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ABSTRACT In this paper, a high-accurate technique with non-uniform grids is introduced into a system-
combined alternative-direction-implicit finite-difference time-domain (SC-ADI-FDTD) algorithm, and then
successfully used to analyze electromagnetic propagations. To our knowledge, the conventional FDTD
with non-uniform grids can be effectively deal with some edges of the three-dimensional cubes and
complicated structures of the tiny objects by modulating the local grid scales, which to the extent improves
its reliability and accuracy. However, due to existing the finer grids in the local computational region
and the inevitable Courant-Friedrichs-Lewy (CFL) limit in the conventional FDTD, the temporal interval
must be determined by the minimum fine spatial grid, resulting in much larger temporal sampling density
required during the whole computation process. As the advantage of circumventing the repeated variables,
the non-uniform SC-ADI-FDTD (NUSC-ADI-FDTD) cannot only break through the CFL limit to implement
the high-efficient computation, but also further save more CPU time in the local microstructure cases.
Furthermore, the empirical formula between the spatial sampling density and the CFL factors can be obtained
from the numerical fitting method after errors analysis. The numerical simulations of the electromagnetic
scattering have been executed to illustrate feasibility and validity of our proposed method.

INDEX TERMS Courant-Friedrichs-Lewy (CFL) limit, electromagnetic propagations, local microstructure
problems, non-uniform SC-ADI-FDTD (NUSC-ADI-FDTD).

I. INTRODUCTION
Nowadays, many numerical methods in the modern electro-
magnetic theory have been developed by human wisdom to
gradually replace experimental measurements with numerical
simulations so that some unnecessary costs from the expen-
sive devices and equipments can be substantially circum-
vented during the repetitive experiment. However, under the
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circumstance of keeping the enough satisfactory numerical
accuracy, we must mainly concentrate on how to improve
the computational efficiency to the extent, which has become
the focus and difficult point of electromagnetic numerical
methods.

Generally speaking, the FDTD method [1], [2] can be
effective in solving electromagnetic problems in recent years,
for example, the near-field acquisition [3], and the research of
Bloch-Floquet periodic boundary [4] et al. On the other hand,
the non-uniform technique [5], [6] is effectively developed
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to decrease the inevitable numerical errors from the three-
dimensional (3D) modeling during the conventional FDTD
method, therefore, the higher numerical accuracy can be
obtained for the grid initialization by applying the non-
uniform FDTD (NU-FDTD) method. In 1996, Navarro et al.
[7] firstly made use of the NU-FDTD method for analyz-
ing waveguide structure and perfectly matched layer (PML).
Afterward, Shen et al. [8] utilized the NU-FDTD method
for the efficient analysis of propagation characteristics of
optical-fiber waveguides in the cylindrical coordinate sys-
tem. Meanwhile, Yu and Mittra [9], [10] came up with an
optimal method of the NU-FDTD method to process the
coaxial discontinuity structure. Li et al. [11] also designed a
microstrip structure with the effective PML truncation via the
3D NU-FDTD. In 2002, Zhang et al. [12] successfully ana-
lyzed and studied quasi-network characteristics through the
NU-FDTD method. In 2010, both Li and Hu [13] employed
the NU-FDTD to observe and study the magneto-plasma
antenna. In 2015, compared with the conventional FDTD
under the fine and coarse grids, Elsherbeni and Demir [14]
adopt 3D non-uniform grids to work for the patch antenna and
low-pass filter. In fact, the unstructured meshes are discussed
in other numerical methods such as discontinuous Galerkin
time-domain method [15], which have the higher advantage
in object subdivision. However, the non-uniform grids show
more convenience in geometry modeling.

To the best of our knowledge, the iteration in the conven-
tional FDTD is constrained by the Courant-Friedrichs-Lewy
(CFL) condition. Although the non-uniform technique is
adopted to increase grid densities for the local regions so that
the numerical accuracy can be enhanced, the computational
efficiencies for a fine-grid region in the NU-FDTD method
are not dramatically improved due to the upper CFL limit
and the smaller time interval leads to obvious deterioration.
Consequently, in order to further raise efficiency, we are quite
necessary to develop a corresponding and reliable method for
conquering the CFL limit with the larger time interval, when
encountering more complicated research problems.

Fortunately, to overcome the CFL limit, Namiki [16]
proposed the alternating-direction-implicit (ADI) scheme
applied into the FDTD method firstly in 1999. About the
same time, Zheng et al. [17], [18] further developed the
ADI-FDTD method for the 3D electromagnetic simulations.
Lee and Fornberg [19] adopted the extremely high spatial
density to show the error curves for some unconditionally
stable time stepping methods. To effectively solve the 3D
cavity resonance problem, Sun and Choi [20] introduced
the non-uniform technique into the ADI-FDTD method. The
leapfrog ADI-FDTD [21] in 3D cases are proposed in the
different research fields such as dispersive media [22] and
domain decomposition [23]. The unconditionally stable algo-
rithm also involves Crank-Nicolson FDTD [24], locally one-
dimensional FDTD [25],Multiple 1-DADI-FDTD [26], [27],
and so on. In recent years, several new developments step
into the ADI-FDTD method. In 2019, Zheng et al. [28] pro-
posed the conformal ADI-FDTDmethod applied for tackling

with the wide-band modeling on-chip spiral inductors, and
Chen et al. [29] presented the ADI-FDTD algorithm for sim-
ulating graphene-based frequency-selective surface in the ter-
ahertz frequency. At the same time, Feng et al. [30] developed
the system-combined ADI-FDTD (SC-ADI-FDTD) applied
to microwave technique and antenna design, which can avoid
the repeated computation of the conventional ADI-FDTD
method by the signal chart. In this paper, we are going to
introduce the non-uniform grids into the SC-ADI-FDTD used
for analyzing the local micro-structure scattering. The main
contributions of this work are:

(a) The non-uniform SC-ADI-FDTD (NUSC-ADI-FDTD)
is used to overcome the CFL limit, and obtain the similar
computational efficiency when CFL factor equals to about
1.50 as the conventional NU-FDTD method;

(b) Under the circumstance of keeping the satisfactory
accuracy, the proper CFL factor can be given by the empirical
formula and the proposed NUSC-ADI-FDTD method can be
used to effectively solve the 3D electromagnetic propagation
of the local micro-structure objects.

The organization of this paper is as follow. In section II,
we introduce the initialization and formula of non-uniform
grids between the fine grids and coarse grids. The iteration
of the NUSC-ADI-FDTD method is shown in section III.
In section IV, compared with the conventional NU-FDTD
method, we solve three numerical simulations of the 3D elec-
tromagnetic scattering by the NUSC-ADI-FDTD, and record
those CPU time to verify our proposed method. Finally, we
will draw the conclusion in section V.

II. INITIALIZATION AND FORMULA OF NON-UNIFORM
GRIDS
How to initialize the grid scale in the conventional FDTD
method is an important and necessary balance between the
computational time and the specific numerical accuracy. It
is well known that the homogeneous meshing by utilizing
the fine grids can be adopted to construct the geometry more
accurately. When facing the spatial meshing in the 3D cases,
the computational time will be increased by 16 times, if
the grid scale is reduced to the half. Unfortunately, for the
local micro-structure electromagnetic problem, on the one
hand, a higher-density meshing cannot be avoided in the tiny
geometry or the small two-object’s distance. On the other
hand, a large number of grids are inevitably occurred for the
larger single-material region or the longer distance between
some objects so that the computer memory will be always
wasted. Therefore, under the situation of enhancing the com-
putational efficiency and reducing the computer memory, the
non-uniform grids are an excellent way to solve a local small-
scale problem due to the fact that the different grid units
in size can be applied in the different regions. As shown in
Fig. 1, the non-uniform grids are the key to build the bridge
between coarse and fine grids corresponding to large and
small region.

In the first time, the coarse grids are the initialization as a
background cell for the NU-FDTD method, whereas the fine
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FIGURE 1. The diagram of non-uniform grids between the coarse and fine
grids.

grids are only necessary to build for the microscale region.
In fact, to avoid the numerical mutation from the geometry
modeling, we employ the gradually smoothing processing
to implement the non-uniform grids between coarse and
fine grids. The scale 1wmax and 1wmin represents respec-
tively the grids interval for the coarse and fine region. In
non-uniform grids, the interval between every node can be
directly defined below

1wnu,t = L t1wmin (1)

where t is the number in the non-uniform grid area and L
is the base number for the exponential change. 1wmin and
1wmax are respectively denoted as the size of the fine grid
when t = 0 and the coarse grid when t = N + 1, and1wnu,t
represents the different-grid size for t = 1, 2, . . . ,N . Hence,
the whole length L0 in the non-uniform grid region satisfies
below

L0 =
N∑
t=1

L t1wmin (2)

Applying the geometric progression, we can obtain

1wmin + L0 +1wmax =
1wmin − L1wmax

1− L
(3)

From the equation (3), the base number L is the same to
achieve the exponential change, expressed as

L =
L0 +1wmax

L0 +1wmin
(4)

Incorporate the equation (4) into the equation (2), the
whole grid number N can be determined in the non-uniform
region

N =
ln1wmax − ln1wmin

lnL0
− 1 (5)

According to the above node distribution, we can build the
corresponding discretization for all the geometries in the 3D
Cartesian coordinate can be confirmed.

III. ITERATIVE FORMULAS OF NUSC-ADI-FDTD METHOD
Referring to [30], we have understood the high efficiency
of the SC-ADI-FDTD method and further summarize those
iterative formulas with the intermediate vectors TH1 and TH2
which can avoid the repeated computation for the conven-
tional ADI-FDTD. The two procedure of the SC-ADI-FDTD
method can be given as follow

First procedure:

T
n− 1

4
H1 = CHHHn− 1

4 + T
n− 1

4
H2 (6)

81En+
1
2 = CEEEn + T

n− 1
4

H1 − CEHBHn− 1
4 (7)

T
n+ 1

4
H2 = CHEBEn+

1
2 (8)

Hn+ 1
4 = T

n− 1
4

H1 + T
n+ 1

4
H2 (9)

Second procedure:

T
n+ 1

4
H1 = CHHHn+ 1

4 + T
n+ 1

4
H2 (10)

82En+1 = CEEEn+
1
2 + CEHAHn+ 1

4 − CEHBT
n+ 1

4
H1 (11)

T
n+ 3

4
H2 = −CHEAEn+1 (12)

Hn+ 3
4 = T

n+ 1
4

H1 + T
n+ 3

4
H2 (13)

where the vectors E and H are respectively the electric and
magnetic fields. The matrices 81 = I − CEHACHEB and
82 = I − CEHBCHEA are the unconditionally stable terms
for implementing the iteration of electric fields. The symbols
TH1 and TH2 are the prestore vectors for the SC-ADI-FDTD
method. The general matrices from the conventional FDTD
modeling can be easily defined below

CHH = CHE (µ1t−1 − 0.5σm) (14)

CHEA = CHEA (15)

CHEB = CHEB (16)

CEE = CEH (ε1t−1 − 0.5σ e) (17)

CEHA = CEHA (18)

CEHB = CEHB (19)

where both the matrices CHE and CEH are respectively

CHE = (µ1t−1 + 0.5σm)−1

CEH = (ε1t−1 + 0.5σ e)−1

and the differential matrices A and B are separated from the
curl operation, shown as

A =

 0 0 ∂y
∂z 0 0
0 ∂x 0

 , B =

 0 ∂z 0
0 0 ∂x
∂y 0 0

 .
It can be found that 81 and 82 present the tri-diagonal

matrices in the electromagnetic problem with the whole
isotropic media, which can be solved by the chasing method
to obtain the vectors En+

1
2 and En+1. Next, with the non-

uniform grids [1x(i),1y(j),1z(k)] in the 3D case, the pseudo
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codes of the NUSC-ADI-FDTD method in nth timestep can
be expressed in the y direction as follow:

First procedure:

TH1,y
∣∣n− 1

4

i+ 1
2 ,j,k+

1
2

= CHH |i+ 1
2 ,j,k+

1
2
Hy
∣∣n− 1

4

i+ 1
2 ,j,k+

1
2
+ TH2,y

∣∣n− 1
4

i+ 1
2 ,j,k+

1
2

(20)

d1y
∣∣n+ 1

2

i,j+ 1
2 ,k

= CEE |i,j+ 1
2 ,k

Ey
∣∣n
i,j+ 1

2 ,k

+ CEH |i,j+ 1
2 ,k

TH1,x
∣∣n− 1

4

i,j+ 1
2 ,k+

1
2
− TH1,x

∣∣n− 1
4

i,j+ 1
2 ,k−

1
2

1z(k)

− CEH |i,j+ 1
2 ,k

Hz|
n− 1

4

i+ 1
2 ,j+

1
2 ,k
− Hz|

n− 1
4

i− 1
2 ,j+

1
2 ,k

1x(i)
(21)

a1y
∣∣
i,j+ 1

2 ,k
Ey
∣∣n+ 1

2

i,j+ 1
2 ,k+1

+ b1y
∣∣
i,j+ 1

2 ,k
Ey
∣∣n+ 1

2

i,j+ 1
2 ,k

+ c1y
∣∣
i,j+ 1

2 ,k
Ey
∣∣n+ 1

2

i,j+ 1
2 ,k−1

= d1y
∣∣n+ 1

2

i,j+ 1
2 ,k

(22)

TH2,y
∣∣n+ 1

4

i+ 1
2 ,j,k+

1
2

= CHE |i+ 1
2 ,j,k+

1
2

Ez|
n+ 1

2

i+1,j,k+ 1
2
− Ez|

n+ 1
2

i,j,k+ 1
2

1x(i)
(23)

Hy
∣∣n+ 1

4

i+ 1
2 ,j,k+

1
2

= TH1,y
∣∣n− 1

4

i+ 1
2 ,j,k+

1
2
+ TH2,y

∣∣n+ 1
4

i+ 1
2 ,j,k+

1
2

(24)

where the iterative coefficients in the left-hand side from the
equation (22) are shown as

a1y
∣∣
i,j+ 1

2 ,k

=

CEH |i,j+ 1
2 ,k

CHH |i+ 1
2 ,j,k+

1
2

[1z(k)]2

b1y
∣∣
i,j+ 1

2 ,k

= 1−
CEH |i,j+1

2 ,k
(CHH |i,j+ 1

2 ,k+
1
2
+CHH |i,j+ 1

2 ,k−
1
2
)

[1z(k)]2

c1y
∣∣
i,j+ 1

2 ,k

=

CEH |i,j+ 1
2 ,k

CHH |i,j+ 1
2 ,k−

1
2

[1z(k)]2

Second procedure:

TH1,y
∣∣n+ 1

4

i+ 1
2 ,j,k+

1
2

= CHH |i+1
2 ,j,k+

1
2
Hy
∣∣n+1

4

i+1
2 ,j,k+

1
2
+ TH2,y

∣∣n+1
4

i+1
2 ,j,k+

1
2

(25)

d2y
∣∣n+1
i,j+ 1

2 ,k

= CEE |i,j+ 1
2 ,k

Ey
∣∣n+ 1

2

i,j+ 1
2 ,k

+ CEH |i,j+ 1
2 ,k

Hx |
n+ 1

4

i,j+ 1
2 ,k+

1
2
− Hx |

n+ 1
4

i,j+ 1
2 ,k−

1
2

1z(k)

−CEH |i,j+ 1
2 ,k

TH1,z
∣∣n+ 1

4

i+ 1
2 ,j+

1
2 ,k
− TH1,z

∣∣n+ 1
4

i− 1
2 ,j+

1
2 ,k

1x(i)
(26)

a2y
∣∣
i,j+ 1

2 ,k
Ey
∣∣n+1
i+1,j+ 1

2 ,k
+ b2y

∣∣
i,j+ 1

2 ,k
Ey
∣∣n+1
i,j+ 1

2 ,k

+ c2y
∣∣
i,j+ 1

2 ,k
Ey
∣∣n+1
i−1,j+ 1

2 ,k
= d2y

∣∣n+1
i,j+ 1

2 ,k
(27)

TH2,y
∣∣n+ 3

4

i+ 1
2 ,j,k+

1
2

= − CHE |i+ 1
2 ,j,k+

1
2

Ex |
n+1
i+ 1

2 ,j,k+1
− Ex |

n+1
i+ 1

2 ,j,k

1z(k)
(28)

Hy
∣∣n+ 3

4

i+ 1
2 ,j,k+

1
2

= TH1,y
∣∣n+ 1

4

i+ 1
2 ,j,k+

1
2
+ TH2,y

∣∣n+ 3
4

i+ 1
2 ,j,k+

1
2

(29)

where the iterative coefficients in the left-hand side from the
equation (27) are expressed as

a2y
∣∣
i,j+ 1

2 ,k

=

CEH |i,j+ 1
2 ,k

CHH |i+ 1
2 ,j+

1
2 ,k

[1x(i)]2

b2y
∣∣
i,j+ 1

2 ,k

= 1−
CEH |i,j+ 1

2 ,k
(CHH |i+1

2 ,j+
1
2 ,k
+CHH |i− 1

2 ,j+
1
2 ,k

)

[1x(i)]2

c2y
∣∣
i,j+ 1

2 ,k

=

CEH |i,j+ 1
2 ,k

CHH |i− 1
2 ,j+

1
2 ,k

[1x(i)]2

In the similar way, we can obtain the other fields iteration of
the NUSC-ADI-FDTD method in x and z direction accord-
ing to those pseudo code. Therefore, in order to satisfy the
numerical accuracy of the NUSC-ADI-FDTD method, we
will introduce how to choose a proper CFL factor in the next
section.

IV. PROPER CFL FACTOR WITH EMPIRICAL FORMULA
It is well known that the numerical accuracy of FDTDmethod
is closely related with the temporal and spatial intervals.
When fixing the maximum frequency fmax in our required
region, the temporal and spatial sampling density can be
defined based on those intervals [1x(i), 1y(j), 1z(k), 1t]
from the FDTD initialization. The spatial sampling densityQs
refers to the number of points per wavelength (PPW), while
the temporal sampling density Qt represents the number of
points per period (PPP).

Qs,w(PPW) =
λmin

1wmax
=

c0
fmax1wmax

√
εr,maxµr,max

(30)

Qt (PPP) =
Tmin

1t
=

1
fmax1t

(31)
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FIGURE 2. The obliquely plane-wave incidence for the TF/SF boundary in
3D case.

TABLE 1. The distribution of temporal sampling density (PPP) in the
different spatial sampling density (PPW).

where the variables λmin, Tmin and c0 are respective the
minimum wavelength, the minimum period and the light
velocity in the air, and 1wmax is the maximum scale for
the spatial intervals [1x(i), 1y(j), 1z(k)]. With the specific
media, those parameters about the maximum relative permit-
tivity εr,max, the maximum relative permeability µr,max and
the light velocity v0,min need to be involved in the FDTD
initialization. Both the equations (30) and (31) are dominated
by the time-domain impulse from its maximum fmax.
In the NUSC-ADI-FDTD method, with the CFL factor s,

the temporal interval must satisfy

1t =
s
√
3c0

1wmin (32)

where 1wmin is defined as the minimum grid scale in the
non-uniform grids. To obtain the empirical formula about
the proper CFL factor s, we assume the same values 1w =
1wmin = 1wmax in the original SC-ADI-FDTD without the
non-uniform grids. Then we simplify the model only in the
air with the oblique plane-wave incidences as shown in Fig.2.
Referring to [2] and [3], the blue-line region covers the whole
simulation area, and the six faces of the red-line areas are the
total-field/scattering-field (TF/SF) boundary. The obliquely
plane-wave incidence propagates into TF/SF boundary from
its corner and we can intercept the time-domain results at the
observation point.

We adopt the 3D conventional FDTDmethod in CFL factor
s = 1 as the reference results and execute the SC-ADI-FDTD
method with these different CFL factor s = 1, 2, 4, 8, 16 and
32. As shown in the TABLE.1, those corresponding temporal

FIGURE 3. The electric fields Ey (0, 0, 0) in the frequency domain with the
different CFL factors: (a) the real number of Ey (0, 0, 0) in 75 PPW; (b) the
imaginary number of Ey (0, 0, 0) in 75 PPW; (c) the real number of
Ey (0, 0, 0) in 1200 PPW; (d) the imaginary number of Ey (0, 0, 0)
in 1200 PPW.

sampling density Qt (PPP) can obtained. It can found that
the temporal sampling density become smaller when the CFL
factor s changes into the large number so that the general
3D unconditionally FDTD methods have the inevitably large
errors after the computation. Therefore, we need to repeatedly
carry out those processes and apply the relative norm errorErr
in the frequency domain after the time-domain results shown
below

Err =

∥∥x− xref ∥∥∥∥xref ∥∥ (33)

where the vector x denotes the numerical set of those
SC-ADI-FDTD results and the vector xref represents the
reference set from the conventional FDTD.

Over the time marching, the waveform of the input electric
field is a Gaussian impulse with the incident angle θinc = 30◦

and ϕinc = 60◦. The electric y-component Ey in the Carte-
sian coordinate (0, 0, 0) can be recorded in every timestep
and transformed into the frequency domain. As shown in
Fig.3 (a)-(b), with the increasing of the CFL factors, those
numerical errors will be easily occurred when the spatial
sampling density is very small.

However, depicted in the Fig.3 (c)-(d), the numerical accu-
racy still can be improved once enough spatial sampling
density is given. Fortunately, compared with the conven-
tional FDTD method, we can obtain the relative norm errors
from the TABLE.2. Those errors executed from the 3D
SC-ADI-FDTDmethod also can be drawn in Fig.4. As shown
in TABLE.2 and Fig.4, under the different CFL factors, the
norm errors keep the 2nd convergence with the increasing of
the spatial sampling densities Qs (PPW).
In order to ensure that those corresponding relative norm

errors are controlled within about 1% from the TABLE 2, we
can set the empirical formula between the spatial sampling
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TABLE 2. The SC-ADI-FDTD norm errors with different CFL factor s in the
different spatial sampling density Qs (PPW).

FIGURE 4. The norm error curves of amplitude Ey (0, 0, 0) from the
SC-ADI-FDTD method in the frequency domain compared with the
conventional FDTD method in s = 0.5. The different spatial sampling
densities (PPW) are applied as the horizontal ordinate.

densities Qs (PPW) and the CFL factor s expressed below

s = A0QB0s (34)

After applying numerical fitting method by MATLAB
curve toolbox, the parameter set (A0, B0) is (0.4619, 0.5)
corresponding to the 1% norm errors, respectively. Therefore,
with these processes, we forecast the proper CFL factors
in the SC-ADI-FDTD method for the fine or non-uniform
grids in maximum spatial sampling densities. To verify this
empirical formula (34), we set the spatial sampling density
Qs = 2400 PPW and then can acquire the larger CFL factor
s = 22.62. After the SC-ADI-FDTD computation, the norm
error in this case is 0.0095 which satisfy the (34).

V. NUMERICAL EXPERIMENTS
A. SINGLE CUBE
To validate our proposed NUSC-ADI-FDTD method, we
employ the TF/SF boundary condition to add the obliquely
plane-wave incidence with the incident angle θinc = 45◦

and ϕinc = 30◦ and compute the electromagnetic scattering
for the single cube (160 mm × 160 mm × 160 mm) with
dielectric medium parameter εr = 16 and µr = 1. The single
cube is surrounded with the air box (360 mm × 360 mm ×
360 mm) as shown in the Fig.5(a).

The technique of the non-uniform grids are adopted which
are displayed in Fig.5(b) and we can keeps the same spa-
tial sampling density Qs = 30 PPW between the coarse
grids in air and the fine grids in the dielectric medium.

FIGURE 5. The model for the single dielectric cube: (a) the simulation
model with the oblique incidence and observation point (0, 0, 0), and the
gray and blue regions are respectively the air and the dielectric medium.;
(b) the initialized grids for the non-uniform modeling, and the fine grids
are built on the dielectric medium.

Based on the maximum frequency fmax = 1 GHz, we can
compute the spatial intervals 1wmax = 10 mm in the air
and 1wmin = 2.5 mm in the dielectric medium, respec-
tively. The grids numbers in three directions are respectively
(161 × 161 × 161) for the fine case and (107 × 107 × 107)
for the non-uniform situation. Therefore, we set L0 =
37.5mm for the non-uniform regions, and then the base num-
ber L and the grid number N can be obviously captured by
equations (4) and (5).

Here, we can capture the near-fields in the different
frequencies at the central position of the dielectric single
cubes. Shown in Fig.6, the near-fields data of Ex , Ey and
Ez are adopted among the NU-FDTD with s = 1 and the
NUSC-ADI-FDTD with s = 1, 2, smax (2.53). Those results
are in a good agreement even thoughwe choose themaximum
CFL factor smax. In addition, to further understand the accel-
erate effect about the NUSC-ADI-FDTD method, we record
the memory and CPU time in the TABLE 3 as below.

From the TABLE 3, it can be seen that the FDTD method
with non-uniform grids have the finite CFL factor s = 1
to limit discrete-time interval except for the SC-ADI-FDTD
method. In addition, to guarantee the numerical accuracy, we
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FIGURE 6. The captured frequency-domain fields at the single dielectric cube in the centre position; the real part: (a) real (Ex ), (b) real (Ey ),
(c) real (Ez ), and the imaginary part: (d) imag (Ex ), (e) imag (Ey ), (f) imag (Ez ).

FIGURE 7. The simulation model of the local microstructure with multiple
cubes.

TABLE 3. The computational situation among conventional NU-FDTD and
NUSC-ADI-FDTD method in the single dielectric cube.

apply the equation (34) and obtain the maximum CFL factor
for the NUSC-ADI-FDTD method for the globally-unified

FIGURE 8. The initialized non-uniform grids of the local microstructure
with multiple cubes based on the same spatial sampling densities.

spatial sampling densities Qs = 30 PPW. Compared with the
general NU-FDTD method, the NUSC-ADI-FDTD method
waste a little more memory, but it can dramatically save the
CPU time.

B. LOCAL MICROSTRUCTURE WITH MULTIPLE CUBES
When facing the multiple media and the lower maximum
frequency fmax in the electromagnetic scattering, the proposed
NUSC-ADI-FDTD method has more significant advantages
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FIGURE 9. The captured frequency-domain fields at the local microstructure with multiple cubes in the centre position; the real part: (a) real
(Ex ), (b) real (Ey ), (c) real (Ez ), and the imaginary part: (d) imag (Ex ), (e) imag (Ey ), (f) imag (Ez ).

TABLE 4. The central coordination of the eight cubes in simulation model.

as the larger spatial sampling densities in the non-uniform
model contribute to the greater CFL factor which can be
chosen by the empirical formula. To present this superior-
ity, we execute a local microstructure with multiple cubes
shown in Fig.7 with the incident angle θinc = 45◦ and
ϕinc = 30◦. The eight cubes are the same geometry
(20 mm × 20 mm × 20 mm) which are placed under the
rectangular coordinate system shown in the TABLE 4; and
those relative permittivity are respectively εr = 4.0 for No. ¬
and °, εr = 9.0 for No.  and ±, εr = 16.0 for No. ®
and ², εr = 25 for No. ¯ and ³. When considering the
maximum frequency fmax = 0.10GHz and the spatial interval
1wair = 10 mm in the air, we can obtain the globally spatial
sampling densities Qs = 300 PPW and ensure the maximum
CFL factor smax = 8.00 from the equation (34). Then, the
non-uniform grids for the modeling can be formed shown in
Fig.8.

In the modeling initialization, the numbers of the fine and
non-uniform grids are respectively (197 × 197 × 197) and
(92 × 92 × 92). To further verify the high efficiency of the
proposed NUSC-ADI-FDTD method, we select the CFL fac-
tors s = 1, 5, smax compared with conventional NU-FDTD

TABLE 5. The computational situation among conventional NU-FDTD and
NUSC-ADI-FDTD method in the local microstructure.

method. As shown in the Fig.9, it can be found that those
results in the near fields maintain the reasonable accuracy.
The computational situations are displayed in the TABLE 5
which introduce that the CPU Time can be obviously saved
by applying the proposed NUSC-ADI-FDTD method at the
CFL factor s = smax.

VI. CONCLUSION
In this paper, we propose the NUSC-ADI-FDTD method
for solving the 3D electromagnetic scattering. By mean of
the non-uniform grid initialization, we have successfully
implemented the transition procedure between the coarse
and fine grids. Making full application of the grids’ dis-
cretization, we can execute the electromagnetic iteration
of the NUSC-ADI-FDTD method. To further confirm the
numerical accuracy of the NUSC-ADI-FDTD method, we
can select the proper CFL factor by the empirical formula
so that the efficient and accurate computation can be effec-
tively guaranteed in the NUSC-ADI-FDTD method. Com-
pared with the conventional FDTD in the non-uniform grids
for the local micro-structure model, the computational effi-
ciency for the NUSC-ADI-FDTD method is much higher
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than the one for the NU-FDTD method due to overcoming
the finite CFL limit. More importantly in the near future,
the NUSC-ADI-FDTD method will pave the road for the
more complex local micro-structure model in the scattering
problem.
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