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ABSTRACT This work explores clock synchronization algorithms used to process timestamps from the
IEEE 1588 precision time protocol (PTP). It focuses on the PTP-unaware network scenario, where the
network nodes do not actively contribute to PTP’s operation. This scenario typically imposes a harsh
environment for accurate clock distribution, primarily due to the packet delay variation experienced by PTP
packets. In this context, it is essential to process the noisy PTPmeasurements using algorithms and strategies
that consider the underlying clock and packet delay models. This work surveys some attractive algorithms
and introduces an open-source analysis library that combines several of them for better performance. It also
provides an unprecedented comparison of the algorithms based on datasets acquired from a sophisticated
testbed composed of field-programmable gate arrays (FPGAs). The investigation provides insights regarding
the synchronization performance under various scenarios of background traffic and oscillator stability.

INDEX TERMS Clock synchronization, IEEE 1588, partial timing support, precision time protocol.

I. INTRODUCTION
The need for a global understanding of time among network
elements and devices appears in a vast and growing range of
modern applications. For example, it is essential to telecom-
munications [1], smart grids [2], data centers [3], industrial
automation [4], financial applications [5], time-sensitive net-
works and distributed computing [6], and many more. The
typical approach to provide a global time base to a node is to
rely on the combination of global navigation satellite system
(GNSS) disciplined clocks and packet-based distribution of
synchronization over a network. For the latter, the network
time protocol (NTP) and the IEEE 1588 precision time pro-
tocol (PTP) are the predominant standards.

NTP is prevalent in wide area networks and commonly
used in applications that require relatively coarse syn-
chronization in the order of milliseconds [7]. In contrast,

The associate editor coordinating the review of this manuscript and

approving it for publication was Woorham Bae .

PTP typically relies on more advanced hardware assistance
and controlled network environments, where it achieves time
accuracy in the order of nanoseconds. PTP has achieved
widespread usage primarily since its 2008 revision, with
the so-called PTPv2 [8]. It is continuously evolving and
recently consolidated the IEEE 1588-2019 standard revi-
sion [9], which features, for example, the so-called High
Accuracy profile for sub-nanosecond accuracy [10].

The key for high-accuracy timing transport through PTP
is to rely on network elements that actively support the pro-
tocol, namely PTP-aware nodes. In particular, the so-called
boundary clocks (BCs) and transparent clocks (TCs) [9]. The
switches or routers containingBCor TC functionality provide
special mechanisms to deal with the packet delay variation
(PDV) that PTP messages experience when traversing a net-
work. Thus, when all network components are PTP-aware,
the PDV does not harm the synchronization accuracy. In the
context of telecom networks, this scenario is called full timing
support (FTS), where the PTP nodes operate with parameters
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and protocol attributes (i.e., a PTP profile [9]) defined by
ITU-T Recommendation G.8251.1 [11]. Such FTS networks
also typically transport a reliable frequency reference over the
physical layer (PHY) via synchronous Ethernet (SyncE) [12]
or similar technology.

The opposite scenario is when some or all of the net-
work elements are PTP-unaware, i.e., do not actively support
PTP messages. In this case, the PDV and delay asym-
metry affecting PTP messages can significantly degrade
the synchronization performance. In the context of tele-
com networks, this scenario is called partial timing support
(PTS), whose profile is defined in ITU-T Recommendation
G.8275.2 [13]. It is often an attractive solution as it allows
operators to transport PTP over their existing or third-party
PTP-unaware networks.

There are two main use cases for PTS. The first is the
distribution of PTP as a secondary source of time to back
up GNSS, called assisted partial timing support (APTS).
This is a compelling use case to protect from GNSS vul-
nerabilities to interference (intentional and unintentional)
and weather-related antenna damage [14]. It is especially
convenient when PTP can be distributed towards end appli-
cations that are already co-located with a GNSS-receiver,
such as legacy code-division multiple access (CDMA) base
stations [15].

The second main PTS use case is the distribution of PTP
as the primary source of time in well-controlled networks
with few hops [16]. For example, this is useful for the dis-
tribution of timing over third-party in-building or last-mile
network segments connecting outdoor GNSS-disciplined
clocks (e.g., on the roof) to indoor small cells or radio
units [15].

In terms of performance, PTS is generally challeng-
ing and a less investigated topic. Only recently, the
ITU-T has published Recommendation G.8273.4 [17], which
specifies performance requirements for clocks in a PTS
network.

The typical approach to achieve reasonable performance
levels over a PTP-unaware network is to process the noisy
measurements acquired via PTP timestamps. The timestamps
reflect the PDV experienced by PTP packets and the random
frequency and phase fluctuations experienced by the local
oscillators. Thus, the processing algorithms can consider both
phenomena. Also, in the APTS use case, the PTP process-
ing can incorporate knowledge acquired while the device is
locked to GNSS [14].

In this work, we explore a range of clock synchronization
algorithms that can work well in PTP-unaware networks.
More specifically, we discuss two main groups of estima-
tors, both comprehensively surveyed in Section II. The first
group refers to window-based packet selection and filtering
algorithms, which process windows of metrics derived from
PTP timestamps while focusing on overcoming the PDV. The
second group consists of estimators based on least-squares
(LS) and Kalman filtering (KF), which incorporate the oscil-
lator’s model as part of the estimation. The discussion is

generic and applicable to any synchronization use case that
can benefit from the simple and cost-effective distribution of
timing over existing and well-controlled PTP-unaware net-
works. We provide several insights into the usage and ratio-
nale of the algorithms while expanding on the pre-existing
literature.

Our primary goal is to provide a fair and reproducible com-
parison of the synchronization algorithms based on hardware
acquisitions. The vast majority of the literature relies on sim-
ulation experiments or limited testbed setups. In this work,
we exploit an advanced testbed based on field-programmable
gate arrays (FPGAs), which collects nanosecond-accurate
PTP timestamps from a real network and truth metrics for
analysis. As discussed later, [18] presents a related testbed
for comparison of synchronization algorithms. Our work fol-
lows a similar direction but uses significantly more accurate
hardware meticulously designed for the experiments.

Furthermore, this work introduces the open-source PTP
dataset analysis library (PTP-DAL),1 developed in Python
to process the datasets acquired from our testbed. With this
library, we aim to enable reproducible results and foster
advances in synchronization algorithms. This work describes
PTP-DAL’s processing architecture and particularly how it
combines various algorithms for performance.

Our main contributions in this work include:
1) The survey, open-source implementation, and compari-

son of various PTP processing algorithms with insights
regarding how to tune and combine them in practice,
based on experiments with real hardware. While doing
so, we contribute with the hardware-based evaluation
of algorithms, such as KF, which, to the best of our
knowledge, were previously discussed in the literature
solely based on numerical simulations.

2) A thorough description of our FPGA-based testbed
developed for PTP analysis. We discuss the main hard-
ware components and FPGA design choices for the
acquisition of datasets containing real PTP timestamps
and the associated nanosecond-accurate truth metrics
for reliable offline analysis.

3) A discussion regarding PTP delay distributions
encountered on practical PTS network scenarios and a
corresponding analysis of their impact on synchroniza-
tion performance through testbed-based experiments.

This work is organized as follows. Section II presents a
literature survey. Section III describes the model for time
and frequency processes and measurements. Section IV for-
mulates the algorithms that turn noisy measurements into
more accurate time offset estimations. Section V describes
the processing architecture that we adopt to evaluate and
compare algorithms. Section VI describes the FPGA-based
testbed used for data acquisition. Finally, SectionVII presents
experimental results and Section VIII concludes. For conve-
nience, a list of acronyms and abbreviations follows.

1PTP-DAL is available online at https://github.com/lasseufpa/ptp-dal.
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ACRONYMS
APTS assisted partial timing support.
AWG arbitrary waveform generator.
BC boundary clock.
BG background.
CBR constant bit rate.
CDF cumulative distribution function.
CDMA code-division multiple access.
EAPF earliest arrival packet filter.
FPGA field-programmable gate array.
FTS full timing support.
GbE gigabit Ethernet.
GM grandmaster.
GMII gigabit media-independent interface.
GNSS global navigation satellite system.
i.i.d independent and identically distributed.
KF Kalman filtering.
LO local oscillator.
LP linear programming.
LS least-squares.
m-to-s master-to-slave.
MAC medium access control layer.
max|TE| maximum absolute time error.
MSE mean square error.
MVU minimum variance unbiased.
NN neural network.
NTP network time protocol.
OCXO oven-controlled crystal oscillator.
PDF probability density function.
PDV packet delay variation.
PHY physical layer.
PLL phase-locked loop.
PPS pulse per second.
PRC primary reference clock.
PTP precision time protocol.
PTP-DAL PTP dataset analysis library.
PTS partial timing support.
RT residence time.
RTC real-time clock.
s-to-m slave-to-master.
SD standard deviation.
SyncE synchronous Ethernet.
TC transparent clock.
TE time error.
ToD time-of-day.
UTC coordinated universal time.
VBR variable bit rate.
VLAN virtual local area network.
XO crystal oscillator.
ZG zero-gap.

II. RELATED WORK
In this section, we survey the literature regarding synchro-
nization algorithms that can be robust to PDV in the context
of PTP-unaware networks. As mentioned earlier, we discuss

two main groups of time offset estimators: window-based
processing and model-based filtering. Moreover, we briefly
discuss the problem of delay asymmetry and some of the
related literature. Lastly, we position this work relative to
other synchronization testbeds.

A. WINDOW-BASED PROCESSING
The technique known as packet selection is an example of
window-based processing, which has been extensively inves-
tigated in the literature. [19] analyzes three packet selec-
tion operators: the earliest arrival packet filter (EAPF), also
known as sample-minimum, which selects packets with min-
imum delays in a window; the sample-mean, which averages
a window of time offset measurements; and the sample-
maximum, which is the opposite of EAPF. The analysis
of [19] is backed by statistical and experimental charac-
terization of the delays experienced by timing messages
under two different network scenarios, referred to as cross-
traffic and in-line traffic. It shows that, under cross-traffic,
the delay is well characterized as an independent and iden-
tically distributed (i.i.d) random variable with Erlang proba-
bility density function (PDF), whose shape parameter relates
to network load. In contrast, under in-line traffic through
store-and-forward switches, the delay is characterized by a
less tractable PDF that resembles a mirrored Erlang. More
importantly, it emphasizes that the optimal selection operator
varies. Under light cross-traffic load, the EAPF yields the
best performance in terms of output noise variance. Under
heavier cross-traffic load, in contrast, the Erlang delay distri-
bution becomes closer to Gaussian, and so the sample-mean
yields the best result. Finally, for in-line traffic, the sample-
maximum operator outperforms the other two.

Based on [19], the work in [20] formulates a mecha-
nism to adapt the packet selection operator in real-time.
The approach concurrently filters the noisy delay measure-
ments (i.e., the difference between arrival and departure
timestamps) with the sample-minimum, sample-mean, and
sample-maximum filters. At any moment, then, it chooses
the output with minimum variance. However, a limitation
of this approach is that it does not perceive the noise bias
that in practice may differ significantly among the selection
operators.

In a similar direction, [21] and [22] propose the
sample-mode filtering technique, which distributes times-
tamp differences (arrival minus departure) collected during
an observation window over bins and selects the mode. Effec-
tively this is a selection operator that adapts to the delay
distribution. However, the referred works do not discuss the
more significant disadvantage of this operator, which is that
performance highly depends on how narrow the distribution
is around its theoretical mode or if a unique mode exists.

More generally, there are a few limitations to packet selec-
tion approaches. First and foremost, the selection operators
only work well if the time offset remains reasonably con-
stant within the observation window. Second, the conclu-
sions in terms of best-performing operators in [19]–[22] are
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restricted to specific network and delay models. Thus, empir-
ical validation becomes necessary for a given network. Third,
the approaches focus on the reduction of variance but are not
guaranteed to yield unbiased estimates.

B. DELAY ASYMMETRY AND BIAS COMPENSATION
The problem of estimation bias exists in all time offset esti-
mation techniques discussed in this work. Its primary cause
is the asymmetry between the master-to-slave (m-to-s) and
slave-to-master (s-to-m) end-to-end delays experienced by
PTPmessages. This asymmetry creates a bias on the two-way
time offset measurements. Ultimately, it often represents one
of the biggest hurdles to synchronization accuracy when
transporting PTP over timing-unaware networks.

The literature discusses several sources of delay asym-
metry originating from the timestamping implementation,
the PHY hardware, and the delay components, i.e., propaga-
tion, processing, queuing, and transmission (or serialization)
delays. At the hardware level, the transmit and receive paths
of a network interface can impose different latencies from the
point of packet arrival or departure to where timestamps are
taken, as discussed in [23]. For example, this is typical in
gigabit Ethernet (GbE) interfaces (i.e., 1000BASE-T), which
we consider in this work. Unless known and calibrated, this
latency difference leads to PTP delay asymmetry.

On the one hand, the PHY latency asymmetry effect is
alleviated when the clock master and slave devices are paired
with each other, as pointed out in [24]. On the other hand,
over a PTP-unaware network, each switching stage between
the PTP endpoints (master and slave) can also contribute with
their asymmetric PHY latencies. This contribution from the
network is harder to compensate for in practice, as it varies
per-hop and potentially comes from third-party equipment.

At the link level, the propagation delay may be signif-
icantly asymmetric when the m-to-s and s-to-m transmis-
sions occur over distinct wavelengths [25] or asymmetric
transmission lines [24]. Also, the transmission delays of PTP
messages can be asymmetric if the m-to-s and s-to-m link bit
rates are distinct [26], [27], or if the master and slave nodes
negotiate different line speeds with their peers [28].

Meanwhile, queuing delay asymmetry arises when the
PTP traffic shares the network with background (BG) traffic.
In this scenario, the queuing delays are typically asymmetric
for each PTP exchange, and can also be asymmetric on
average. For example, due to distinct BG traffic loads in the
two directions [29], or asymmetric BG packet sizes.

The PTP messages also experience variable processing
delays over the network. Such processing delay variations
come primarily due to the access to shared switch resources
when processing each packet [30]. Consequently, the two
PTP messages of a two-way exchange can experience asym-
metric processing delays. Nevertheless, unlike the queu-
ing delays, the processing delays tend to be symmetric
on average.

Lastly, network-level asymmetry arises when the m-to-s
and s-to-m network paths are distinct [31]. For example, this

is possible when PTP messages are transported over UDP,
as in the case of the PTS PTP profile [13], given that the
m-to-s and s-to-m routes can differ.

Table 1 summarizes the sources of delay asymmetry and
the nature of each phenomenon in terms of whether it is static
for all PTP packets or random. For example, the asymmetry
that arises from propagation delay differences is typically
static, whereas the asymmetry from queuing delays is typi-
cally stochastic. Nevertheless, note that the table shows the
typical nature, which may not hold in all forms of synchro-
nization and deployments. Furthermore, it focuses on the
main asymmetry contribution of each effect. For example,
while the PHY latency asymmetry can be variable, its primary
contribution is usually static.

TABLE 1. Summary of delay asymmetry sources.

The typical approaches for dealing with the delay asymme-
try bias are estimation and calibration techniques. Further-
more, many works propose strategies to avoid asymmetry
instead of correcting it. In terms of how one can achieve
the asymmetry estimation, there are two main categories:
methods that rely on extra probing packets (e.g., [32]), and
methods that estimate the asymmetry based on the ordinary
PTP timestamps (e.g., [29] and [33]).

The method proposed in [29] focuses on the asymmetry
of queuing delays. It estimates the difference between each
packet’s queuing delay and the minimum observed queuing
delay in a window. If the minimum queuing delays are sym-
metric in the m-to-s and s-to-m directions, these estimates
can then be used to infer the queue-induced asymmetry dis-
turbing each two-way PTP message exchange. This approach
requires observationwindows that are large enough to contain
minimally delayed packets. Also, it requires symmetric mini-
mum delays. Any residual static asymmetry on the minimum
delays is left uncorrected.

The method proposed in [33] estimates the average asym-
metry between gamma-distributed delays. Nevertheless, like
packet selection algorithms, it requires that the time offset
remains constant throughout observation windows. Besides,
it relies on a few imperfect mathematical approximations,
and it only works if the delays are indeed close to gamma-
distributed. According to [19], this distribution is typical for
cross-traffic scenarios but not for in-line traffic.

Lastly, an example strategy to avoid the delay asymmetry
instead of estimating it is the so-called controlled departure
method from [34]. The idea is to assign a sufficient gap
between a PTP message and the preceding BG packet trans-
mission, such that the PTP packet does not suffer queuing
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delay over the network. With this approach, one can avoid
queue-induced asymmetry (and most of the PDV). However,
the method is limited to specific network topologies where
PTP packets do not suffer contention. Although our testbed
supports this technique, as demonstrated in [35], further eval-
uations using it are beyond the scope of this work.

C. MODEL-BASED FILTERING
Unlike packet selection, some estimation techniques incor-
porate models for time and frequency offsets. The two
techniques of interest are the LS and KF algorithms. For
example, [18] uses LS polynomial fitting on timestamp win-
dows to model the slave time as a function of the master
(reference) time. It aims at alleviating the noise from jittery
timestamps taken in software. By using the LS-fitted time
offset estimates, rather than the rawmeasurements, the output
becomes less noisy, and the synchronization performance
improves.

Themodel of [18] represents the slave time as a polynomial
in the indeterminate t , where t is the absolute (reference)
time. It admits a linear model, as well as contributions from
quadratic and cubic terms, showing that the linear model
is almost always the best to avoid overfitting and for less
complexity. Moreover, given that the LS-fitting is applied on
windows of timestamps, the paper analyzes how the window
length impacts performance and particularly how the tem-
perature conditions can affect the optimal window length.
Nevertheless, it does not investigate the impact of the PDV.

A KF approach for clock synchronization is presented
in [36]. Although formulated for an NTP application, it is
equally valid for PTP. This work adopts a scalar-state vector-
measurement KF formulation focusing on the discrepancies
between intervals measured by the slave and the master. The
state of the filter converges to the inter-departure interval of
NTP packets sent from the slave to the master according to
the slave’s time base. By comparing this state to the nominal
(or reference) inter-departure, the slave can infer its frequency
offset. The method assumes a window of N messages during
which the frequency offset remains constant. Also, it deals
with the PDV by incorporating it as measurement noise.
Since its measurement noise corresponds to the difference of
consecutivemessage delays, the noise is a zero-mean process,
but not necessarily Gaussian.

The primary investigation from [36] concerns the KF per-
formance under two scenarios: white Gaussian noise and
correlated noise. The latter represents the case of bursty
BG cross-traffic that introduces self-similar queuing delays
to PTP messages. In particular, it compares KF to a linear
programming (LP) approach and simple moving average fil-
tering. While KF outperformed the two other methods under
Gaussian noise, LP was superior in the experiment with
self-similar noise. Nevertheless, the evaluation is limited,
given that it consists of a simulation where frequency offset
remains constant throughout the experiment.

The LP method investigated in [36] consists of another
model-based filtering alternative for clock synchronization.

Its objective relates to the rationale of EAPF, i.e., selection
of packets with minimum delays. The LP approach produces
time offset estimates related to the minimum delays by mini-
mizing the constraints of an LP problem.

The authors of [37] agree with the LP formulation
from [36] and extend the experiments with more practical
hardware impairments, such as oscillator noise and times-
tamping uncertainty. [37] also contrasts the LP and KF per-
formances under Gaussian and self-similar delays, with the
agreeing conclusions that LP can perform better than KF
under non-Gaussian delay. Nevertheless, one disadvantage
of LP is the relatively high computational cost for solving
a new LP problem on every iteration. Besides, [36] and [37]
consider delays in the order of milliseconds, such that their
performance figures are poor compared to the nanosecond
levels that we target in the remainder of this work.

The more recent work in [38] augments the LP approach
of [37] with the compensation of the slave clock’s frequency
offset variations due to temperature. The goal is to linearize
the slave clock’s time offset before LP computations. Nev-
ertheless, its experiments are based on numerical simulation,
using a model for the relationship between the temperature
and the oscillator’s frequency offset, and assuming perfect
knowledge of the temperature.

Amore realistic KF evaluation is presented in [39]. Despite
also using simulation, this work takes oscillator and times-
tamping uncertainties into account. In particular, it analyzes
the accuracy of clock offset estimations obtained through a
vector-state vector-measurement KF formulation under vary-
ing timestamping uncertainty levels, i.e., from hardware to
software timestamping, and varying levels of oscillator sta-
bility. While neglecting packet delay uncertainties, it shows,
for instance, that KF is helpful under poor (software) times-
tamping, but as the timestamping accuracy increases, the raw
measurements approach the KF performance. Nevertheless,
this conclusion only holds because the work ignores the delay
uncertainty. Under high PDV, the latter becomes the predomi-
nant component of measurement noise, and so a Kalman filter
can provide significantly smoother results than raw measure-
ments, even with precise timestamping. However, [39] does
not discuss this scenario.

One fallacy of KF for clock synchronization is that the
algorithm is only optimal for Gaussianmeasurement and state
noise, whereas in practical systems, this is not the case [40].
Another disadvantage comes from its relatively high com-
putational cost. To this end, [41] proposes a more efficient
KF approach. It considers a vector-state scalar-measurement
formulation that avoids unnecessary Kalman iterations and,
instead, can execute the predict and update steps of the filter-
ing solely when necessary.Moreover, it expands the oscillator
model from [39] and considers the effects of an unbiased
delay compensation uncertainty.

An interesting discussion from [41] concerns the Kalman
filter’s sensitivity to its initialization parameters, particularly
the measurement and process noise covariance matrices. The
work shows how the estimation performance decreases when

VOLUME 9, 2021 20579



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

the state noise covariance is wrongly initialized. In contrast,
other investigations such as [39] evaluate the KF performance
with covariances that match the noise introduced in simu-
lation. In practice, it is difficult to have a priori knowledge
about these covariances, so this becomes a disadvantage for
the practical use of the KF approach.

Another noteworthy model-based estimator is the mini-
max estimator proposed in [42], which minimizes the max-
imum mean square of the normalized error corresponding
to time and frequency offset estimates. This work focuses
on the effects of PDV caused by BG traffic. Its optimal
estimator assumes complete knowledge of the delay statistics
and unlimited computational complexity, with a solution for
imperfect delay knowledge based on [43]. However, it relies
on the unrealistic assumptions that the time offset remains
constant over a block of PTP exchanges (as discussed later,
this requires perfect syntonization) and that the static delay
asymmetry is known a priori. The work does not demonstrate
the method’s performance under real oscillator and network-
ing conditions, as it relies on numerical simulations.

Lastly, another model-based time offset estimation strategy
is the supervised learning approach in [44], which uses a neu-
ral network (NN) to improve the time offset fits obtained via
LS. For each window of timestamps, the algorithm computes
the LS linear regression, normalizes the LS fit, and feeds the
normalized result into theNN. Then, theNNpredicts the error
between the LS fit and the true time offset at an arbitrary
instant past the observation window, such that it canminimize
the mean square error of the LS fit.

Similar to the investigation of [18], [44] evaluates the
performance impact of the observation window length. The
LS performance figures are convex with the window length,
meaning the LS observation window cannot be too short and
neither too large. In contrast, [44] shows that the NN tends
to be more robust to oversized windows. This property may
prove helpful in practice, as it could simplify the search for
an optimal observation window length. However, it is not
clear whether this result applies when the predominant noise
is PDV. In [44] (and [18]), the focus is on the measurement
noise due to temperature fluctuations, rather than PDV.

D. CLOCK SYNCHRONIZATION TESTBEDS
The majority of the literature regarding PTP estimation
algorithms relies on numerical simulations. Inevitably, some
works put significant effort into simulating oscillators and
other uncertainties accurately. However, often such simula-
tions do not entirely capture the real behavior of oscillators,
timestamping, or networking conditions. Such a complete
picture can only be provided by analyzing data from real
hardware. Table 2 categorizes the works referred thus far
in terms of their evaluation environment, whether based on
numerical simulation or data from real hardware.

An essential feature for hardware-based evaluation of PTP
processing algorithms is the ability to assess the accuracy
of estimates. While a simulation environment always holds,
e.g., the true time offset of a clock at any simulation instant,

TABLE 2. Categorization of the referenced literature in terms of their
experimental environment: simulation or hardware.

on a testbed, this requires extra effort. Another challenge
for hardware-based evaluation is the ability to run multiple
algorithms based on the same data so that algorithms can be
compared under the same environmental conditions.

Such pre-requisites have been addressed in [18] and [44].
These works aim at a reliable comparison of algorithms by
using the testbed of [40], which supports the acquisition of
the timestamps exchanged by the synchronization protocol
and the true synchronization error between the slave andmas-
ter devices throughout the experiment. However, the testbed
in [40] relies on relatively limited hardware. In particular,
it uses software-based timestamps and provides accuracy
and precision within the microsecond range. In contrast,
the testbed that we present in this work is based on
nanosecond-accurate and hardware-based timestamps, and
it also addresses the requirements for reliable algorithm
comparison.

Furthermore, to the best of our knowledge, the testbed
from [40] has only been used to evaluate the LS (in [18])
and NN (in [44]) estimators. In this work, we explore a
more extensive range of algorithms, including the strategies
discussed in [20]–[22], [39], [41] and [18].

III. SYSTEM MODEL AND DEFINITIONS
In this section, we discuss the main definitions and models
regarding the time and frequency offset processes. Further-
more, we describe how these processes can be measured
using timestamps from PTP messages.

A. NOTATION
In this work, x and y represent time and frequency offset,
respectively. x[n] expresses the n-th true time offset value,
whereas x̃[n] denotes the n-th measurement of x[n], which
is corrupted by noise and subject to imperfections. More
generally, z̃ represents a noisy measurement of z (a generic
variable), whereas ẑ denotes an elaborate estimate of z.

In terms of indexing, n indexes individual samples in
discrete-time domain. In contrast, index k represents win-
dows (i.e., collections) of samples. For example, x̂[k] denotes
a time offset estimate based on the k-th collection of noisy
measurements. When focusing on windows, we index some
variables based on their position m in the window and the
window index k , such as the version of the time offset x[n]
that is denoted as x[k,m]. The non-windowed and windowed
domains can be reconciled by setting the non-windowed
index n equal to kN + m. This identity holds provided that
the observation windows are non-overlapping and of size N .
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Lastly, bold lowercase letters such as x represent vectors,
bold uppercase letters such as H represent matrices, and
(.)T denotes the transposition operation.

B. TERMINOLOGY
Before delving into further definitions, it is worth clarifying
the terminology regarding the overused word clock. More
specifically, the distinction between a clock and a clock signal
in this work. The term clock refers to a time counter, such
as a real-time clock (RTC), or a device containing one. For
example, in the IEEE 1588 standard [9], a clock means a
network node that participates in PTP (i.e., exchanges mes-
sages of the protocol) and can measure the passage of time.
In contrast, we use the term clock signal to refer to an analog
periodic signal that drives the actions of the digital circuit that
implements the RTC. This is the analog signal derived from
a local oscillator (LO). The terms clock frequency and clock
cycle refer to the frequency and period of the clock signal.

C. TIME AND FREQUENCY OFFSET PROCESSES
An RTC is a hardware structure capable of measuring real-
time. It often holds a full time-of-day (ToD) count tracing an
internationally-recognized time standard, such as coordinated
universal time (UTC). For example, PTP RTCs typically use
32 bits to store nanoseconds and 48 bits to store seconds
elapsed since January 1st, 1970 [9].

The RTC’s implementation generally consists of a counter
that operates with a nominal clock frequency of fnom. On each
clock cycle, the RTC increments its time count by 1/fnom.
However, in practice, the frequency driving the RTC differs
from nominal, and, as a result, the RTC increments its time
count by an imperfect interval on every clock cycle. In this
process, the RTC continuously accumulates time offset.

As explained in ITU-T Recommendation G.810
[45, Appendix I], the error between the time of a local clock
and the time of a reference clock can be modeled as:

x(t) = x0 + y0t +
D
2
t2 +

φ(t)
2π fnom

, (1)

where x0 is the initial time offset, y0 is the fractional fre-
quency offset relative to the nominal frequency,D is the linear
fractional frequency drift rate, and φ(t) is the phase noise.
In this model, x0, y0, and D are deterministic parameters.
In contrast, φ(t) models the random phase deviations of the
clock signal that drives the RTC and is responsible for all
random variations of x(t).
The corresponding continuous-time frequency offset is the

derivative of the time offset, given by:

y(t) = y0 + Dt +
1

2π fnom

dφ(t)
dt

. (2)

Just like the time offset, the frequency offset changes continu-
ously due to oscillator instabilities modeled by the frequency
drift D and the random phase noise φ(t) [46].
Instead of pursuing the complete evolution of the

continuous-time x(t), many estimation algorithms focus on

sufficiently short observation windows. The primary justifi-
cation for this choice is the simplification of the model. First,
the linear frequency drift D from (1) is generally negligible
in the short-term, as it models long-term frequency deviations
due to oscillator aging. Secondly, the phase noise varies rela-
tively slowly, so that a sufficiently short observation window
may capture a constant phase noise contribution to time and
frequency offsets. In the end, the model becomes a piecewise
linear approximation of (1), as discussed, e.g., in [36], [37].

In discrete-time, the simplified short-term piecewise linear
model for a window of N samples of x(t) is given by:

x[k,m] = x0[k]+ y[k]τ [k,m], 0 ≤ m < N , k ≥ 0 (3)

where x0[k] and y[k] are the initial time offset and the nor-
malized (or fractional) frequency offset of the k-th observa-
tion window, respectively, both assumed constant throughout
the window. Also, this model assumes that the time offset
samples are taken at irregular instants, rather than periodi-
cally, and so variable τ [k,m] denotes the true instant of each
sample. For simplicity, this instant is measured relative to the
beginning of the observation interval, such that τ [k, 0] = 0.

D. TIME OFFSET MEASUREMENT
The typical approach for time offset measurement is to exe-
cute a two-way exchange of timestamped messages between
two clocks. For example, the so-called delay request-response
mechanism fromPTP [9], which is illustrated in Fig. 1. On the
n-th iteration, the PTP master clock sends the Sync message,
whose departure timestamp is t1[n] and whose arrival time at
the PTP slave clock is timestamped as t2[n]. The slave replies
with a DelayReq message, which departs at time t3[n] and
arrives back to the master at t4[n].

FIGURE 1. PTP delay request-response exchange with asymmetric
queuing delays over the network.

Timestamps t2[n] and t3[n] are taken at the PTP slave side
and, therefore, are corrupted by the slave’s time offset relative
to the reference time, i.e., the PTP grandmaster (GM) time.
Also, the two messages experience distinct transit delays.
The n-th Sync message experiences the m-to-s delay dms[n],
and the n-th DelayReq experiences the s-to-m delay dsm[n].
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Consequently, the n-th time offset x[n] can be expressed by:{
x[n] = t2[n]− (t1[n]+ dms[n])
x[n] = t3[n]− (t4[n]− dsm[n]),

(4)

where x[n] is assumed constant throughout the message
exchange. Note that both equations compute the time offset
as the slave time (t2 or t3) minus the master time (t1 or t4),
adjusted by delays. More specifically, they refer to the
instants highlighted by the dashed lines in Fig. 1.
The slave clock only observes the timestamps and does not

know the true one-way delays of each message. In particular,
the slave can compute the following timestamp differences:{

t21[n] = t2[n]− t1[n] = x[n]+ dms[n]
t43[n] = t4[n]− t3[n] = −x[n]+ dsm[n],

(5)

which consist of two linearly independent equations with
three unknowns: x[n], dms[n], and dsm[n]. Then, the typical
approach for time offset estimation is to assume symmetric
delays and use the following linear combination of (5):

x̃[n] =
t21[n]− t43[n]

2
. (6)

By substituting (5) in (6), note that (6) in reality yields noisy
time offset measurements due to the delay asymmetry w[n]:

x̃[n] = x[n]+ w[n] = x[n]+
dms[n]− dsm[n]

2
. (7)

In practice, even if the forward and reverse one-way delays
were perfectly symmetric, there would still be other uncer-
tainties on the timestamps that wouldmake themeasurements
from (6) noisy. For example, there are uncertainties due to
timestamp quantization and short-term oscillator stability.
Nevertheless, we assume that the delay asymmetry is by far
the predominant measurement noise component.

An alternative linear combination of (5) yields the so-
called two-way delay measurement, namely the average
between the m-to-s and s-to-m one-way delays:

d̃[n] =
t21[n]+ t43[n]

2
=
dms[n]+ dsm[n]

2
. (8)

Nevertheless, this estimate does not reveal the individual
one-way delays, which are of interest.

The one-way delays are composed of fixed and random
parts, both of which can be asymmetric, as follows:{

dms[n] = κms + δms[n]
dsm[n] = κsm + δsm[n].

(9)

Thus, the delay asymmetry noise w[n] in (7) has both static
and random asymmetry components, that is:

w[n] =
(κms − κsm)

2
+

(δms[n]− δsm[n])
2

. (10)

In this work, among the asymmetry sources in Table 1, we
assume that the static PHY hardware and the average queuing
delay asymmetry are the phenomena that contribute to the
static asymmetry (κms − κsm)/2. Furthermore, we assume

that the random processing and queuing delays of each PTP
exchange determine the instantaneous asymmetry between
δms[n] and δsm[n], typically with a far more significant con-
tribution from queuing delays. We neglect the other sources
from Table 1 by assuming that bit rates, transmission line
lengths, and network paths are symmetric.

A PTP-aware network overcomes the noise w[n] by either
handling the synchronization on each link with the so-called
BCs or by measuring the full residence time (RT) of a PTP
message over all PTP TCs [9] in the network. For example,
RT measurements (RTms and RTsm) are illustrated in Fig. 1.
In contrast, when PTP runs end-to-end over a PTP-unaware
network, there is no mechanism to overcome the noise w[n],
which then becomes a significant impairment.

In the end, there are two main challenges to be addressed
by synchronization algorithms on the PTP-unaware network
scenario. The first is the measurement noisew[n]. The second
is the ability to trace the true time offset from (1), which
evolves randomly over time.

E. FREQUENCY OFFSET MEASUREMENT
Because time synchronization implies frequency synchro-
nization (i.e., syntonization), if the time offset measurements
are accurate and frequent enough, then frequency offset mea-
surements can be unnecessary in many applications. On the
other hand, when the time offset measurements are not accu-
rate, the frequency offset correction becomes essential to
support the time offset estimation.

In PTP-unaware networks, the syntonization relies onmea-
surements of the frequency offset based on PTP timestamps.
However, one challenge is that frequency offset measure-
ments depend on observation intervals rather than instanta-
neous observations. The usual approach is to consider the
discrete-time approximation of (2), given by:

y[n] ≈
x[n]− x[n− N ]
t1[n]− t1[n− N ]

, (11)

where t1[n]− t1[n−N ] is the time interval between x[n−N ]
and x[n], according to timestamps taken by the master clock,
and N represents the observation window. This approxima-
tion only holds if the frequency offset remains constant during
the observation interval controlled by N .
The typical way to measure the approximated frequency

offset from (11) uses the measurements from (6), as follows:

ỹ[n] =
x̃[n]− x̃[n− N ]
t1[n]− t1[n− N ]

. (12)

Using (7), note this measurement is equivalent to:

ỹ[n] = y[n]+
w[n]− w[n− N ]
t1[n]− t1[n− N ]

, (13)

which, unlike (7), is an unbiased estimate.
Similar unbiased estimators can be derived based on times-

tamps from PTP messages in a single direction. For example,
using only the m-to-s timestamps, one can use:

ỹ[n] =
t21[n]− t21[n− N ]
t1[n]− t1[n− N ]

, (14)
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which, based on (5), is equivalent to:

ỹ[n] = y[n]+
dms[n]− dms[n− N ]
t1[n]− t1[n− N ]

. (15)

The difference between the two-way computation in (12)
and the one-way computation in (14) is the noise term.
The two-way approach balances the noise contributions from
the PDV in the m-to-s and s-to-m directions. In contrast,
(14) experiences the PDV in the m-to-s direction only.

In (13) and (15), note that the observation window N
determines interval t1[n] − t1[n − N ] and, consequently,
the noise attenuation. Nevertheless, it takes a long interval to
attenuate the expected noise range. For example, if the delay
fluctuations are in the order of microseconds, the interval
t1[n] − t1[n − N ] has to be in the order of 1000 seconds to
reduce the estimation noise to sub-ppb range. The problem is
that the approximation in (11) also assumes that the frequency
offset remains constant over the window of N samples. This
is a conflicting requirement, which requires the observation
window to be short enough.

IV. SYNCHRONIZATION ALGORITHMS
The goal going forward is to combine multiplemeasurements
x̃[n] from (6) to obtain less noisy time offset estimates. For the
methods based on observation windows, we take N observa-
tions and output a single estimate. Also, if each window over-
laps withN−1 samples of the previous window, one estimate
can be obtained for each new x̃[n] measurement. In this case,
the estimator’s output rate is the same as its measurement
input rate despite the window-based approach. However, to
simplify the notation, we assume non-overlapping windows
in the sequel.

A. CONSTANT-OFFSET WINDOW PROCESSING
We start with a class of estimators that relies on the assump-
tion that the time-offset remains constant throughout each
observation window. For example, the estimators referred to
as packet selection in the literature [19]–[22], [47], which
select a pair of PTP messages in a window (one in each
direction), then estimate the time offset using this pair only.
Also, the strategies that do not strictly use selection, but
which process a window of measurements using the constant
time offset assumption. For example, the so-called sample-
average (or sample-mean) and sample-mode approaches.
This class of estimators generally processes the timestamps

differences t21[n] and t43[n] from (5). That is, in the k-th
observation window, they process the vectors:

t21[k] = [t21[k, 0], t21[k, 1], · · · , t21[k,N − 1]]T (16)

t43[k] = [t43[k, 0], t43[k, 1], · · · , t43[k,N − 1]]T , (17)

each containing N timestamp differences.
As discussed in [48], the final estimate is obtained by:

x̂[k] =
ξ {t21[k]} − ξ {t43[k]}

2
, (18)

where ξ{} denotes an arbitrary operator, typically the mini-
mum, maximum, mean, median, or mode2 operator.
Using (5), note that, if the time offset x[kN+m] is constant

over the k-th observation window (for 0 ≤ m < N ), it can be
factored out of the operator, so that (18) becomes:

x̂[k] ≈ x[kN ]+
ξ {dms[k]} − ξ {dsm[k]}

2
, (19)

where x[kN ] denotes the time offset of the k-th window,
constant within the index range [kN , (k+1)N ), while dms[k]
and dsm[k] are vectors given by:

dms[k] = [dms[k, 0], · · · , dms[k,N − 1]]T (20)

dsm[k] = [dsm[k, 0], · · · , dsm[k,N − 1]]T . (21)

From (19), note the goal is to maximize the chances of
having ξ {dms[k]} equal to ξ {dsm[k]} within N measure-
ments, such that these terms can cancel each other. This
approach’s success depends not only on the statistic pursued
by the operator being symmetric (condition 1) but also on
the chances of finding such symmetric realizations within N
measurements (condition 2). For instance, when PTP shares
the network with BG traffic, some PTP messages may still be
lucky enough to traverse the entire network without colliding
with BG packets, i.e., with no queuing delay. In this case, if all
asymmetry sources from Table 1 other than queuing delay are
absent, it is theoretically possible that theminimum t21[n] and
t43[n] in N realizations becomes symmetric. Furthermore,
if the delay distributions are more concentrated around their
minima, the referred lucky realizations are more likely within
N samples, as discussed in [19].
Due to its probabilistic nature, the algorithm’s performance

depends strongly on the window length. By increasing N ,
the chances of finding symmetric realizations can increase.
On the other hand, note that (19) assumes that the time offset
remains constant throughout each observation window. This
is a vital requirement of the method, which effectively limits
the window length. That is, N must be low enough such that
x[n] remains reasonably constant over N samples.
The time offset can only be constant over an observation

window if the slave’s RTC is perfectly syntonized. However,
accurate syntonization is often a challenge in PTP-unaware
networks. The syntonization is handled based on PTP esti-
mates instead of, e.g., a PHY frequency reference. Thus,
the process is prone to PDV-induced estimation errors and
commonly low responsiveness to frequency deviations.

In this scenario, it is useful to apply a further syntoniza-
tion layer within the software-level when executing the
window-based algorithm. The proposed adaptation of (18) is
to precede its computation with a time offset drift compen-
sation step. More specifically, we can correct the values of
t21[n] and t43[n] as follows:

t ′21[k,m] = t21[k,m]−
m∑
j=0
1̂x[j]

t ′43[k,m] = t43[k,m]+
m∑
j=0
1̂x[j],

(22)

2Themode operator is typically preceded by the quantization of t21[n] and
t43[n] and succeeded by the dequantization of the operator’s results.

VOLUME 9, 2021 20583



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

where 1̂x[n] represents an estimate of the time offset drift
1x[n] = x[n]− x[n− 1] (discussed in Section IV-D).

The resulting drift-compensated timestamp differences
from (22) can be organized into vectors t′21[k] and t

′

43[k], as in
(16) and (17). Then, similarly to (18), these vectors are used
to estimate the time offset as follows:

x̂ ′[k] =
ξ
{
t′21[k]

}
− ξ

{
t′43[k]

}
2

+

N−1∑
j=0

1̂x[j]. (23)

where the summation term reintroduces the drift subtracted
from the timestamp difference samples, such that x̂ ′[k] esti-
mates the time offset by the end of the observation window.

The advantage of the estimator implemented by (23) is that
it tolerates time-varying time and frequency offsets over the
observationwindow. In this case, thewindow length is limited
by the accuracy of the drift estimates 1̂x[n], which tends to be
a more relaxed constraint than the requirement of a constant
time offset throughout the observation windows. As a result,
this approach tends to perform well with long observation
windows, as discussed later in Section VII. To the best of our
knowledge, this formulation in (23) has not been discussed
previously in the literature.

B. LEAST-SQUARES ESTIMATOR
Unlike the previous estimator, the LS estimator completely
neglects the statistics of the noise w[n]. Instead, it focuses on
the properties of the time offset process. More specifically,
it assumes that the time offset is piecewise linear, as in the
simplified model of (3). Then, it tries to find the LS fit of the
linear model based on the measurements.

First, let us convert the non-windowed time offset measure-
ments of (7) into windowed notation, as follows:

x̃[k,m] = x[k,m]+ w[k,m]. 0 ≤ m < N , k ≥ 0 (24)

Next, using (3), we model the measurements as follows:

x̃[k,m] = x0[k]+ y[k]τ [k,m]+ w[k,m]. (25)

In vectorized form, we can define:

x̃[k] =
[
x̃[k, 0], x̃[k, 1], · · · , x̃[k,N − 1]

]T (26)

w[k] = [w[k, 0],w[k, 1], · · · ,w[k,N − 1]]T (27)

θ [k] = [x0[k], y[k]]T (28)

H[k] =


1 τ [k, 0]
1 τ [k, 1]
...

...

1 τ [k,N − 1]

 . (29)

Thus, it follows that:

x̃[k] = H[k]θ [k]+ w[k], (30)

where x̃[k] is the observed data vector, H[k] is the so-called
observation matrix, θ [k] is the vector of unknowns, and w[k]
is the noise vector.

If the noise was zero-mean, white and Gaussian-
distributed, it is known that the minimum variance unbiased

(MVU) estimator of θ [k] would be achieved by the LS esti-
mate, which follows:

θ̂ [k] =
(
HT [k]H[k]

)−1
HT [k]x̃[k]. (31)

Nevertheless, since the delays that contribute to w[n] are not
white Gaussian in practice, the LS estimator’s optimality is
not guaranteed. Also, the LS estimates are subject to the
inaccuracies of the piecewise linear model of (3) relative to
the non-linear, stochastic, and continuous-time model of (1).

With the estimate θ̂ [k], it is possible to compute the LS fit
of the time offset as a line with slope ŷ[k] starting from x̂0[k]:

x̂[k,m] .= x̂0[k]+ ŷ[k]τ [k,m]. 0 ≤ m < N , k ≥ 0 (32)

However, note that τ [k,m] represents the instant of the
m-th observation (or PTP exchange) relative to the begin-
ning of the window. This instant is unknown, but it can be
approximated based on timestamps taken on the GM side
(e.g., timestamp t1). Alternatively, one can assume that the
observations are periodic with period T (the PTP exchange
interval), such that the observation matrix simplifies to:

H[k] =


1 0
1 T
...

...

1 (N − 1)T

 . (33)

Accordingly, the LS fit becomes:

x̂[k,m] .= x̂0[k]+ ŷ[k](mT ). 0 ≤ m < N , k ≥ 0 (34)

In practice, overlapping windows can be used such that
an observation window has a single new measurement and
N − 1 measurements from the previous window. In this case,
the output of the LS estimator can be solely the last fitted
value from (32) or (34), i.e., x̂[k,N − 1], so that there is one
output for every input x̃[n].

Importantly, note that, in contrast to the algorithms from
Section IV-A, the LS estimator does not require constant
time offsets throughout the observation windows. Instead,
it requires the frequency offset to remain constant, such that
the linear time offset model holds. Thus, the LS window
length is limited by the frequency stability. Besides, note that
quadratic, cubic, and other terms could be introduced in the
LS formulation. However, as discussed in [18], the piecewise
linear model tends to produce better results.

C. KALMAN FILTERING
The KF approach departs from window-based strategies and
particularly from the assumption that the unknown time and
frequency offsets are constant (or deterministic) within the
observation windows. Instead, it considers that x[n] and y[n]
are continuously-evolving stochastic processes that compose
a state vector s[n] = [x[n], y[n]]T . The goal of the filter is to
predict the state s[n] with minimummean square error (MSE)
based on past observations and knowledge of the dynamics of
the time and frequency offset processes.
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In the conventional KF formulation, the state vector s[n]
consists of a first-order Gauss-Markov process [49]. Thus,
we start by establishing recursive models for x[n] and y[n],
such that we can express s[n] based on s[n− 1].

The recursive model of the time offset is given by:

x[n] = x[n− 1]+ y[n− 1]1τ [n]+ ux[n]. (35)

This model assumes that, from x[n − 1] to x[n], the main
change comes from the linear contribution of the frequency
offset y[n− 1], which acts over the interval 1τ [n] = τ [n]−
τ [n−1]. This part of the model relates to the piecewise linear
model of (3). However, (35) assumes that the frequency offset
is constant only within the short interval 1τ [n], rather than
over a long observation window. Furthermore, (35) acknowl-
edges that the linear term does not capture all the complexity
of the continuous-time model in (1). In particular, it includes
an uncertainty term ux[n], which comes primarily due to the
contribution from the phase noise φ(t) in (1).
Next, the recursive frequency offset model is given by:

y[n] = y[n− 1]+ uy[n], (36)

where uy[n] represents the frequency state noise, which is
responsible for time variations of the frequency offset.

Using (35) and (36), and given that s[n] = [x[n], y[n]]T ,
note that the Gauss-Markov state process can be modeled by:

s[n] = As[n− 1]+ u[n], n ≥ 0 (37)

where A is the state transition matrix given by:

A =
[
1 T
0 1

]
, (38)

and u[n] =
[
ux[n], uy[n]

]T is the state noise vector. For
simplicity, as in (33), this transition matrix assumes that the
sample intervals 1τ [n] in (35) are constant with period T .
In the conventional KF formulation, u[n] in (37) consists

of a zero-mean white Gaussian vector with PDF∼ N (0,Q).
Matrix Q = E

[
u[m]uT [n]

]
is the state noise covariance

matrix, and it is assumed that Q = 0 for m 6= n, namely
that the noise vectors are independent from sample instant to
sample instant. Furthermore, the formulation assumes that the
initial state s[−1] is a random vector independent of u[n] and
whose PDF is∼ N (µs,Cs). Here, we assume also that ux[n]
and uy[n] are uncorrelated so that Q is a diagonal matrix for
all m = n, as assumed in [39], [41].

The statistics assumed for the noise vector u[n] imply that
both time and frequency offsets experience random-walk,
i.e., they continuously accumulate a sequence of i.i.d Gaus-
sian random variables. In terms of frequency stability char-
acterization [46], [50], this model considers white frequency
noise (which causes random-walk in time) and random-walk
frequency noise. As mentioned in [39], these tend to be the
predominant components of phase noise, and the advantage
here is that they lead to the more tractable case of Gaussian
state noise. However, other neglected phase noise sources
(particularly flicker phase, flicker frequency, and white phase
noise) may also be relevant in practice.

Next, we define the measurement model. In this work,
we opt for a vector-state scalar-observation KF configura-
tion [49], similar to [41], where the observations are the time
offset measurements from (6). Hence, the model becomes:

x̃[n] = hT s[n]+ w[n], (39)

where h = [1, 0]T is a (2× 1) vector such that this equation
is equivalent to (7).

Similarly to the state noise, the conventional KF formula-
tion assumes that the scalar measurement noise is zero-mean
Gaussian-distributed with uncorrelated samples, variance σ 2

w,
independent to both the initial state s[−1] and the state
noise vector u[n]. Here, in particular, the Gaussian assump-
tion does not hold, given that the noise in (10) is nearly
always non-Gaussian. Hence, the given Kalman filter is not
guaranteed to be optimal [36], just like the LS estimator of
Section IV-B is not guaranteed to be the MVU estimator.
Nevertheless, both estimators are still of interest. The Kalman
filter is still the optimal linear minimumMSE estimator [49].

Finally, the conventional vector-state scalar-measurement
KF equations can be used (see, e.g., [49]). For the given
model, the sequence of equations from the so-called predic-
tion to correction (or update) steps of the filtering are:

ŝ[n|n− 1] = Aŝ[n− 1|n− 1] (40)

M[n|n− 1] = AM[n− 1|n− 1]AT
+Q (41)

k[n] =
M[n|n− 1]h

σ 2
w + hTM[n|n− 1]h

(42)

ŝ[n|n] = ŝ[n|n− 1]+ k[n]
(
x̃[n]+ hT ŝ[n|n− 1]

)
(43)

M[n|n] =
(
I− k[n]hT

)
M[n|n− 1], (44)

where ŝ[l|p] is the estimate of state s[l] based on the p-th state,
M[l|p] is the corresponding state estimate covariance matrix,
defined as E

[(
s[l]− ŝ[l|p]

) (
s[l]− ŝ[l|p]

)T ], k[n] is the
2× 1 Kalman gain vector, and I is a 2× 2 identity matrix.

On initialization, M[−1| − 1] is set to the covariance Cs
of the random initial state s[−1]. Particularly in our imple-
mentation, due to the lack of knowledge about the initial
state, we populate Cs with arbitrarily large values, such that
the filter starts with little confidence in the state. Moreover,
we initialize the state vector s[−1] with the first available
time and frequency offset measurements, from (7) and (14),
respectively, rather than assigning a random realization of
a random vector with PDF ∼ N (µs,Cs). This heuristic
choice is meant to achieve faster convergence, and it is also
motivated by our unawareness of the actual µs and Cs.
We adopt another heuristic approach to define the state

noise covariance matrix Q. As discussed in [39], this matrix
can be determined based on the offline characterization of the
free-running local oscillator, for example, through Allan vari-
ance curves. However, this is a non-scalable approach, as it
requires a manual procedure for each device. An alternative
is to tuneQ with some degree of trial and error. As discussed
in Section V, our implementation in this work tries a range
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of matrices Q and picks the one that results in the best
performance. Nevertheless, one should note that it is crucial
to capture the statistics of the actual state noise for better
performance. Our inability to do so in a scalable and practical
way can limit the achievable performance.

Meanwhile, the measurement noise variance σ 2
w depends

mostly on the PDV experienced by PTP. Based on (7), and
assuming that the m-to-s and s-to-m delays are independent,
wide-sense stationary, and white discrete-time random pro-
cesses, it follows that:

σ 2
w =

Var {dms[n]} + Var {dsm[n]}
4

, (45)

where Var {} denotes the variance. Advantageously, σ 2
w coin-

cides with the variance of the two-way delay measurement
from (8), which the PTP slave node can compute in practice.

Moreover, note that themeasurement noise variance in (45)
depends solely on the delay variances and not their aver-
ages. Thus, the delay fluctuations due to queuing and
(to a less extent) processing delays determine it, whereas the
static delay asymmetries (see Table 1) do not influence it.
Nevertheless, static asymmetries do harm the KF assump-
tion of zero-mean measurement noise. Secondly, note that,
in contrast to [39], we assume that the PDV determines the
measurement noise in (45) while neglecting other effects such
as the timestamping granularity.

Ultimately, the given KF formulation is limited by three
main factors. The first refers to the state noise model, which
considers only two forms of phase noise, whereas other phase
noise sources may be significant. The second comes from the
non-Gaussian and non-zero-mean measurement noise, which
limits the estimates to sub-optimality. The third refers to the
difficulty of defining the state noise covariance matrixQ and
initial state s[−1] accurately.

D. TIME OFFSET DRIFT ESTIMATION
Section IV-A discusses the approach of (22), which benefits
from time offset drift estimates. In this work, we estimate the
time offset drifts as follows:

1̂x[n] = ŷ[n] (t1[n]− t1[n− 1]) , (46)

where ŷ[n] represents the frequency offset estimate. Further-
more, we obtain ŷ[n] based on the one-way formulation in
(14), instead of (12). This is not a general guideline, but a
choice that leads to better performance in our experiments,
where the m-to-s PTP messages experience less PDV.

To further alleviate the PDV noise, we process t21[n] using
an extra layer of window-based filtering. As illustrated in
Fig. 2, this processing relies on two observation windows
spaced by an interval of N samples, each containing K values
of t21[n]. The front window operates on the most recent K
samples, whereas the back window operates on samples in
the past. Ultimately, the estimate is obtained by:

ŷ[n] =

ξ
0≤j<K

{t21[n− j]} − ξ
0≤j<K

{t21[n−N − j]}

t1[n]− t1[n− N ]
. (47)

FIGURE 2. Window-based filtering strategy used for frequency offset
estimation.

where ξ is an arbitrary operator. In this work, we explore
specifically the minimum and maximum operators in (47).

The same tradeoffs discussed in Section IV-A apply
to (47). While the window length K must be short enough to
capture a constant time offset, it is also helpful to have large
windows to increase the chances of finding, e.g., minimally
or maximally-delayed packets in each window. Nevertheless,
in contrast to (23), where drift correction allows larger win-
dows, (47) does not have any solution for drifts. After all,
(47) is a pre-requisite for estimating the drifts in (46). Hence,
we explore relatively short windows (small K ) in (47).

V. PROCESSING ARCHITECTURE
A major goal in this work is to compare the synchro-
nization algorithms fairly by applying them simultane-
ously on the same data. To do so, we developed the
open-source Python-based PTP dataset analysis library
(PTP-DAL), which implements all processing stages
described thus far, with the architecture illustrated in Fig. 3.
Its analysis tool first reads a dataset containing timestamps
and labels collected by our FPGA-based testbed. Then,
it computes the corresponding time offset measurements
according to (6) and the timestamp difference metrics from
(5), which are fed into the algorithms from Section IV. In the

FIGURE 3. Software architecture implemented on PTP-DAL to process the
timestamps and labels of a dataset acquired from the testbed.
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FIGURE 4. Picture of the FPGA-based synchronization testbed.

end, the results of each algorithm are compared within the
Analyzer module.

Fig. 3 shows the stack of time offset estimation algorithms
implemented on PTP-DAL. Note that the algorithms from
Section IV-A rely on time offset drift compensation, using
equations (22) and (23). Thus, they receive the estimates
from the drift estimator module discussed in Section IV-D.
Meanwhile, the LS and KF algorithms process the time offset
measurements x̃[n] directly.

The architecture in Fig. 3 includes optional bias correc-
tion stages, which are explored in Section VII. These stages
shift time offset measurements or estimates by fixed values
computed from the dataset labels. For the algorithms from
Section IV-A, which compute the time offset estimates based
on timestamp differences t21[n] and t43[n], the bias correction
module shifts the time offset estimates produced by (23),
i.e., the algorithms’ outputs. In contrast, for the algorithms
that process the time offset measurements x̃[n] directly (LS
and KF), the bias correction stage shifts the algorithm’s input.

Furthermore, the bias correction module applies a dis-
tinct correction to each method from Section IV-A, depend-
ing on the operator ξ{} in (23). The rationale is that ξ{}
governs the asymmetry resulting from approximation (19).
Hence, the bias correction module computes the asymmetry
as follows:

b̂ =
ξ {dms[n]} − ξ {dsm[n]}

2
. (48)

For example, this expression returns the asymmetry between
the minimum m-to-s and s-to-m PTP delays when using
the sample-minimum approach. The remaining algorithms
(LS and KF) experience biases corresponding to the average
noise w[n] from (7), which also affects the sample-average
strategy. Hence, the bias correction module shifts them by the
average delay asymmetry.

PTP-DAL also includes the window length tuner module,
which finds the best observation window length N for the
algorithms from Section IV-A and LS. This module runs
each window-based algorithm for a range of window lengths
and returns the length that yields the best performance in
terms of the maximum absolute time error (max|TE|) [51].
In the end, all window-based algorithms are compared using
their (distinct) best window lengths.

Other modules also have their optimizers, such as the KF
and drift estimator. The Kalman filter’s optimizer sweeps
a range of state noise covariance matrices Q and chooses
the one that yields the lowest max|TE|. Similarly, the drift
estimator’s optimizer sweeps a range of N and K in (47)
until the resulting drift estimates from (46) present minimal
error relative to the true drifts observed on dataset labels.
Ultimately, PTP-DAL allows the comparison of algorithms
based on their best (reasonably optimized) configurations.

VI. TESTBED
Our testbed is composed of three Xilinx Virtex-7 FPGAs.
One of them is the PTP master clock, and the others are the
PTP slave clocks. Fig 4 shows the FPGAs, the switches, and
several measurement instruments that compose the testbed,
some of which are out of scope. The interested reader can
refer to the description of an early version of this testbed
in [52] and a more recent usage regarding radio-frequency
timing alignment experiments in [53].

In this section, we present the FPGA design choices for
the acquisition of timestamp datasets. Next, we describe the
testbed network and the sources of BG traffic used on exper-
iments. Finally, we discuss the PTP delays that are expected
based on the adopted testbed configurations.

A. FPGA DESIGN
The FPGA design of the PTP slave clock supports two
distinct oscillator options to drive the RTCs: an onboard
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crystal oscillator (XO), available on the adopted Xilinx
VC707 board, and an external oven-controlled crystal oscil-
lator (OCXO). As shown in Fig. 4, each slave clock has an
associatedAnalogDevices AD9548 phase-locked loop (PLL)
board, which, among other tasks (see [52]), supplies a clock
signal synthesized based on an OCXO.

The feature of a configurable oscillator allows the eval-
uation of two classes of RTC stability and accuracy. The
XO presents a frequency stability specification of ±50 ppm,
whereas the OCXO stays within±5 ppb. In the experimental
section, we analyze results using the two oscillator options.

In contrast, our master clock only takes one driving clock
for its RTC. This reference comes from a high-stability
125MHz differential clock signal synthesized by an arbitrary
waveform generator (AWG), shown in Fig 4. This is meant to
be the primary reference clock (PRC) of the network [45].

Furthermore, each PTP slave clock in the testbed includes
two RTCs in the FPGA fabric. The first is the conventional
PTP-synchronized RTC, which is the source of time for the
timestamping of PTP messages. For brevity, we refer to this
instance as the PTP RTC. The second is a self-developed RTC
that synchronizes to a pulse per second (PPS) reference sig-
nal, referred to as the PPS RTC. This dual-RTC architecture
is illustrated in Fig. 5, and it is typical on devices featuring
primary and backup timing sources, such as in the case of
APTS slave clocks (see Appendix A in [17]).

FIGURE 5. Dual-RTC architecture used on the slave clocks.

As illustrated in Fig. 6, our master clock outputs a PPS
signal to the PTP slaves, which then synchronize their PPS
RTCs to this signal. Ultimately, the slaves synchronize their
PTP and PPS RTCs through entirely independent mecha-
nisms, the former through PTP over the network, and the
latter through the reliable PPS signal. Nevertheless, both the
PTP and the PPS timing references come from the master
clock’s time base. Thus, if the synchronization mechanisms
were ideal, the two RTCs would align perfectly.

A fundamental aspect of the FPGA design is that the
PTP and PPS RTCs are driven by the same clock signal of
fnom = 125 MHz, as shown in Fig. 5. Ultimately, this choice
allows an accurate correspondence between timestamps taken
from the two RTCs. Also, with this frequency of 125 MHz,
by default, the two RTCs increment in steps of 1/fnom = 8 ns.
Correspondingly, the inaccuracy of each PTP timestamp due
to the time quantization ranges from 0 to 8 ns.

To reduce the timestamp granularity, the PPS RTC devel-
oped in-house uses a double flip-flop re-synchronizer circuit

FIGURE 6. PPS connection and the frequency references supplied to the
FPGAs, with XO and OCXO options on the slave clocks.

similar to the approach in [54]. This circuit observes both
rising and falling edges of the RTC’s driving clock, and so
it halves the timestamp granularity. In the end, the PPS RTC
features a timestamping accuracy nominally within ±2 ns.

When receiving the PPS signal from the master, the slaves
continuously measure the time error (TE) between their
local PPS RTCs and the rising edges of the input signal.
With the measured TE, our FPGA’s firmware estimates the
local frequency offset relative to the master and compensates
it by adjusting the increment step of the PPS RTC. This
process happens through a software implementation of a
proportional-integral loop. Once the loop locks, we typically
(99.8% of the time) observe a steady-state synchronization
error within ±4 ns with the OCXO and ±8 ns with the XO.

In addition to the timestamp granularity, a significant
timestamping uncertainty source comes from variable latency
processing stages before the timestamping point. This is not
a concern for PPS synchronization because the timestamps
are taken directly based on the input PPS signal. In contrast,
it is a challenge for PTP because the timestamping usually
happens inside the medium access control layer (MAC) and
is adjusted back to the corresponding time at the physical
medium interface [55]. Thus, the timestamps are subject to
variable latency stages from the PHY [23], [56].

Our clocks implement the Ethernet MAC within the
FPGA fabric and rely on an external PHY chipset (Mar-
vell 88E1111 on the slaves). They timestamp the PTP mes-
sages within the MAC when the start of frame delim-
iter of the PTP frame (carrying the message) is observed
on a plane that lies after MAC stages with fixed and
known latency. Subsequently, each timestamp is adjusted in
software to the corresponding time at the gigabit media-
independent interface (GMII) interface. Thus, the timestamps
are nanosecond-accurate and represent the GMII time. Never-
theless, the timestamps do not represent the time at the phys-
ical medium. Correspondingly, any asymmetry or variable
latency incurred within the master’s or slave’s PHY Tx and
Rx paths contribute to the total path delay. The characteriza-
tion of such PHY effects is beyond the scope of this work.

B. LABELED DATA ACQUISITION
A key feature of the testbed is that it can capture the actual
one-way delay of each PTP message and the true slave
time offset during each message exchange. This is possible
because the slave clocks can take simultaneous snapshots
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of their PTP and PPS RTCs, and because the PPS RTC is
accurately synchronized to the master time.

For each two-way PTP exchange, the slave collects the
standard set of four timestamps taken by the PTP RTCs
and two additional timestamps from the slave’s PPS RTC.
As shown in Fig. 1, the two timestamps that are normally
taken on the slave side are t2[n] and t3[n]. Correspondingly,
our slave takes timestamps t ′2[n] and t

′

3[n] from the PPS RTC
at the exact clock cycle when it takes t2[n] and t3[n] from the
PTP RTC. In the end, the n-th entry of a dataset acquired from
the testbed contains the information in Table 3.

TABLE 3. Example dataset entry corresponding to a PTP message
exchange.

With the additional timestamps from the PPS RTC, t ′2[n]
and t ′3[n], the truth labels can be computed as follows:

x́[n] = t2[n]− t ′2[n] (49)

d́ms[n] = t ′2[n]− t1[n] (50)

d́sm[n] = t4[n]− t ′3[n], (51)

where x́[n], d́ms[n], and d́sm[n] represent the time offset,
m-to-s delay, and s-to-m delay truth labels, respectively. The
rationale is that the PPS RTC accurately represents the master
time. Thus, for example, t2[n]−t ′2[n] represents the difference
between the slave time t2[n] upon the arrival of the n-th
PTP message (according to the PTP RTC) and the master
time t ′2[n] (according to the PPS RTC) when the PTP arrival
timestamp is taken. The error associated with such labels
is the PPS synchronization error, which, as mentioned in
Section VI-A, ranges from ±4 ns (OCXO) to ±8 ns (XO).
A noteworthy aspect is that there is no uncertainty on

the matching between a timestamp from the PTP RTC
(e.g., t2[n]) and a timestamp from the PPS RTC (e.g., t ′2[n]).
Our hardware drives the two RTCs using the same clock
signal, as illustrated in Fig. 5. Hence, the two RTCs reside
in the same clock domain, and there is no need for clock
domain crossing between them. This design choice avoids
timing uncertainties and, ultimately, allows the sampling of
the two RTCs precisely at the same clock cycle.

C. TESTBED NETWORK AND BG TRAFFIC SOURCES
As illustrated in Fig. 7, our testbed connects the FPGA
devices through a PTP-unaware GbE network with a config-
urable number of hops. Each network hop is implemented on
an independent port-based virtual local area network (VLAN)
on the PTP-unaware switch (shown in Fig. 4). We explore
from one to four hops in this work, as this range represents
well-controlled PTS networks with few hops [16]. Further-
more, we adopt a tree topology, with the two slave clocks
connected to the same hop. For example, Fig. 7 illustrates the
two slaves connected to the fourth hop.

FIGURE 7. Testbed’s PTP-unaware GbE network with hosts used for the
generation of BG traffic.

The given network carries only two types of traffic: PTP
and BG traffic. The latter, in turn, can be generated in two
forms: constant bit rate (CBR) and variable bit rate (VBR).
The CBR BG traffic is generated directly by the FPGA
devices in hardware with precise configurations in terms
of bit rate and packet inter-departure intervals. In contrast,
the VBR BG traffic is generated with significantly lower
precision using the iperf application on auxiliary Raspberry
Pi Linux hosts, highlighted as the VBR traffic hosts in Fig. 4.

The CBR BG traffic generated by the FPGA devices con-
sists of fixed-length packets with periodic packet departures.
As illustrated in Fig. 8, the master sends two BG packets on
every serving period, one to each slave. In contrast, the slaves
send a single packet to the master every serving period.

FIGURE 8. CBR BG traffic pattern in the slave-to-master and
master-to-slave directions.

Note that the CBR BG packets follow the same path as
the PTP packets (except for the last hop, discussed later).
This configuration is referred to as in-line BG traffic in [20].
In contrast, the VBRBG traffic is generated and consumed by
devices other than the FPGAs. Hence, each VBR stream runs
over an isolated portion of the path between the PTP clocks.

As shown in Fig. 7, each VBR BG traffic host injects
one-way UDP-based VBR BG traffic on the switch and
receives the stream from the previous VBR traffic host. For
example, Host 2 receives the stream from Host 1 and injects
another independent stream towards Host 3. This pattern
is referred to as cross-traffic in [20], [21]. Following the
literature, we configure this traffic according to a model
from ITU-T Recommendation G.8261 [57]. Nevertheless,
unlike [20], [21], we experiment with cross-traffic in both the
m-to-s and s-to-m directions, and we adopt the data-centric
Network Traffic Model 2 instead of the voice-centric
Model 1.
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D. EXPECTED PTP DELAYS
Next, we define the expectations in terms of PTP delays,
given that they are determinant to the synchronization perfor-
mance. This is more easily attainable for the CBR BG traffic
due to its accurate hardware-based generation and tractable
pattern with periodic transmissions. Hence, we take the CBR
source as an example of BG traffic within a well-controlled
PTS network with predictable delays, which we discuss next.

A key figure for the analysis of delays is the gap between
the start of the PTP message and the end of the preced-
ing BG frame, denominated as the BG-PTP gap in Fig. 8.
As discussed in [35], assuming that the PTP messages are
shorter than the BG messages, the BG-PTP gap reduces after
every store-and-forward switching stage.3 More specifically,
it reduces by (τbg − τptp) on each hop, where τbg and τptp
are the BG and PTP packet transmission (or serialization)
delays, respectively. Eventually, after sufficient hops, the PTP
message approaches the BG packet completely. From this
point on, the PTPmessage has to wait for the full serialization
of the preceding BG packet on every subsequent store-and-
forward stage. Conversely, while the BG-PTP gap is still non-
zero, the PTP message does not experience queuing delays
and can be forwarded immediately after being fully stored.
The starting BG-PTP gap determines how soon the PTP

message experiences queuing delays. The worst-case is when
the PTP message departs with the so-called zero-gap (ZG)
condition, i.e., already immediately after a BG packet. This
scenario leads to the following one-way delay model:

dms,zg[n] = η(τbg)+
η−1∑
j=0

(γ [j, n]+ βms[j]) , (52)

where η is the number of network hops, γ [j, n] is the
n-th random processing delay within the j-th hop, and
βms[j] models the static hardware latency associated with
the j-th hop in the m-to-s direction. For instance, the latter
includes the Ethernet PHY latency on ingress and egress
ports. For simplicity, this model ignores the propagation
delays.

In the model of (52), term η(τbg) includes both the trans-
mission and queuing delays. The PTP message experiences
transmission delay τptp on every hop. By the time the PTP
message is fully stored (after τptp), a wait of (τbg − τptp)
remains until the outbound link finishes the serialization of
the preceding BG packet. Under the ZG condition, the PTP
message experiences a queuing delay of (τbg − τptp) on each
hop. Thus, in total, the two delays compound to η(τbg).
Moreover, the model of (52) holds in the m-to-s direction

when PTP shares the network solely with in-line CBR BG
traffic in the specific tree topology of Fig. 7, and provided
that condition τbg > τptp holds. This is because, in this sce-
nario, the m-to-s PTPmessages do not experience contention.
In contrast, the model does not hold in the s-to-m direction,
where the PTP messages can experience contention.

3In this work, we rely and focus on store-and-forward switching,
as opposed to cut-through switching.

The contention of s-to-m PTP packets occurs on the
switching node where the two slave clocks are connected
(e.g., the fourth node in Fig. 7), referred to as the aggregation
node. The packets from the two slaves compete for the shared
outbound link towards the master. For example, if a PTP
packet from Slave 1 arrives in the aggregation node slightly
after a BG packet from Slave 2, the PTP packet can experi-
ence an extra queuing of τbg. Thus, under the ZG condition,
the worst-case s-to-m delay becomes:

dsm,zg[n] = (η + 1)(τbg)+
η−1∑
j=0

(γ [j, n]+ βsm[j]) , (53)

where βsm[j] models the static hardware latency associated
with the j-th hop in the s-to-m direction.
Equations (52) and (53) define the worst-case (highest)

expected PTP delays. However, the PTPmessages can experi-
ence significantly lower delays when departing with the max-
imum possible BG-PTP gap and in the absence of contention.
Thus, due to the random placement of PTP packets relative to
BG frames, we expect a PDV corresponding to the BG-PTP
gap variations. Also, in both directions, we expect additional
fluctuations up to the order of τbg.

In the s-to-m direction, queuing delay variations in the
order of τbg are expected due to the random contention in the
aggregation node. In contrast, in them-to-s direction, queuing
delay variations in the order of (τbg − τptp) happen because
the CBR BG packets do not necessarily follow the PTP path
in the last hop. For example, a PTP message going towards
slave clock 1 (see Fig. 7) can depart after a unicast-addressed
BG frame sent to slave clock 2. In this case, under the
ZG condition, the PTP message waits for the preceding BG
frame’s serialization in each hop, except the last one. Once the
PTP message is fully stored in the last switching stage, it can
be forwarded immediately (with no queuing delay), while the
BG frame is forwarded through another port (in this example
to slave 2). This event happens randomly due to the random
placement of PTP messages on the wire.

VII. RESULTS
In this section, we compare the synchronization algorithms
discussed in Section IV under various scenarios. First,
we present the results achieved when PTP is the only traffic
in the testbed network, namely without BG traffic. Subse-
quently, we show results under in-line CBR and cross-traffic
VBR BG traffic. In all cases, we consider hour-long datasets
acquired with the two PTP slave clocks running 128 delay
request-response exchanges per second with the XO and
OCXO options. Moreover, we assess the performance in
terms of the max|TE| observed over every minute.

The choice of 128 PTP exchanges per second represents the
maximum packet rate in many PTP profiles, such as the PTS
profile [13]. With this choice, the goal is to evaluate the algo-
rithms under the most favorable conditions for performance.
Meanwhile, the communications load that results from using
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the highest PTP packet exchange rate is still negligible in
many practical use cases.

Furthermore, our implementation on PTP-DAL computes
all window-based algorithms using overlapping windows,
unlike in the tractable formulation adopted thus far. Hence,
in the experiments that follow, the algorithms output one esti-
mate for every new PTP exchange, except for the initialN−1
exchanges. Furthermore, the experiments explore observation
window lengths ranging fromN = 4 to 65536. With 128 PTP
exchanges per second, this range corresponds to durations
from 31.25 milliseconds up to 512 seconds.

Moreover, although each dataset consists of an hour-long
acquisition, we choose to skip the initial 25% of the results
in each experiment to disregard transients. This choice corre-
sponds to 15 min, namely a duration longer than all observa-
tion windows considered in the experiments. Consequently,
the results that follow show only 45 min.

Lastly, as discussed in Section VI-C, the experiments that
follow explore from one to four network hops. Table 4 sum-
marizes the experimental parameters and scenarios.

TABLE 4. Parameters and configurations adopted in the experiments.

A. PTP WITHOUT BG TRAFFIC
To start, Fig. 9 shows the distributions of the true one-way
PTP packet delays observed in the absence of BG traffic
for all hop configurations (from one to four) and with both
oscillator options. These delays are computed using (50)
and (51), namely based on the dataset labels. Note that the
delay distributions present a similar shape and support. More
specifically, all scenarios have a standard deviation (SD)
of approximately 160 ns and span roughly between 590 to
700 ns. Furthermore, note that each hop adds nearly 3.7
to 4.3 µs of delay. This amount includes the processing
delay, the constant PTP transmission delay τptp (640 ns in
this case), and the hardware latency associated with the hop.
Besides, note that, in the absence of BG traffic, the processing
delay becomes the predominant variable delay component
and determines the shape of the distributions.

Although the distributions in Fig. 9 present similar shapes,
the difference between the average m-to-s and s-to-m delays
varies in each hop configuration. This difference refers to the
static delay asymmetry component modeled in (10), which
varies per hop because each port of the PTP-unaware switch
introduces different static hardware latencies (e.g., Ethernet
PHY latencies). For example, note that the asymmetries
observed with the XO and OCXO match closely on

FIGURE 9. PTP one-way delay distributions in the absence of BG traffic.

each hop configuration (using the same ports). In con-
trast, when comparing datasets with a different num-
ber of hops (different ports), the asymmetries diverge
significantly.

In a practical PTS deployment, such varying asymmetry
contributions are expected. Ordinarily, switches (and espe-
cially PTP-unaware ones) provide no guarantees regarding
the asymmetry between the transmit and receive paths of
each of its ports. Thus, the PTP slave has to live with the
asymmetry. Alternatively, in an APTS deployment, the delay
asymmetry experienced by the PTP messages can be mea-
sured while the slave clock is locked to a GNSS reference.
Then, upon the GNSS signal’s loss, when the APTS slave
clock switches to the PTP (backup) timing reference, it can
use the previously measured PTP delay asymmetry to adjust
the PTP timestamps and the corresponding measurements.

Next, we analyze the synchronization performance
achieved over four hops. Fig. 10 shows the max|TE| perfor-
mance achieved by the processing algorithms discussed in
Section IV, with max|TE| measured over every minute of the
experiment. It contrasts the casewhere the slave does not have
any means to correct the bias to the case where the slave can
calibrate and correct the bias, as in the APTS scenario. In this
comparison, we omit the sample-mode to better visualize the
curves that achieve similar max|TE| values. The sample-mode
performance is significantly worse and unstable because the
delay distributions in Fig. 9 do not present a prominent mode
(the distributions are flat over nearly 400 ns). Similarly,
we omit the max|TE| curve referring to the rawmeasurements
from (6), which lies around 470 nswithout bias correction and
300 ns with bias correction.

In Fig. 10a and 10b, which show the performance with-
out bias correction, note that the sample-maximum approach
using (23) achieves the best performance. Unlike in the eval-
uation of [19], this result is not due to a high network load
(there is no BG traffic in this case). Instead, it is because,
in this experiment, the asymmetry between the maximum
m-to-s and s-to-m delays is lower than the other asymmetries,
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FIGURE 10. max|TE| results obtained in the experiment without BG traffic over four network hops.

as summarized in Table 5, and because the biases due to the
delay asymmetries are more significant than the estimation
variance presented by all algorithms. Hence, the estimator
experiencing the lowest asymmetry performs best.

In fact, the estimations in Fig. 10 present very low variance,
as is expected in the absence of BG traffic. Thus, in Fig. 10a
and Fig. 10b, the sample-average, sample-min, sample-max,
and sample-median curves converge to values near their cor-
responding asymmetries in Table 5. The LS and KF results
also converge to values near their expected asymmetries,
namely to the average asymmetry (also in Table 5). This con-
vergence is tighter in Fig. 10b, with the OCXO. In contrast,
with the XO (Fig. 10a), the max|TE| curves are slightly worse
(by around 25 ns) because the drift estimates used in (23) and
the estimates produced by LS and KF become less accurate
when the LO is less stable.

Next, Fig. 10c and 10d present the performances when
applying bias correction. In this case, all algorithms achieve
similar max|TE| values, with minor differences. The LS and
KF estimators were slightly superior in both cases. Further-
more, as in the previous scenario, the performance achieved
with the OCXO (Fig. 10d) is superior to the one achievedwith
the XO (Fig. 10c). More generally, both configurations with
bias correction achieve excellent synchronization accuracy,

TABLE 5. Static delay asymmetries over four hops without BG traffic.

despite the network’s lack of PTP support. These results
illustrate the achievable performance when the PTP-unaware
network can be dedicated exclusively to PTP traffic.

The results in Fig. 10 are based on optimized parameters
set for each algorithm. Fig. 11 illustrates specifically the
optimization of the observation window length N used by
the algorithms from Section IV-A and LS, including the
sample-mode approach, which was omitted in Fig. 10. More
precisely, Fig. 11 shows the global max|TE| achieved by each
algorithm for varying power-of-two window lengths ranging
from N = 4 to N = 65536.
In the absence of strong PDV (i.e., without BG traffic),

the max|TE| performance as a function of the window length
often presents a convex shape. That is, it is helpful to increase
the observation window up to a certain point. After that,
longer windows do not bring performance improvements and
can even degrade performance. This convex shape is more
visible for LS, given that, as discussed in Section IV-B, the
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FIGURE 11. max|TE| performance according to the observation window length on the scenario without BG traffic and with four network hops.

LS estimator requires observation windows where the fre-
quency offset remains constant. Once the observationwindow
becomes too large, this requirement starts to fail, and the
resulting performance degrades. Furthermore, note that this
turning point occurs for a shorter window length when using
the XO, due to the worse frequency stability.

An essential benefit of the drift compensation scheme in
(23) is that it enables long observation windows. Fig. 11
shows that the algorithms using this equation (sample-min,
max, average, median, and mode) tolerate longer windows
than LS. After a certain length covering enough of the delay
statistics, they tend to reach a plateau, but the performance
does not degrade significantly as the window grows further.
This property holds as long as the drift estimates from (46)
do not accumulate significant error over the windows.

B. PTP UNDER CBR BG TRAFFIC
Next, we evaluate the synchronization performance under
the in-line CBR BG traffic described in Section VI-C. More
specifically, we configure the CBR BG traffic with a packet
inter-departure interval of 4.16 µs and each BG packet with
236 bytes at layer-1 (including all the Ethernet framing
bytes). Thus, each BG frame has a transmission delay τbg of
1.888 µs over GbE. When serving two slaves, the two BG

frames sent per period occupy 3.97 µs of the inter-departure
interval (including 96 ns inter-packet gaps). Hence, the idle
interval illustrated in Fig. 8 is roughly 0.2 µs.
Moreover, with two BG packets every 4.16 µs (one to or

from each slave), the total network utilization is around 95%.
Hence, the evaluation that follows illustrates the synchro-
nization performance under very high BG utilization, with
background traffic composed of relatively short packets. The
CBR BG traffic parameters are summarized in Table 6.

TABLE 6. In-line CBR BG traffic parameters.

1) PTP DELAY ANALYSIS
In this scenario, we can anticipate the worst-case PTP delays
using (52) and (53). For simplicity, we can assume a constant
processing delay per hop of γ [j, n] = 3.3 µs and a constant
hardware latency per hop of βms[j] = βsm[j] = 300 ns
(see, e.g., [23]). Using these assumptions, the ZG m-to-s and
s-to-m become as summarized in Table 7.
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TABLE 7. Expected worst-case (zero-gap) m-to-s and s-to-m one-way PTP
delays under in-line CBR BG traffic from one to four hops.

Fig. 12 shows the actual delay distributions observed
within testbed acquisitions with in-line CBR BG traffic.
Compared to Fig. 9, the PDV is substantially higher in Fig. 12.
Among all acquisitions, the average SD and support in the
m-to-s direction are 518 ns and 1961 ns, respectively. As dis-
cussed in Section VI-D, the delay variations in this direction
include the BG-PTP gap fluctuations (within the idle interval
of 0.2 µ s) and the last-hop delay fluctuation of 1.25 µs
(i.e., τbg − τptp). Furthermore, the PDV includes the inherent
processing delay variations, which, from Section VII-A, are
expected to span up to 700 ns. These three fluctuation com-
ponents totalize to 2.15 µs. Hence, the observed m-to-s delay
variation is within the expected range. Meanwhile, the s-to-m
delays present SDs ranging from 495 ns to 738 ns and average
support of 2.78 µs. These figures also closely follow the
expectations from Section VI-D.

FIGURE 12. PTP one-way delay distributions under in-line CBR BG traffic.

Nevertheless, it must be emphasized that the distributions
in Fig. 12 are not accurately repeatable. Instead, they are
illustrative realizations. The distributions vary per experiment
due to the asynchronous timing relationship between the PTP
and BG packet departures, manifested in two forms. The
first is intra-FPGA and refers to the interval between PTP
packets and the preceding BG packets generated by the same
FPGA, namely the BG-PTP gap discussed in Section VI-D.
The second asynchronous relationship is inter-FPGA and
refers to the relative departure time difference between the
PTP packets of one FPGA and the BG packets of the other.

Both PTP and BG streams consist of periodic packets
accurately generated by the FPGAs. In the given experiment,
with the BG packet departure periodicity of 4.16µs, the slave

clocks send and receive nominally 1875 BG packets in the
course of a PTP exchange interval (of 7.8125 ms). However,
the two streams operate in different clock domains that can
drift over time relative to each other, such that the BG-PTP
timing relationship changes over time. Moreover, the streams
are not enabled simultaneously on the same device and nei-
ther among the group of FPGAs, which yields a random initial
timing relationship between them.

For example, in the s-to-m direction, the initial timing rela-
tionship between the PTP packets of one slave clock and the
BG packets of the other slave determines the initial amount
of contention-induced queuing delays experienced by PTP
packets on the aggregation node (see Section VI-D). When
the clock domains governing the packet generation logic do
not drift significantly over time (typically the case, especially
with the OCXO), this initial timing relationship tends to
last throughout the experiment. As a result, we observe a
more frequent amount of contention determining the peak
of the s-to-m delay distributions, but which varies among
experiments. Meanwhile, in the m-to-s direction, the instant
when BG and PTP packets turn on influences the likelihood
of PTP packets departing after a unicast BG packet addressed
to slave clock 1 or slave 2. As such, it determines whether
the PTP packet experiences an extra queuing delay in the last
hop, as discussed in Section VI-D. With all of these effects,
the distributions in Fig. 12 are not repeatable.
On the other hand, we can observe repeatable patterns in

Fig. 12. Firstly, the m-to-s delays are typically bimodal due
to the last-hop delay fluctuation explained in Section VI-D.
Secondly, in the s-to-m direction, all plots present a specific
amount of contention that is significantly more frequent,
which determines the peak of the distribution. Moreover, all
worst-case delays approach the values predicted in Table 7.

2) SYNCHRONIZATION PERFORMANCE
Next, we evaluate the max|TE| performance achieved under
the given delay distributions. Unlike in Section VII-A,
we avoid drawing a direct comparison between the exper-
iments with the XO and the OCXO. It would be unfair to
compare them directly due to the different delay distributions
between their realizations (show in Fig. 12).

In both experiments discussed in the sequel (with the
XO and OCXO), we adopt the maximum operator in (47)
to obtain drift estimates. We have verified that this choice
leads to better drift estimation performance, given that
maximally-delayed m-to-s packets are more likely than
minimally-delayed in these experiments. This probability dif-
ference is noticeable in the m-to-s delays shown in Fig. 13.
Note there are a few low realizations close to 19.75 µs,
whereas the realizations close to the maximum are very
frequent.

Fig. 14 shows the max|TE| results with the XO over four
hops. For clarity, it omits the raw time offset measurements
from (6), whose max|TE| is mostly above 1200 ns. Similar to
previous results, the static delay asymmetry is the predomi-
nant error component in Fig. 14a (without bias correction).
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FIGURE 13. m-to-s PTP packet delays and the corresponding PDF on the
experiment with CBR BG traffic over 4 hops using the OCXO.

According to Table 8, the least asymmetric delay metric in
this experiment is observed between the minimum m-to-s
and s-to-m delays. Hence, the sample-minimum approach
achieves the best max|TE| performance in Fig. 14a. Fur-
thermore, the max|TE| curves are reasonably close to their
corresponding static asymmetries in Table 8 (their absolute
values). That is, LS, KF, and sample-average approach the
average asymmetry, sample-maximum is near the maximum
asymmetry, and so on. These results imply that the estimators
are effectively producing low-variance estimates.

TABLE 8. Static delay asymmetry over four hops with CBR BG traffic on
the acquisitions with the XO and the OCXO.

In this experiment, the maximum collision between
the s-to-m packets was mostly stable over 45 min, aside
from around minute 15 of the experiment, where the
collision-induced queuing delays increased by roughly 350 ns,
as shown in Fig. 15. Correspondingly, at this point, the asym-
metry changed by roughly −175 ns. Hence, in reality, the
maximum asymmetry was around −576 ns most of the time,
whereas Table 8 shows the global asymmetries.

In Fig. 14a, it is noteworthy also that the sample-mode
produces more reasonable results than in the absence of BG
traffic, although still with large fluctuations. The reason is
that the delay distributions (top right corner in Fig. 12) present
prominent peaks that are beneficial for sample-mode’s oper-
ation. Furthermore, note that in this experiment there is
no significant advantage to using the model-based LS and
KF approaches. The sample-minimum outperformed them
because it experienced lower asymmetry.

Next, Fig. 14b shows the results with bias correction
based on the values in Table 8. Even with bias correction,
the sample-minimum approach still yields one of the best

FIGURE 14. max|TE| results with CBR BG traffic over 4 hops using the XO.

FIGURE 15. s-to-m PTP packet delays and the corresponding PDF on the
experiment with the XO over four hops.

results. The rationale is that this estimator reduces the vari-
ance very well. The s-to-m delays shown in Fig. 15 present
a stable minimum over the acquisition. Hence, as long as
the observation window lengths are long enough to capture
the moments when the s-to-m collisions are lower (which
happens almost periodically due to the packet generation tim-
ing), the sample-minimum filtering can clean up the variance
successfully.

VOLUME 9, 2021 20595



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

In this experiment, a window of 64 seconds consistently
covers the nearly periodic low values of s-to-m delays. This
is confirmed in Fig. 16, which shows the global max|TE|
of each algorithm for varying window lengths. Note that,
once the window length becomes 213 samples (i.e., 64 secs),
the sample-minimum performance improves significantly.
Furthermore, as the window increases to cover multiple peri-
ods of the delays in Fig. 15, the performance improves further.

FIGURE 16. max|TE| performance for varying observation window lengths
under CBR BG traffic with four network hops using the XO.

In Fig. 14b, the sample-minimum’s max|TE| remains
mostly around 40 ns with a peak of 80 ns. This accuracy
is comparable to the one achieved without BG traffic, as
demonstrated in Fig. 10c. Moreover, the sample-maximum
strategy has the potential to perform similarly to the sample-
minimum, given that the maximum delays are also stable
over the experiment, as noticeable in Fig. 15. However, our
bias correction module corrects the bias based on the global
asymmetry in Table 8, which deviated from the most fre-
quent asymmetry due to the abnormally high collision around
minute 15. In a more advanced bias correction implementa-
tion, this problem could be avoided, e.g., by detecting and
ignoring delay outliers.

Next, Fig. 17 shows the max|TE| results in the experiment
with the OCXO over four hops while omitting the raw time
offset measurements in Fig. 17b for better visibility. In this

FIGURE 17. max|TE| results with CBR BG traffic over 4 hops using
the OCXO.

experiment, the s-to-m delays (bottom right corner in Fig. 12)
experience peak collisions close to the worst-case delays pre-
dicted by (53). Correspondingly, the static delay asymmetries
(summarized in Table 8) are relatively high, given that they
include the average queuing delays.

Among the asymmetries in Table 8, the minimum metric
is again the least asymmetric. Correspondingly, the sample-
minimum filtering achieves the best max|TE| performance
in Fig. 17a (without bias correction). Furthermore, some
max|TE| curves in Fig. 17 aremore stable around a fixed value
than in Fig 14. For example, the sample-maximum curve
is almost constant both with and without bias correction.
The reason stems from the stability of the delays in this
acquisition. With the OCXO, the timing relationship between
PTP and BG packets generated by the FPGAs and their
corresponding contention patterns become more stable. As a
result, the s-to-m delays (shown in Fig. 18) do not include any
outliers and nearly periodically vary over the same levels.

With such a consistent delay pattern with frequent min-
imum and maximum values, both the sample-minimum
and sample-maximum strategies produce very low-variance
estimates. Hence, the max|TE| is again primarily determined
by the biases. Furthermore, because the contention-free
m-to-s delays (shown in Fig. 13) are also very stable, the drift
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FIGURE 18. s-to-m PTP packet delays and the corresponding PDF on the
experiment with CBR BG traffic over 4 hops using the OCXO.

estimations using (46) and (47) perform very well. Con-
sequently, the drift-compensation step in (23) allows large
observation windows for packet filtering.

With all these effects combined, the algorithms achieve
excellent max|TE| with bias correction in Fig. 17b. In par-
ticular, the sample-maximum strategy remains consistently
below a remarkably low max|TE| of 20 ns, and the
sample-minimum performs similarly with slightly worse
peak max|TE|. This performance is roughly 60 times better
than the max|TE| derived from the bias-corrected version of
the raw time offset measurements from (6). Also, these accu-
racy levels are close to the ones achieved without BG traffic
(shown in Fig. 10d).

In Fig. 17, there was no significant advantage in using
the model-based LS and KF strategies. In this particular
case, KF does approach the best performance marks, but not
consistently throughout the experiment. The intuition is that,
in this case, the LS and KF approaches provide less effective
mechanisms to overcome the PDV.

Lastly, Fig. 19 shows the global max|TE| for varying
window lengths in the scenario of Fig. 17b, i.e., with bias
correction. Similarly to the experiment with the XO, this
plot reveals that a window length of at least 213 samples (or
64 seconds) is necessary to cover the delay statistics, espe-
cially the full excursion of the nearly periodic s-to-m delays.
This 64-second window was optimal for sample-maximum,
whereas the sample-minimum, sample-median, and sample-
average estimators performed best with the longest evaluated
window of 512 seconds. Besides, note that, unlike in the
results without BG traffic (Fig. 11) and the results of [18], the
LS performance is not a predictable convex-shaped curve as a
function of the window length. The PDV alters this behavior
in a way that is hard to anticipate. The same holds in Fig. 16,
in the experiment with the XO.

C. PTP UNDER VBR BG TRAFFIC
Finally, we analyze the performance under the VBR BG
cross-traffic described in Section VI-C. In this experiment,

FIGURE 19. max|TE| performance for varying window lengths under CBR
BG traffic, with four network hops, using the OCXO, and with bias
correction.

we generate each VBR stream with a peak rate of 75 Mbps
so that each VBR traffic host generates and consumes up to
150 Mbps concurrently. Overall, this leads to a cross-traffic
utilization below 10% over the links shared with PTP traffic,
where each link transports up to 75 Mbps bidirectional BG
traffic. Hence, this evaluation focuses on the PTP perfor-
mance under a PTP-unaware network with light cross-traffic
load. Meanwhile, for brevity, other cross-traffic scenarios
with heavier utilization are left for future investigations.
Moreover, we restrict our analysis to a single acquisition
using the OCXO and with bias correction.

With cross-traffic, both the m-to-s and s-to-m delays can
experience contention. Fig 20 shows the m-to-s delays and
their corresponding cumulative distribution function (CDF).
Compared to the previous experiments with in-line BG
traffic, Fig 20 shows significantly higher delays, primar-
ily from the collisions between PTP packets and the large
BG (1518 bytes) packets that compose Network Traffic
Model 2 [57]. Nevertheless, due to the light network
load, the vast majority of the delays are concentrated at
low values, as confirmed by the CDF. The same holds
in the s-to-m direction, which presents a similar delay
distribution. Hence, similar to the scenarios discussed
in [19], one can expect that the sample-minimum filtering
succeeds in this scenario. Based on this expectation, we adopt
the minimum operator in (47) to obtain time offset drift
estimates in this experiment.

Fig. 21 shows the max|TE| performance in this scenario,
including bias correction. For better visualization, it omits the
sample-maximum curves, which performs poorly (max|TE|
up to nearly 5 µs) due to the sporadic delay peaks that are
evident in Fig. 20. It also omits the sample-mode, whose
max|TE| peaks at nearly 375 ns. Furthermore, it omits the raw
measurements from (6), which peaked at 15 µs. Note that
the sample-minimum and sample-median strategies present
excellent performances, both consistently under a max|TE|
of 20 ns. The sample-average follows closely because most
delay realizations consist of low values, as indicated by the
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FIGURE 20. m-to-s PTP delays and the corresponding CDF on the
experiment with VBR BG traffic.

FIGURE 21. max|TE| results with VBR BG traffic over 4 hops using
the OCXO.

FIGURE 22. max|TE| performance for varying window lengths under VBR
BG traffic, with four network hops, using the OCXO, and with bias
correction.

CDF in Fig. 20. For the same reason, the LS and KF strategies
perform reasonably well, although slightly worse than the
other algorithms in Fig. 21.

As in previous experiments, the results in Fig. 21 are
based on optimized configurations defined by PTP-DAL. For
instance, Fig 22 shows the global max|TE| as a function
of the observation window length in this experiment. Note
that most algorithms favor relatively long observation win-
dows. More specifically, all algorithms perform better with
windows between 214 and 216 samples, i.e., between 128
and 512 seconds. Besides, even though PTP-DAL optimizes
the window lengths independently for each dataset, we have
observed similar window tuning results by replicating this
experiment under the same conditions. The rationale is that
the PTP delay distributions observed with VBR cross-traffic
are reasonably repeatable from experiment to experiment.

VIII. CONCLUSION
As network-based clock synchronization becomes increas-
ingly pervasive in numerous modern technology domains,
it is often attractive to deploy PTP synchronization over
timing-unaware networks. Nevertheless, such networks com-
monly present a harsh and less understood environment for
synchronization performance. Thus, current high accuracy
applications typically require timing-aware networks.

In this work, we aimed to expand the frontier of under-
standing regarding PTP-based synchronization algorithms for
timing-unaware networks. We presented an in-depth survey
and analysis of two main classes of algorithms: packet fil-
tering strategies that rely on observation windows with con-
stant time offset and estimators that incorporate the oscillator
model (LS and KF). We proposed a window-based filtering
formulation involving time offset drift compensation before
the operators applied on each observation window and dis-
cussed themain aspects of the chosen LS andKF formulation.
We also described relevant frequency offset estimation strate-
gies and, in particular, how the frequency offset estimates are
used to compensate the time offset drift within the filtered
observation windows.

Subsequently, we described the FPGA-based testbed and
the open-source PTP-DAL software developed in-house for
reproducible experiments. For instance, we highlighted how
the time offset drift estimation, bias correction, and time
offset estimation modules are arranged on PTP-DAL’s pro-
cessing architecture. In terms of hardware, we highlighted the
design choices adopted to enable the acquisition of timestamp
datasets containing truth metrics (i.e., labels), such as the
dual-RTC architecture implemented on the slave clocks.

More importantly, this work presented a reliable compar-
ison of synchronization algorithms under varying BG traffic
and oscillator stability scenarios. Unlike the vast majority of
the related literature, this work’s comparison was based on
timestamps acquired from real hardware, with real oscillators
and networking conditions. Furthermore, the experiments
showed delay distributions significantly distinct to the theo-
retical distributions considered and simulated in other works.

In the experimental section, this work demonstrated the
importance of the observation window length used in many
synchronization algorithms. In each experiment, we analyzed
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the performance over varying window lengths and showed
that the best performing windows were mostly in the order of
a few minutes. In cases with periodic delay patterns, it was
critical to use windows large enough to cover the full delay
periodicity. In this context, the drift compensation processing
proposed for window-based algorithms was essential to allow
their operation with long windows. Furthermore, it was crit-
ical to estimate the time offset drifts accurately despite the
intense PDV-induced noise.

The experiments also highlighted that the delay asymme-
try commonly represents the predominant source of time
synchronization error when the estimators are well-tuned to
produce low-variance estimates. In some cases, this asymme-
try was dominated by the queue-induced asymmetry, which
can be overcome by strategies beyond this work’s scope.
In other cases, it was mainly composed of static hardware
asymmetries, which can be calibrated, for example, in the
discussed APTS scenario. Ultimately, we showed that, when
the bias induced by the delay asymmetry is appropriately
corrected, there are often one or more estimators that produce
high-quality time offset estimates.

Some experiments showed exceptional performance levels.
For example, on a 45 min experiment using an OCXO on the
slave clock on a network with 95% in-line BG traffic load,
the sample-maximum algorithm could maintain the max|TE|
below 20 ns. In another scenario with light cross-traffic
load, the sample-minimum and sample-median algorithms
achieved similar performance levels. Both experiments suc-
ceeded in approaching the performance demonstrated in a
scenario without BG traffic, i.e., with a timing-unaware net-
work dedicated to PTP traffic.

In the experiments without bias correction, the best-
performing algorithms were the ones experiencing lower
static delay asymmetry. Furthermore, in all experiments with
significant PDV due to BG traffic, there was no significant
advantage to using the LS and KF estimators incorporat-
ing the oscillator model. Instead, the window-based filtering
strategies such as sample-minimum and sample-maximum
were more effective in overcoming the PDV noise. Finally,
the results achieved with the OCXO were generally superior
to the results achieved with the XO, as expected.

Future works shall explore schemes for parameter tuning
on practical scenarios where the slave does not know the
residual time synchronization error resulting from each algo-
rithm configuration. In scenarios where PTP is a secondary
timing source, one can explore schemes to tune and select
the more appropriate PTP synchronization algorithms when
the primary timing source is active. Moreover, future works
shall explore the labeled datasets discussed in this work to
analyze other algorithms, such asmachine learning strategies,
as well as more advanced combinations of the investigated
algorithms. Besides, other topics to be addressed in future
works include the comparison of algorithms in terms of com-
putational cost and investigations regarding the performance
levels achieved under other varieties of network topologies
and packet delay characteristics.
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