̂ 2), 0. (8)

To compute τ (σC ), we need to replace9Xi by9Ci in Eq. 5,
Eq. 6, and Eq. 8, and replace σX by σC in Eq. 7.

VI. EVALUATION METRICS
A. COLOR DENOISING
The metrics used for the objective evaluation of the proposed
color denoising algorithm are mean-squared-error (MSE) and
peak signal-to-noise ratio (PSNR):

MSE =
1
N

N∑
i=1

‖pi − p̂i‖2, (9)

PSNR = 10 log10

(
2552

MSE

)
. (10)

where pi and p̂i represent the points in ground-truth and color
denoised point cloud, respectively, and N is the number of
points in point cloud P .

B. GEOMETRY DENOISING
For image denoising, quality metrics are based on a one-
to-one correspondence between ground-truth and denoised
data samples. However, in the case of point clouds, such
constraint would be practically too restrictive. The Haus-
dorff distance overcomes the notion of a vertex to vertex
distance [52]–[55]. A triangular mesh M consists of a set pi
of points and a set T of triangles defining how the vertices
from pi are associated together denoted as M = (pi, T ).
We also consider a denoised point cloudQ. We are interested
in measuring the distance between sets of points in the two
point clouds.

1) HAUSDORFF DISTANCE
The distance d(X̂i,M) between a given point X̂i ∈ Q and any
point Xi ∈M is defined as:

d(X̂i,M) = min
Xi∈M
‖Xi − X̂i‖2. (11)

The Hausdorff distance between a point X̂ and M is
denoted as dH (X̂ , M) and is given by:

dH (X̂ ,M) = max
X̂i∈̂pi

d(X̂i,M), (12)

dH (X̂ ,M) and dH (M, X̂ ) are referred to as forward and
backward distance, respectively. These distances are not sym-
metrical, i.e., dH (X̂ ,M) 6= dH (M, X̂ ). The symmetrical
Hausdorff distance dS (X̂ ,M) can be computed as:

dS (X̂ ,M) = max (dH (X̂ ,M), dH (M, X̂ )). (13)

The distance between any point Xi belonging to M and
X̂ can be computed analytically, as it can be reduced to the
minimum of the distances between Xi and all the triangles
T ∈ T . If the orthogonal projection X̂i of Xi on the plane of T
is inside the triangle, the point-to-triangle distance is nothing
but a point-to-plane distance. When the projection lies out-
side T , the point-to-triangle distance is the distance between
Xi and the closest point X̂ ′i of T , which lies necessarily on one
of the sides of T [52]–[54].

The point-to-mesh distance in Eq. 11 can also be used to
calculate the mean distance dm between X̂ andM:

dm(X̂ ,M) =
1
N

∑
X̂i∈X̂

d(X̂i,M), (14)

ζ =

√√√√ 1
N

N∑
i=1

(di − dm)2, (15)

where di = ‖pi − qi‖2; ζ represents the standard deviation
of the distance between the point qi and the corresponding
point pi. We computed the Hausdorff distance using the
cloud-to-mesh (C2M) metric in CloudCompare [56]. The
ground-truth 3D models act as the reference meshes to their
respective denoised point clouds. The outputs of C2M metric
are dH , dm.
We further verify the results by employing the same objec-

tive quality metrics used in [57]. Assume P and Q rep-
resent the geometry of the noise-free and denoised point
cloud respectively, where P = {pi}

N1
i=1 Q={qi}

N2
i=1, such that

pi, qi ∈ R3. We define distance metrics as follows.
Mean-square-error (MSE): It is calculated as an average of

the squared Euclidean distance between each point in P and
its respective closest point inQ, and also between each point
in Q and its corresponding nearest point in P:

MSE=
1

2N1

∑
pi∈P

min
qi∈Q
‖pi−qi‖22+

1
2N2

∑
qi∈Q

min
pi∈P
‖qi−pi‖22.

(16)

Mean city-block distance (MCD): MCD uses l1 norm
instead of l2 norm.

MCD=
1

2N1

∑
pi∈P

min
qi∈Q
‖pi−qi‖+

1
2N2

∑
qi∈Q

min
pi∈P
‖qi−pi‖.

(17)
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TABLE 3. Parameter values used for the proposed geometry denoising
algorithm, MSGW [44], IBR [42] and RPSM [45].

For performance comparison between the proposed algo-
rithm and RPSM [45]. Due to the large memory requirement
of RPSM, we performed experiments on sub-sampled point
clouds, for which the sub-sampled ground-truth mesh is not
available. Hence, we only compute MSE and MCD using
Eq. 16 and Eq. 17 on these sub-sampled point clouds.

VII. EXPERIMENTAL RESULTS
This section focuses on the analysis of the experimen-
tal results, both visual and objective, on static real-world
point clouds available in the JPEG PLENO (GTI-UTM)
database [58] and Greyc dataset of synthetic point
clouds [59]. Each point cloud in real-world and synthetic
dataset consisting of geometry and color attributes.

A. EXPERIMENTAL SETUP
We defined I = 6 wavelet decomposition levels, and main-
tain the wavelet coefficients of a scale s(1) and then preserve
the wavelet coefficients that exceeds the threshold τ (σX )
which is calculated using Eq. 7 for the corresponding noise
level in s(i) for 2 ≤ i ≤ I . To denoise the point cloud locally
by estimating the SGW coefficients, the order of Chebyshev
polynomial approximation is set to k/2 for a k-NN graph.
The whole set of parameters used in this article required for
geometry-only and color-only denoising scenario are given in
Tab. 3 and Tab. 4, respectively.

B. VISUAL INSPECTION OF GEOMETRY DENOISING
ALGORITHM
The visual inspection of geometry denoising algorithms has
been performed for both synthetic and natural point clouds.

1) GEOMETRY DENOISING OF NATURAL POINT CLOUDS
We exhibit a visual comparison of the proposed point
cloud denoised algorithm with the denoising technique that

TABLE 4. Parameters values used for color denoising using various
algorithms.

constructs a graph from geometry only and performs regular-
ization as in [42], along with the algorithm described in [44].
The proposed algorithm is applied to real-world natural point
clouds, for which we do not have a noiseless reference;
thereby, the results are only qualitative. Fig. 5-a and Fig. 6-a
present the point clouds with real noise; it can be observed
that the points with similar color are typically dispersed in
a small neighborhood in the acquisition process, which may
blur the details. The resulting output after outlier removal
is shown in Fig. 5-b and Fig. 6-b, a prior step required for
denoising algorithms such as MSGW [44] and IBR [42]. The
resulting denoised point cloud using the proposed method is
reported in Fig. 5-c and Fig. 6-c. Here, it can be seen that
the noisy points are relocated close to their true position by
taking advantage of the correlation of their geometry and
color, thus preserving the details which were hidden in the
noisy input point cloud. The adaptive thresholding is very
helpful for denoising the real-world point cloud, for which
prior knowledge of the standard deviation of the noise is not
required and is estimated using Eq. 5. Fig. 5-d and Fig. 6-d
show the denoised point cloud using MSGW; it appears that
the technique is not preserving the details effectively in the
geometry irrespective of employing the outlier removal step
before performing denoising.

Furthermore, prior knowledge of noise-level (σ ) is
required to apply soft-thresholding in [22], which is unknown
for real-world point clouds and geometry denoising depends
on selection of the σ for soft-thresholding. Fig. 5-e and
Fig. 6-e depict the resulting denoised output using IBR [42]
applied to the outlier-free input; it can be noted in the
same region that, considering no color information, the noisy
points are not relocated to their original location with respect
to the proposed algorithm. However, IBR performs bet-
ter than MSGW in denoising but enlarging gaps due to
over-regularization and typically providing a noisier result
near object boundaries. This is an iterative-based algorithm,
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FIGURE 5. Arco_Valentino model. (a) Noisy input (b) outlier-free input, denoised results by (c) proposed algorithm, (d) MSGW [44] applied to outlier-free
input, and (e) IBR performed after the outlier removal step [42].

FIGURE 6. Palazzo_Carignano model. (a) Noisy input (b) outlier-free input, denoised results by (c) proposed algorithm, (d) MSGW [44] applied to
outlier-free input, and (e) IBR performed after the outlier removal step [42].

and for real-world point cloud, it is computationally very
expensive; furthermore, the outlier removal step is essential
for both MSGW and IBR, which turns these into more com-
putational complex algorithms.

2) GEOMETRY DENOISING OF SYNTHETIC POINT CLOUDS
The experiments have also been performed on noise-free
point clouds from the Greyc dataset [59], corrupted with
Gaussian synthetic geometry noise with µ = 0 and σ =
0.2, 0.3, and 0.4. In Fig. 7, the results are presented in two
rows for 4arms_monstre and Asterix models, respectively.
For each point cloud model in Fig. 7, the first row of fig-
ures is their natural representation. The artifacts (i.e., holes

formation) can be clearly seen in the resulting denoised point
clouds using MSGW and IBR with reference to the pro-
posed algorithm. Moreover, an alternate view is provided in
the second and fourth rows; they are the zoomed-in editions
of the similar point clouds shown with the identical size as
in the first and third row. This sort of visual representation
is more sparse and allows to differentiate better the noise
removal and fine details at the boundaries. Fig. 7-a shows
the ground-truth point cloud models. Fig. 7-b presents the
noisy point clouds with σ = 0.3. The resulting denoised point
clouds using the proposed algorithm are shown in Fig. 7-c;
it can be observed that the geometry noise has been regu-
larized, and the noisy points are proximate to their actual
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FIGURE 7. Point cloud models with color: (a) ground-truth, (b) noisy input (µ = 0 and σ = 0.3), denoised results by (c) proposed algorithm,
(d) MSGW [44], and (e) IBR [42].

positions with the less adverse effect of holes formation.
The denoised output of MSGW is shown in Fig. 7-d; it
can be clearly seen that the geometry noise is not prop-
erly removed and also causes the opening of holes in the
output point clouds. Fig. 7-e depicts the resulting denoised
point clouds obtained by the IBR algorithm. It is evident
that the geometry is not entirely regularized with respect
to the proposed algorithm, while still better than MSGW;
nevertheless, the resulting output of the IBR algorithm has
large holes; the reason is the γ value, higher γ is appropriate
for denoising well, but it causes severe artifacts. In general,
it can be noted from the visual results of both real-world
and synthetic point clouds that the denoised point clouds
using the proposed algorithm have superior quality and fewer
artifacts.

A comparative study has also been conducted with respect
to RPSM [45], and the outcomes are shown in Fig. 8. In this
specific case, we have applied the proposed algorithm on
sub-sampled point clouds from the same dataset because of
the large memory requirement of RPSM as anticipated in
Sec. VI-B. The sub-sampling performed here is on a spatial
basis, where the average minimum distance between the two
points in each point cloud is set to 0.80. The number of
points in each point cloud model of the Greyc dataset [59]

is around 20,000 on average. The results of the proposed
algorithm and RPSM [45] on sub-sampled 4arms_monstre
and Asterix are presented in two rows for each point, respec-
tively. The proposed algorithm and RPSM [45] are applied
to the sub-sampled noisy inputs shown in Fig. 8-b; the cor-
responding ground-truth point clouds are shown in Fig. 8-a.
The denoised outputs of the proposed algorithm are shown
in Fig. 8-c; it can be observed that the proposed algorithm
performs better at geometry denoising with very few arti-
facts, and the resulting denoised outputs of RPSM [45]
are shown in Fig. 8-d; it can be seen that RPSM [45]
over-regularizes the sub-sampled point clouds which tends
to generate the holes in the resulting denoised point
cloud.

C. VISUAL INSPECTION OF COLOR DENOISING
ALGORITHM
The visual inspection of color denoising algorithms has been
performed for both synthetic and real-world point clouds.
The proposed color denoising technique has been compared
with the color denoising method described in [24], where the
color of the point clouds is denoised using a different set of
parameters θX and θC . Graph gradient was used to measure
the degree of smoothness of a geometry/color graph signal.

21158 VOLUME 9, 2021



M. A. Irfan, E. Magli: Joint Geometry and Color Point Cloud Denoising Based on Graph Wavelets

FIGURE 8. Sub-sampled point cloud models with color: (a) ground-truth, (b) noisy input (µ = 0 and σ = 0.3), denoised results by (c) proposed
algorithm, and (d) RPSM [45].

FIGURE 9. Arco_Valentino model illustration. (a) noisy input, (b) outlier-free input, color denoised results by (c) proposed algorithm (d) using Tikhonov
regularization, and (d) using TV.

VOLUME 9, 2021 21159



M. A. Irfan, E. Magli: Joint Geometry and Color Point Cloud Denoising Based on Graph Wavelets

FIGURE 10. Palazzo_Carignano_Dense model illustration. (a) noisy input, (b) outlier-free input, color denoised results by (c) proposed algorithm (d) using
Tikhonov regularization, and (d) using TV.

FIGURE 11. Green_monster model: (a) ground-truth (b) noisy point cloud with noise level of µ = 0 and σ = 30, color denoised results by (c) proposed
algorithm (d) using Tikhonov regularization, and (e) using TV.

The color denoising technique [24] is an iterative convex
optimization technique that enforces the regularity of the
denoised color attributes on a defined graph.

1) COLOR DENOISING OF REAL-WORLD POINT CLOUDS
The visual results of the proposed color denoising algo-
rithm on real-world point clouds are presented here. There
is not much literature available for color denoising of the
point cloud as anticipated in Sec. I. Here, the qualitative
results show the comparison between the proposed algorithm
using SGW with Tikhonov and TV-based regularization.
Fig. 9-a and 10-a represent the real-world noisy point clouds;
it can be observed that the details are not very clear due
to the existence of a large amount of color noise. In cer-
tain areas, two different regions are overlapped with each
other as an effect of color noise. Fig. 9-b and 10-b show

the resulting point clouds after outlier removal, which is
required to get better color denoising results using Tikhonov
and TV regularization. Fig. 9-c and 10-c depict the point
cloud denoised using the proposed algorithm. Here, the colors
are much smoother and natural by exploiting the relation of
the color of the points within proximity. Due to the noise
in the point cloud, details are missing, and one cannot see
the contours in the real-world point cloud. The denoised
point clouds look sharper in comparison to the input noisy
point clouds. The color denoising procedure helps to preserve
object boundaries. Fig. 9-d and Fig. 10-d show the denoised
result using Tikhonov regularization; it can be seen that the
details are quite similar to the proposed algorithm but a little
over-smoothed. Fig. 9-e and Fig. 10-e show the denoised
point cloud using TV; it can be seen that the color is still
noisy, and there is a lack of details in the output point clouds.
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FIGURE 12. Asterix model: (a) ground-truth (b) noisy point cloud with noise level of µ = 0 and σ = 30, color denoised results by (c) proposed algorithm
(d) using Tikhonov regularization, and (e) using TV.

TABLE 5. MSE and MCD comparison of various algorithms for Greyc dataset.

TV is not very effective at enforcing color smoothness in
comparison to the proposed algorithm. Tikhonov and TV
are iterative-based and parameter oriented techniques, which
tend to be computationally expensive.

2) COLOR DENOISING OF SYNTHETIC POINT CLOUDS
The proposed algorithm for color denoising has been applied
to noise-free point clouds affected by synthetic color noise;
Gaussian distribution is used to add noise to the color
attribute of every point in a reference point cloud while
keeping the geometry noise-free. Fig. 11-a and 12-a present
the ground-truth Green_Monster and Asterix point cloud
models, respectively having noise-free geometry and color.
Fig. 11-b and 12-b show the point cloud affected by Gaussian
noise distribution with µ = 0 and σ = 30; adding noise
to the color affects the details and causes blurring of the
boundaries. Fig. 11-c and 12-c depict the denoised output
of the proposed algorithm. The color of the output point
cloud is denoised by exploiting the correlation of color within
the proximity, the points in the k-neighborhood have a high

probability of having a similar color as the surface has smooth
color. Fig. 11-d and 12-d depict the denoised output using
Tikhonov regularization; it can be clearly seen, particularly in
the highlighted areas of both point cloud models, that there is
still noise in color. Fig. 11-e and 12-e illustrate the denoised
output using TV. The output point clouds are still noisy, and
the details are not preserved. The TV technique has the least
effective in terms of color denoising.

D. OBJECTIVE EVALUATION ON GREYC COLOR MESH
DATASET
The quantitative evaluation has also been performed on the
Greyc noise-free synthetic point clouds dataset [59].

1) COLOR DENOISING
The color attribute of each point cloud is corrupted with
Gaussian noise applied to each point in a point cloud with
σ = 20, 30, 40. The MSE and PSNR comparisons between
the proposed color denoising algorithm and the color denois-
ing using Tikhonov and TV regularization are shown in Tab. 8
and Tab. 9. The results of both metrics show that the proposed
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TABLE 6. MSE and MCD comparison between proposed algorithm and RPSM [45] on sub-sampled Greyc dataset for different noise levels.

TABLE 7. C2M metric comparison of the proposed geometry denoising algorithm with the IBR and MSGW.

technique performed better than the Tikhonov and TV regu-
larization for all the point cloud models for all the noise-level
except cable_car, Horse, which performed better for noise
level of σ = 20, 30 and Pokemon_ball performed better only
for noise-level σ = 20. The average MSE and PSNR (last
column in Tab. 8 and Tab. 9 and Fig. 14) shows that the gain

is larger with the increase in the noise-level, showing that the
proposed algorithm of color denoising using SGWperformed
better.

To compare the proposed color denoising using SGWwith
GLR [19] and GTV [19], [60], we added Gaussian noise with
zero-mean and σ = 10, 15, 20, 25 to the color attribute of the
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TABLE 8. MSE comparison of color denoising algorithm for Greyc dataset.

TABLE 9. PSNR comparison of color denoising algorithm for Greyc dataset.

noise-free point cloud models of Greyc dataset. Quantitative
results in terms of PSNR are shown in Tab. 10, where the pro-
posed algorithm shows the highest average PSNR value for
all the noise level σ = 10, 15, 20 and 25. With the increase in
the noise level, the proposed algorithm performs better than
GLR and GTV, with an average PSNR increase of 0.49dB
and 0.34dB, respectively. Besides PSNR, the average exe-
cution time (AET) per noise level for the proposed GLR
and GTV algorithms is also shown in Tab. 10. The proposed
method is almost 6 and over 200 times faster than GLR and
GTV, respectively, as it is a non-iterative technique, which
is computationally very cheap. AET has been measured in
MATLAB 2019b on a 3.5Ghz MacBook Pro with Intel Core
i7 processor and 16GB memory.

2) GEOMETRY DENOISING
The proposed geometry denoising method has also been veri-
fied via quantitative evaluation on the completeGreyc dataset.
Each point cloud has been corrupted with zero-mean Gaus-
sian synthetic geometry noise, applied to each point with σ =
0.2, 0.3, and 0.4. The MSE and MCD comparisons between
the proposed algorithm and the denoising approaches used

in IBR [42] using TV regularization and MSGW are shown
in Tab. 5. The results show that the proposed denoising
technique performed better than MSGW and IBR for all
the models for noise level σ = 0.2, 0.3, and 0.4 except
Green_Dinasour and Red_Horse (where MSGW performed
better) for σ = 0.2, 0.3.

For further verification of the performance of the proposed
geometry denoising algorithm, we compute the C2M metric
for each denoised point cloud by the proposed algorithm,
MSGW, and IBR with respect to the corresponding refer-
ence ground-truth point cloud. The comparative C2M metric
results are shown in Tab. 7, which further verifies the better
performance of the proposed algorithm. To better understand
the results, we mapped the C2M distance of denoised point
cloud of 4arms_monstre on the reference point cloud; this
is shown in Fig. 13. The distances are represented by the
color scale; blue, green, yellow, and red display the range of
distances from minimum to maximum. The histogram of the
proposed algorithm in Fig. 13-a shows that the points move
closer to their actual position without moving too far from
their corresponding original position of a reference point
cloud. We can see in the histograms shown in Fig. 13-b and
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TABLE 10. Color denoising comparison for Gaussian noise σ = 10,15,20, and 25 with GLR-based [19] and GTV-based [60] in terms of PSNR and AET (s).

FIGURE 13. 4arms_model (noise level µ = 0 and σ = 0.4) (a) C2M metric of denoised point cloud by proposed algorithm (b) C2M metric of denoised
point cloud using MSGW, and (c) C2M metric of denoised point cloud using IBR.

FIGURE 14. (a): Average gain in MSE (dB) for the color denoising algorithm (b): Average gain in PSNR (dB) for the color denoising algorithm.

Fig. 13-c that the points have deviated too much from their
actual position, and also the number of points moved farther
are higher for MSGW and IBR.

The objective evaluation has also been performed for the
comparison between the proposed algorithm and RPSM [45]
on the sub-sampled point cloud models of the Greyc
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dataset [59]. Tab. 6 shows the MSE and MCD comparison;
it can be seen that the proposed algorithm outperformed
RPSM [45] in terms of bothmetrics for σ = 0.2, 0.3, and 0.4.
The averageMSE andMCD (last column in Tab. 5 and Tab. 6)
shows that the gain is larger as the noise level increases,
indicating that the proposed denoising method is better at
removing geometry noise.

VIII. CONCLUSION
In this article, we proposed a novel and efficient framework
for point cloud denoising based on SGW. Unlike any other
existing method, the proposed algorithm takes advantage of
the correlation between the color and geometry attribute of
a point cloud, which is statistically analysed in Sec. III.
Such correlation is encoded in a k-NN graph, which can be
used to denoise the color and geometry noise of the point
cloud by simply adapting the potential values of parameters
(θX and θC ) required for k-NN graph construction in
each denoising scenario. An adaptive data-driven wavelet
soft-thresholding then performs denoising.

We have provided a large set of experimental results using
real-world as well as synthetic point clouds, which support
the conclusion that the joint use of color and geometry is
beneficial in both the color-only and geometry-only denois-
ing scenarios, providing denoised point clouds having higher
subjective and objective quality.

We showed results on both real-world and synthetic point
clouds for color and geometry denoising for the visual inspec-
tion. The qualitative results for geometry denoising by the
proposed algorithm are very good, avoiding the artifacts
typically caused by other techniques. The proposed color
denoising algorithm has also performed very well. We also
performed an extensive quantitative analysis using multi-
ple point clouds in the Greyc dataset [59], evaluating the
performance of the proposed color denoising algorithm of
point clouds using MSE and PSNR metrics. For geometry
denoising, we computed MSE, MCD, and C2M metric. Both
the subjective and objective results show that the proposed
techniques perform very well for point cloud denoising, out-
performing state-of-the-art techniques.
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