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ABSTRACT The nonlinear ion-acoustic waves (IAWs) in a space plasma are capable of exhibiting chaotic
dynamics which can be applied to cryptography. Dynamical properties of IAWs are examined using the direct
method in plasmas composed of positive and negative ions and nonextensive distributed electrons. Applying
the wave transformation, the governing equations are deduced into a dynamical system (DS). Supernonlinear
and nonlinear periodic IAWs are presented through phase plane analysis. The analytical periodic wave
solution for IAW is obtained. Under the influence of an external periodic force, the DS is transformed
to a perturbed system. The perturbed DS describes multistability property of IAWs with change of initial
conditions. The multistability behavior features coexisting trajectories such as, quasiperiodic, multiperiodic
and chaotic trajectories of the perturbed DS. The chaotic feature in the perturbed DS is supported by
Lyapunov exponents. This interesting behavior in the windows of chaotic dynamics is exploited to design
efficient encryption algorithm. First SHA-512 is used to compute the hash digest of the plain image which is
then used to update the initial seed of the chaotic IAWs system. Note that SHA-512 uses one-way function to
map input data to the output, consequently it is quite impossible to break the proposed encryption technique.
Second DNA coding is used to confuse and diffuse the DNA version of the plain image. The diffused image
follows DNA decoding process leading to the cipher image. The security performance is evaluated using
some well-known metrics and results indicate that the proposed cryptosystem can resist most of existing
cryptanalysis techniques. In addition complexity analysis shows the possibility of practical implementation
of the proposed algorithm.

INDEX TERMS Chaos, image encryption, ion-acoustic wave, multistability, periodic wave, superperiodic
wave.

I. INTRODUCTION
The rapid development of the internet and the wide appli-
cations of multimedia technology have enable people to
exchange information with high confidentiality [1], [2]. The
security of data during its transmission involves several
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different aspects, including copyright protections, authenti-
cations, entertainments, business, health services and mil-
itary affairs, etc. To fulfill a certain level of security in
the wide range of applications, the encryption and decryp-
tion processes are very necessary. Some traditional or con-
ventional encryption-decryption algorithms like DES (Data
Encryption Standard), AES (Advanced Encryption Stan-
dard), IDEA (International Data Encryption Algorithm) and
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RSA (developed by Rivest, Shamir and Adleman) have
been used in the past in order to avoid malicious attacks
from unauthorized parties [3], [4]. But it has been shown
that these methods are inappropriate for digital image
encryption-decryption due to some intrinsic properties of
the images such as bulky data capacity and high redun-
dancy, which are generally difficult to handle by using these
traditional techniques [5], [6]. These conventional methods
therefore are less useful in image encryption cryptography,
especially for rapid communication applications.We can now
realize that more and more research has been done to develop
modern encryption algorithms [7]–[10]. For instance chaos
based encryption are used to protect the transferred informa-
tion from attacks [9]. Some researchers have been devoted
to systems characterized by ergodicity, deterministic dynam-
ics, unpredictable behavior, non-linear transform, sensitivity
dependence on initial conditions and system’s parameters.
They used to investigate the dynamical properties of the
proposed systems focusing on potential striking dynamical
behavior including periodic attractors, chaotic attractors or
hyperchaotic attractors, antimonotonicity, period doubling,
crises, hysteresis, and coexisting bifurcations [11], [12]. Note
that some of these properties and behaviors may be useful to
image encryption in order to increase the number of encryp-
tion keys [7], [8].

Existing results in literature has recognized the presence
of IAWs in plasmas comprising of negative and positive ions.
The examination the negative ions in plasma system is sig-
nificant owing to their broad applications in laboratory [13]
and plasma processing reactors [14]. Saleem [15] presented
the theoretical criterion for plasmas to have negative and
positive ions. Many researchers [16]–[18], [20] reported the
study of negative and positive pair ions for different plasma
environments. Chaizy et al. [21] investigated that the negative
ions in the comet Halley are readily damaged by solar radi-
ation. The presence of negative ions is important in a phys-
ical processes such as radiative transfer or charge exchange
that occur mainly in environments farther away from the
Sun like Jupiter’s or Saturn’s magnetospheres. However,
Coates et al. [22] recognized the presence of negative ions in
Titan’s atmosphere. These negative ions were considered to
have high number densities and play a vital role in chemical
process like formation of organic-rich aerosols.

The physical environments present on space and astrophys-
ical systems such as, galaxy clusters [23], plasmas [24], con-
tain high energy and long-range interaction particles. These
particles form various classes of nonextensive systems and
develop strong thermostatistics. The nonextensive entropy
introduced by Tsallis [25] can be extensively used for par-
ticles with high energy. The entropy proposed for combined
system (X + Y ) is explained by the relation, Sq(X + Y ) =
S(X )q + S(Y )q + (1 − q)S(X )q S(Y )q where individually X and Y
are two different systems. The measure of nonextensivity is
expressed by q [26] and as q → 1 the system becomes
Maxwellian [27]. The experimental observation done by

Liu et al. [28] reported that the non-Gaussian statistics are
framed by the Tsallis distribution. The Tsallis distribution
function can be applied for a system which holds the rela-
tion 1 − q = dT/dE , where E and T denote energy and
temperature in energy units [29]. The relation [30] of q with
potential energy and temperature gradient is given by k∇T +
(1 − q)m∇φ = 0. This stands for the reason that q 6= 1 as
∇T 6= 0. This shows that q-nonextensive holds a physical
significance to describe the velocity distribution occurring in
various non-equilibrium stationary-state systems [31]. It is
recorded that when ∇T = 0 and T = T0 =constant,
q → 1 that converges the nonextensive distribution to the
Maxwellian one [31].

The nonlinear waves in multi-component plasmas are
capable of generating interesting behaviors and one such
feature is called supernonlinear waves discovered byDubinov
and Kolotkov [32], [33]. Such waves are classified by the
number of singular points and sepratrix layers in their phase
profiles. A nonlinear wave should at least three singular
points and one sepratrix layer in order to be classified as
supernonlinear waves. Recently, numerous works [34]–[36]
were reported for studying supersolitons using the Sagdeev
potential. Researchers also studied examined supernonlinear
waves in three-component plasmamodel [37], [38]where two
temperature electrons were considered. In four-component
plasmas, very recently, El-Wakil et al. [39] reported the
supernonlinear waves in non-Maxwellian plasmas. However,
the studies of supernonlinear waves through the dynamical
systems and phase plane analysis [40]–[42] have gathered
great attention of researchers. It is interesting to know that
many researchers have already studied nonlinear with dif-
ferent composition of plasma particles in different atmo-
sphere [43]–[46]. The chaotic, periodic and quasiperiodic
behaviors of dynamical systems in plasmas are reported
in multi-constituent plasmas [47]. Rahim et al. [48] stud-
ied dynamical feature and multistability. Many researchers
[49]–[52] reported multistability property that is widely used
to examine dynamical features for various systems. Very
recently, some studies [53]–[55] related to dynamical behav-
ior and multistability property of nonlinear waves under dif-
ferent plasma compositions have been examined widely for
various plasma atmospheres. In this study, we consider a
plasma model [56] to study solitary, periodic and superpe-
riodic waves and their multistability behavior. Furthermore,
the considered plasma system supports chaotic dynamics of
IAWs which is applied to image encryption.

It has been proved that chaotic sequences are useful for
image encryption. Inverse tent map was used by T. Habutsu
and co-workers to build a chaotic cryptosystem for image
security [57], in which the initial states are calculated in terms
of the original input image. The encrypted data is obtained for
N iterations of the chaotic map. E. Biham presented a crypt-
analysis based on weakness of the chaotic map (Ten maps)
to break the above mentioned cryptosystem [58]. Using the
sequence of the well-known one dimensional Logistic map,
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M. S. Baptista designed an encryption scheme and secu-
rity analysis indicated an efficient encryption process [59].
However most of the proposed algorithms rely on the solely
use of chaotic sequences in the diffusion process. This may
usually cause some lack of security and time consump-
tion. Some solutions to these problems can be found in the
literature. For instance, Wang and collaborators combined
cyclic shift and sorting permutation technics to produce rapid
image encryption protocol [9]. DNA can also be combined
to chaotic sequences and other transformations to achieve
more security and rapidity [60]. In this paper we combine the
chaotic sequences of the proposed IAWwithDNA coding and
SHA− 512 to design a robust cryptosystem. First SHA− 512
is used to compute the hash digest of the plain image which is
then used to update the initial seed of the chaotic IAW system.
Second DNA coding is used to confuse and diffuse the DNA
version of the plain image. The diffused image follows DNA
decoding process leading to the cipher image.

The article is arranged as follows: In section II, mathemat-
ical model is considered. In section III, the dynamical system
is formed using the direct method. In section IV, multistabil-
ity properties are presented. In section V, encryption process
and its security are discussed. In section VI, conclusion of our
work is provided.

II. MODEL EQUATIONS
Supernonlinear and nonlinear IAWs are studied for a plasma
system consisting of q-distributed electrons, negative and
positive ions. The normalized governing equations [56] are:

∂np,n
∂t
+
∂

∂x
(np,nup,n) = 0, (1)

∂up
∂t
+ up

∂up
∂x
+
∂φ

∂x
= 0, (2)

∂un
∂t
+ un

∂un
∂x
− s

∂φ

∂x
= 0, (3)

∂2φ

∂x2
− ne − nn + np = 0. (4)

Here, ne, nn and np denote number densities of electron, neg-
ative and positive ions, respectively. These number densities
are normalized by np0. Here, un and up are velocities normal-
ized by Csi = (Te/mp)1/2, φ denotes potential of electrostatic
wave which is normalized by Te/e. The time and space vari-
ables are t and x normalized by ω−1pp = (mp/4πe2np0)1/2 and
λDp = (Te/4πe2np0)1/2, respectively. Te represents electron
temperature, e is electronic charge, mn(mp) represents mass
of negative (positive) ions and s = mp/mn. At equilibrium,
we haveNe = 1−Nn, whereNe = ne0/np0 andNn = nn0/np0
are unperturbed number density ratios of electrons to positive
ions and negative to positive ions, respectively.

The electron velocity distribution function

fe(v) = Cq{1+ (q− 1)[
mev2

2kBTe
−

eφ
kBTe

]}
1

(q−1) ,

with normalizing constant

Cq = ne0
0( 1

1−q )

0( 1
1−q −

1
2 )

√
me(1− q)
2πkBTe

for − 1 < q < 1,

and

Cq = ne0
1+ q
2

0( 1
q−1 +

1
2 )

0( 1
q−1 )

√
me(q− 1)
2πkBTe

for q > 1,

are considered to obtain the nonextensive number density of
electrons. When fe(v) is integrated for all velocity spaces, one
may obtain the following

ne = ne0{1+ (q− 1)
eφ
kBTe
}
1/(q−1)+1/2,

where kB is Boltzmann constant. After normalization,
the number density of q-distributed electrons deduces to [61]

ne = Ne{1+ (q− 1)φ}
1

q−1+
1
2 . (5)

Here, q is nonextensive parameter with values higher than -1.

III. DYNAMICAL SYSTEM
The dynamical characteristics of IAWs are shown using tools
such as, phase plane profiles, time series and Lyapunov expo-
nents. In order to examine such diverse features of the wave,
we transform the model equations into a planar dynamical
system (DS) [41], [42] using the wave transformation ξ =
x−Vt , where V is speed of the traveling wave. Substitution of
ξ into equation (1) and integration w.r.t ξ applying conditions
np = 1, nn = Ne, ui = 0, as ξ → ±∞, the following
relations are obtained

np =
V

V − up
, nn =

VNn
V − un

. (6)

Similarly, from equation (2) with conditions un = 0, up =
0, φ = 0, as ξ →±∞, we get

V − up =
√
V 2 − 2φ, V − un =

√
V 2 + 2sφ. (7)

Solving equations (6) and (7), we obtain

np =
V√

V 2 − 2φ
, nn =

VNn√
V 2 + 2sφ

(8)

Substituting equations (4) and (8) in equation (3), we get

d2φ
dξ2
−Ne[1+(q−1)φ]

1
q−1+

1
2−

VNn√
V 2+2sφ

+
V√

V 2−2φ
=0.

(9)

We rewrite the above equation as

d2φ
dξ2
= Aφ + Bφ2 + Cφ3, (10)

where

A =
1
2
(1+ q)Ne −

sNn
V 2 −

1
V 2 ,

B =
1
8
(1+ q)(3− q)Ne +

3
2V 4 s

2Nn −
3

2V 4 ,

C =
1
48

(1+ q)(3− q)(5− 3q)Ne −
5

2V 6 s
3Nn −

5
2V 6 .
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FIGURE 1. Phase portraits of system (11) for (a) V = 1.4, (b) V = 1.47 with q = 0.4, ne0 = 1000 cm−3, nn0 = 241.1cm−3, mp = 100 amu,
mn = 200 amu.

The equation (10) is structured into the DS as follows
dφ
dξ
= z,

dz
dξ
= Aφ + Bφ2 + Cφ3.

(11)

For this study, we choose the Titan’s atmosphere as our
plasma environment. The Titan’s atmosphere contains thin
strata of methane and thicker strata of nitrogen. The obser-
vations of Cassini spacecraft revealed the existence of pos-
itive ions on the ionosphere of the Titan. Coates et al. [22]
examined the presence of heavy negative ions in upper layer
of the Titan’s ionosphere. The negative ions consist of num-
ber density 100 cm3, and masses of 10-30, 30-50, 50-80,
80-110, 110-200 and 200+ amu/charge. The ions with neg-
ative charge causes the electrostatic disturbances traveling in
the atmosphere. The parameter q in superextensive case is
restricted to 1/3 < q < 1 [62]–[64]. Therefore, we con-
sider the acceptable ranges 1/3 < q < 1 and q > 1,
and other plasma parameters from the data values of Titan’s
atmosphere [22], [56].

Figure 1 is phase portraits for the system DS (11) with
higher unperturbed number density of negative ions nn0 =
241.1cm−3 with (a) V = 1.4, (b) V = 1.47 and q =
0.4, ne0 = 1000 cm−3, mp = 100 amu, mn = 200 amu
for superextensive case (1/3 < q < 1). Figure 1 con-
tains three singular points S0, S1 and S2 where S0 is a
saddle and S1, S2 are centers. Here, we observe that there
exists three different families of orbits, namely, the non-
linear periodic orbit (NPO1,0), nonlinear homoclinic orbit
(NHO1,0) and supernonlinear periodic orbit (SPO3,1). Here,
NPO1,0 and NHO1,0 enclose one singular point and contain
no separatrix. However, SPO3,1 contains three singular points
and one separatrix. Every orbits in phase profiles of the
dynamical system are related to wave solutions. Therefore,
the NPO1,0, NHO1,0 and SPO3,1 are associated to nonlinear

periodic IAW (NPIAW) and nonlinear ion-acoustic solitary
wave (NIASW) and supernonlinear periodic ion-acoustic
wave (SPIAW) solutions.

Figure 2 is phase portraits for the system DS (11) with
lower unperturbed number density of negative ions nn0 =
8.99cm−3 with (a) q = 1.2 and (b) q = 2.2, and ne0 =
1000cm−3, mp = 100 amu, mn = 200 amu and V = 0.9
in subextensive case (q > 1). Figure 2 contains three singular
points S0, S1 and S2 where S0 is a center in figure 2 (a)
and S0 is a saddle in figure 2 (b). This change is observed
by changing the value of nonextensive parameter q and
keeping all other parameters fixed. Here, we observe that
there exists NPO1,0, NHO1,0 and SPO3,1). Here, NPO1,0 and
NHO1,0 enclose one singular point and contain no separatrix.
Therefore, we observe the existence of NPIAW, NIASW
and SPIAW for corresponding orbits, NPO1,0, NHO1,0 and
SPO3,1.
Figure 3 shows phase portraits of the system DS (11)

for (a) superextensive case (q = 0.5), V = 1.51 and
higher unperturbed number density of negative ions nn0 =
241.1cm−3 and (b) subextensive case (q = 6), V = 0.9 and
lower unperturbed number density of negative ions nn0 =
8.99cm−3 with ne0 = 1000cm−3, mp = 100 amu, mn =
200 amu and V = 0.9. Here, we observe from figure 3
that phase portrait of DS (11) contains three singular points
S0, S1 and S2 where (0, 0) is a saddle. There exist NPO1,0 and
NHO1,0 which encloses one singular point with no separatrix
and, there is no sign of an orbit that encloses three singular
points with at least one separatrix. Therefore, there exist no
superperiodic feature for the above set of data values. This
shows that supernonlinear feature is not supported for all the
data values of the plasma systems.

A. WAVE SOLUTIONS FOR IAW
We encounter the existence of nonlinear periodic, nonlinear
solitary and superperiodic solutions of IAWs through the
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FIGURE 2. Phase portraits of system (11) for (a) q = 1.2 and (b) q = 2.2 with nn0 = 8.99cm−3, ne0 = 1000cm−3, mp = 100 amu,
mn = 200 amu and V = 0.9.

FIGURE 3. Phase portraits of system (11) for (a) q = 0.5, V = 1.51, nn0 = 241.1cm−3 and (b) q = 6, V = 0.9, nn0 = 8.99cm−3 with
ne0 = 1000cm−3, mp = 100amu, mn = 200 amu.

phase plane analysis. Therefore, we now obtain the analytical
periodic wave solution of IAW for which we suppose the
Hamiltonian function H (φ, 0) of the DS (11) for which we
get

H (φ, y) =
y2

2
−

(
Aφ2

2
+
Bφ3

3
+
Cφ4

4

)
= h. (12)

After simplification, we get

dφ
dξ
=

√
C
2

√
(a− φ)(φ − b)(φ − c)(φ − d), (13)

where a, b, c and d are roots of hi + C
2

(
φ4 + 4B

C φ
3
+

2A
C φ

3
)
= 0.

Substituting equation (13) in (12), we get

φ =

b− c
{
a− b
a− c

sn2
(
1
g

√
C
2
ξ, k

)}
1−

a− b
a− c

sn2
(
1
g

√
C
2
ξ, k

) . (14)

The solution (14) is the analytical nonlinear periodic solution
of IAW, where sn is the Jacobi elliptic function [65], g =

2
√
(a− c)(b− d)

and k =

√
(a− b)(c− d)
(a− c)(b− d)

. The nonlinear

solitary and periodic wave solutions are reported in [66], [67]
and supernonlinear periodic in [68]. Now, we examine the
changes caused by the variations of nonextensive parameter
q and wave speed V on numerically obtained NPIAW and
SPIAW for the considered plasma system.
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FIGURE 4. Periodic solution with respect to figure 1 (a) and (b) for different values of V .

FIGURE 5. Periodic solution with respect to figure 2 (a) and (b) for different values of q.

Figure 4 displays change on NPIAW by varying V in the
superextensive case (1/3 < q < 1) and keeping other
values fixed as figure 1. As observed from figure 4 (a),
as speed of wave (V ) is slightly increased then amplitude of
NPIAW gradually decreases. From figure 4 (b), we observe
that amplitude of NPIAW decreases significantly as V tends
to infinity. Therefore, we perceive that with higher values
of V , the NPIAW becomes smooth.
Figure 4 shows change on NPIAW by varying q in the

subextensive case q > 1 with keeping other values fixed as
figure 1. As observed from figures 5 (a) and (b), when values
of nonextensive parameter grows, amplitude of NPIAW rises.
Therefore, for q→∞, we observe that the NPIAW becomes
spiky.

Figure 6 shows change on SPIAW by varying q in the
superextensive case (1/3 < q < 1) and keeping other values
fixed as figure 1. From figure 6 (a), it is seen that for higher

values of wave speed (V ), the amplitude of SPIAWs slightly
decreases and its wideness grows resulting into smoothing of
SPIAWs. From figure 6 (b), we observe that the amplitude
of SPIAWs rises smoothly while its wideness shrinks making
the SPIAW spiky for V →∞.
Figure 7 shows change on SPIAW by varying q in the

subextensive case q > 1 and keeping other values fixed as
figure 2. From figure 7 (a) and (b), we observe that for higher
values of nonextensive parameter q, the amplitude of SPIAWs
significantly extends while its wideness shrinks gradually.
Thus, the SPIAW becomes spiky for q→∞.

IV. MULTISTABILITY PROPERTY
The dynamical features such as, chaotic and quasiperiodic
behaviors of the system (11) are studied by introducing an
extraneous force f0 cos(ωξ ) in the system (11). To study
coexisting trajectories or multistability features [11], [12] of
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FIGURE 6. Superperiodic solution with respect to figure 1 (a) and (b) for different values of V .

FIGURE 7. Superperiodic solution with respect to figure 2 (a) and (b) for different values of q.

a system (15), it is necessary to disturb the initial conditions
(φ0, y0, 0) under the constant values of system parameters.
Then, we obtain the perturbed dynamical system as,

dφ
dξ
= y,

dy
dξ
= Aφ + Bφ2 + Cφ3 + f0 cos(U ),

dU
dξ
= ω,

(15)

where U = ωξ , f0 is frequency and ω is strength of an exter-
nal force [69], [70]. The perturbed system behaves differently
under extraneous periodic force. Such system exhibits ran-
domness and irregularity of trajectories. In our study, such
trajectories show chaotic motions. The multistability feature
[71]–[73] is exhibited by a perturbed DS when there exist
two or more dynamic properties such as chaos, quasiperiodic,
periodic and multiperiodicity for same set of parameters but
distinct initial conditions.

Figure 8 shows phase portraits for system (15) in φ − y
plane which reveal the existence of different coexisting orbits
for both subextensive (q > 1) and superextensive (q < 1)
cases. In figure 8 (a), we set y0 = 0.601 with the system
parameters q = 2.2, ne0 = 1000 cm−3, nn0 = 8.99 cm−3,
mp = 100 amu, mn = 200 amu, V = 0.9, f0 = 1.9, ω = 2.8
and vary φ0 of the initial condition. In this case, a chaotic orbit
and two different types of multi-periodic orbits are obtained
for φ0 = 0.401, φ0 = 0.0401 and φ0 = −0.08, respectively.
When f0 = 0.09 and other parameters same as in figure 8 (a)
with y0 = 0.061 of initial condition, we get figure 8 (a)
which exhibit a single-periodic and three distinct quasiperi-
odic orbits for φ0 = 0.202, φ0 = 0.201, φ0 = −0.094
and φ0 = −0.092, respectively. In figure 8 (c), we fix φ0 =
−0.0524 and fluctuate the y coordinate of the initial condition
to demonstrate the coexistence of a multi-periodic and two
different quasiperiodic orbits for q = 0.4, ne0 = 1000 cm−3,
nn0 = 8.99 cm−3,mp = 100 amu,mn = 200 amu, V = 0.94,
f0 = 0.6, ω = 0.58. The multiperiodic orbit colored in
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FIGURE 8. Multistability of system (15) for (a) subextensive case with V = 0.9, f0 = 1.9, ω = 2.8 (b) subextensive case with V = 0.9,
f0 = 0.09, ω = 2.8 (c) superextensive case with V = 0.94, f0 = 0.6, ω = 0.58, and (d) superextensive case with V = 1.4, f0 = 1.16, ω = 2.03.

black exists for y0 = −0.001, quasiperiodic orbits colored
in red and ocean blue are obtained for y0 = −0.0105
and y0 = −0.2, respectively. Figure 8 (c) is acquired when
V = 1.4, f0 = 1.16, ω = 2.03 and other parameters
as figure 8 (c). Here, the system is shown to supports a
quasiperiodic and a multiperiodic orbits for initial condition
(−0.002,−0.0202, 0) and (0.52,−0.0202, 0), respectively.
Figure 9 (a) and (b) shows time series plots corresponding to
the multistability behaviors presented in figure 8(a) and (b)
for subextensive region and lower number density of neg-
ative ions. Figure 9 (c) and (d) presents time series plots
corresponding to the multistability behaviors presented in
figure 8(c) and (d) for superextensive region and higher num-
ber density of negative ions.

The Lyapunov exponent is an efficient tool to determine
the chaotic behavior of a system. Positive values of Lyapunov
exponent show occurrence of chaos. Since, we observed the
existence of chaos in multistability phase plot figure 8 (a) for
the perturbed system (15), we determine the Lyapunov expo-
nent with respect to f0. From figure 10 we observe positive
values of Lyapunov exponent that show occurrence of chaotic
behavior in perturbed (15) corresponding to figure 8 (a). The
intense chaotic feature is observed at f0 = 1.934.

V. ENCRYPTION APPLICATION
A. PROPOSED ALGORITHM
1) SHA-512 FOR CRYPTOGRAPHY
Secure Hash Algorithm 512 (SHA−512) is one of the promi-
nent solutions to withstand various forms of attacks in
cryptography given than it is not reversible [74]. In effect
SHA-512 accept any type of input data of any size and pro-
vide an output (hash digest) of 512 bits. Note that SHA-512
uses one-way function tomap input data to the output, in addi-
tion a slight change in the input data leads to a completely
different output. Consequently it is quite impossible to break
encryption schemes based on SHA-512.

2) DNA PRINCIPLE FOR CRYPTOGRAPHY
Due to low power consumption and large memory capacity
DNA coding has been shown to be efficient to cryptography
in general and particularly in image encryption. It is well
known that the four bases of DNA sequence are Adenine (A),
Thymine (T), Guanine (G) and Cytosine (C) where A-T
are complementary and C-G are complementary. Comparing
to the binary system where 0 and 1 are complementary a
correspondence can be defined as 00 → A, 11 → T ,

VOLUME 9, 2021 18769



J. Tamang et al.: Dynamical Properties of IAWs in Space Plasma and Its Application to Image Encryption

FIGURE 9. Time series plots corresponding to multistability behaviors of system (15) for (a) and (b) subextensive case and, (c) and
(d) superextensive case shown in figure 8.

FIGURE 10. Lyapunov exponent for the chaotic behavior (shown by pink orbits in figure 8 (a))
of the perturbed DS (15) for subextensive case.

01→ C , 10 → D. Some DNA operations like addition
(add), subtraction (sub), multiplication (mult), exclusive-or
(ex_or) and exclusive-nor (ex_nor) (Tables shown in
FIGURE 11) are commonly used to enhance the diffusion
process in encryption algorithms.

3) THE ENCRYPTION PROCESS
We start the encryption process by applying NIST SP 800-22
tests to the chaotic sequences to assess its randomness. The
results in TABLE 2 indicate that the generated sequences
(φi, yi, ui) are sufficiently random to find application in
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FIGURE 11. Some DNA operations.

cryptography that is p-values < 0.025 or p-values > 0.975.
An encryption scheme based on the sequence of the pro-
posed chaotic system with SHA−512 algorithm and DNA
sequences is designed. The general outline of the whole
encryption process is provided in Figure 12 and is described
as follows:

Step 1: Read the plain image P1 of sizem×n×r and compute
its hash digest H = H1,H2 · · ·H64 using SHA−512
where Hi is the ith byte in the digest H .

Step 2: Read the initial values φ0, y0, u0 and apply the fol-
lowing update law for solving system (15):

φ̃ =

[
φ(0)+

1
1015

16∏
i=1

bin2dec(Hi)
]
mod256

ỹ =
[
y(0)+

1
1015

32∏
i=17

bin2dec(Hi)
]
mod256

ũ =
[
u(0)+

1
1015

48∏
i=33

bin2dec(Hi)
]
mod256

(16)

where bin2dec converts the binary values of the hash
digest to equivalent decimal values.

Step 3: Using the updated initial values, solve system (15) to
obtain three chaotic sequences φi, yi, ui each of size
m× n× r , convert each sequence into integers then
into binary format.

Step 4: Apply DNA coding operation on the plain image P1
using φi as indicated by TABLE 1 to achieve DNA
matrix P2.

Step 5: Apply DNA permutation operation on the DNA
matrix P2 following algorithm 1 to achieve the per-
muted matrix P3.

Step 6: Apply DNA diffusion operation on the permuted
matrix P3 following algorithm 2 to achieve the dif-
fused matrix P4.

Step 7: Apply DNA decoding operation on the diffused
matrix P4 following the rules of TABLE 1.

B. SECURITY PERFORMANCE
To test and evaluate the security of the above cryptosystem,
the proposed chaotic system is solved with initial seed as:
φ̃ = −0.0524; ỹ = −0.2; ũ = 0; and system parameter
as A = 0.4490;B = −1.5998;C = −3.7125; f0 = 1.9.
The data set is composed of two gray scale images and two
color images each of size 256 × 256. All the simulations
were carried on a workstation equipped with Intel core TM

FIGURE 12. General outline of the encryption process. The decryption is reverse of the encryption process.
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Algorithm 1: DNA Permutation Algorithm
Input: - P2 is the DNA image obtained from DNA

coding,
-[m,n,r] is the size of the DNA image.
-y is a chaotic sequence from system (15).

Output: Permuted matrix P3.
Convert the chaotic sequence y into integers of range
from 1 to m using YInt = fix(y× 1014mod m)+ 1;
Collect the first different m elements from YInt sequence
as (F); Permute the DNA image P2 using permutation
sequence F as:
for i = 1 : m do

for j = 1 : n do
for k = 1 : r do

P3( i, j, k) = P2( F(i), F(j), k)
end

end
end

i7-3630QM 16 GB RAM and MATLAB R2014b software.
With reference to the results of Figure 13, the test images are
visually unidentifiable. The PSNR of the encrypted image
is computed with reference to the original image using the
following formula:

PSNR = log
peak_value

MSE
(17)

where peak_value = 255 for 8-bits images and MSE is the
mean squared error computed as:

MSE = −
1

m× n

m∑
i=1

n∑
j=1

[P(i, j)− C(i, j)]2 (18)

where P and C are the plain and encrypted images of size
m × n respectively. We achieved very low values of PSNR
indicating that human eyes can not retrieve any significant
information from the cipher image. However, few security
analysis techniques such as, differential and statistical anal-
yses are required to be performed to verify the encryption
process.

1) CORRELATION OF ADJACENT PIXELS
The calculation of the correlation coefficient between the
pixels makes it possible to evaluate the cryptographic quality
of the cryptosystem. The correlation coefficient tends to 1 or
−1 for two pixels that are closely associated. However, its
value close to zero signs that the two pixels are not associated
and cannot be predicted [75]. This metric is calculated from
the following formula:

rxy =
E((x − E(x))(y− E(y)))
√
D(x)
√
D(y)

,

where E(x) =
1
N

N∑
i=1

xi and D(x) =
1
N

N∑
i=1

(xi − E(x))2.

(19)

Algorithm 2: DNA Diffusion Algorithm
Input : - P3 is the DNA permuted image,

-[m,n,r] is the size of the DNA image.
-u is a chaotic sequence from system (15).

Output: Diffused matrix P4.

Convert the chaotic sequence u into integers of range
from 1 to n using UInt = fix(u× 1014 mod m)+ 1;
Collect the first different m ? n ? r elements from UInt
sequence as (L);
Construct the DNA diffusion key Diff as:

for i = 1 : m× n× r do
if (L(i)==1 or L(i)==2) then

{Diff(i)=A}:
else if (L(i)==3 or L(i)==4) then

{Diff(i)=T}
else if (L(i)==5 or L(i)==6) then

{Diff(i)=C}

else
{Diff(i)=G}

end
end
add, sub, ex_or, ex_nor and mult are different DNA
operation as indicated in Figure 11.
Diffuse the DNA permuted image P3 using DNA
diffusion key Diff as:
for i = 1 : m× n× r do

if (L(i)==1) then
{P4(i)=add(P3(i), Diff(i))}:
else if (L(i)==2) then

{P4(i)=sub(P3(i), Diff(i))}
else if (L(i)==3) then

{P4(i)=ex_or(P3(i), Diff(i))}
else if (L(i)==4) then

{P4(i)=ex_nor(P3(i), Diff(i))}
else

{P4(i)=mult(P3(i),Diff(i))}
end

end

TABLE 1. DNA coding and decoding rules.

Here x and y are the values of the gray level of the pixels
at the same index of the images I and I’, E(x) and D(x) are
the variances with the number (N) of used pixels. TABLE 3
groups together the correlation coefficients obtained from
the original and encrypted gray scale images and TABLE 4
groups together the correlation coefficients achieved from
the original and encrypted color images. It appears that the
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TABLE 2. Outcome of NIST SP 800-22 tests.

FIGURE 13. Visual test of the dataset images. It is observed that the plain images are no more recognizable after encryption.

correlation coefficients of the original images are close to 1,
whereas those of the encrypted images close to 0. This shows
that the encryption algorithm has considerably attenuated
the correlation between the pixels of the encrypted images.
Figure 14 presents the correlation distributions of adjacent
pixels in horizontal, vertical and diagonal directions for both
original color data and corresponding cipher data. Figure 15
presents the correlation distributions of adjacent pixels in
horizontal (H), vertical (V) and diagonal (D) directions for

both original color data and corresponding cipher data. These
outcomes also confirm that the encrypted images are heavily
decorrelated.

2) GLOBAL AND LOCAL ENTROPY TESTS
Global and local entropy are two important indicators used
for random characteristics of a cryptosystem. The greater the
information entropy, the more uncertain the information we
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FIGURE 14. Distribution of correlation for color plain data2 and corresponding cipher.

TABLE 3. Correlation coefficients in horizontal (H), vertical (V) and
diagonal (D) directions for both original color data and corresponding
cipher data.

have [76]. It can be evaluated as follows:

E(xi) = −
255∑
i=0

p(xi) log2 p(xi), (20)

TABLE 4. Correlation coefficients of original and encrypted Grey-scale
data.

where p(xi) represents the probability of the gray level x(i).
Global and local entropy are evaluated for our test images
and recovered in TABLE 5. The images having 28 possible
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FIGURE 15. Distribution of correlation for gay-scale plain data3 and corresponding cipher.

TABLE 5. Global and local entropy of each encrypted test data.

values, the ideal entropy value is equal to 8 bits. With regard
to the entropy values in TABLE 5 it is observed that entropy
values for the cipher data are very close to TABLE 10.
Thus, the proposed algorithm is secure against entropy based
attacks.

3) HISTOGRAM, χ2 AND VARIANCE TESTS
Any good encryption scheme must pass the histogram and
chi-square test to be able to resist the statistical intrusion of
a third party [77]. The histogram of a plain data is usually
distributed randomly whereas the histogram of the corre-
sponding cipher is required to be uniform. Figures 16 and 17
present the histograms of the plain and cipher color and gray
scale images. It is obvious to observe that the histograms
of the plain image are randomly distributed while the his-
tograms of the encrypted data are flat. This flatness can be
checked using the chi-square test. TABLE 6 provides the
issue of chi-square values with 0.05 as weight value. Usually,
the flatness of the histogram is validated if the chi-square
value of the test sample is less than 293.2478 indicating a
p-value higher than 0.5. Regarding TABLE 6 the histograms
of various test samples are validated. Variance of histogram
is another metric currently used to evaluate the uniformity

of encrypted image [78]. this metric can be computed with
respect to encryption keys using the following formula:

v(H ) =
1

m× n

m∑
i=1

n∑
j=1

1
2
(hi − hj)2 (21)

where H = {h1, h2, . . . . . . ., h256} is a vector containing the
values of pixels. Considering a key set comprising 8 keys as
φ̃, ỹ, ũ, A, B, C, f0, ω a cipher image is obtained and the
variance is computed using Eq. 21. One of the elements of the
key set is changed to form a new key set in order to produce
a new cipher and compute its. The results are summarized
in Table 7 where each column indicate the results of variances
when only one element of the key set is changed to form a
new key set. From the results of Table 7 the variances of the
cipher images are very close indicating the uniformity of the
encrypted data obtained from diffferent keys.

4) NPCR AND UACI TESTS
To assess the capability of an encryption algorithm to with-
stand differential attacks NPCR (Number of Pixels Change
Rate) and UACI are commonly used [79]. These metrics eval-
uate the rate of change in the original image on its equivalent
cipher one. The numerical value of NPCR is computed as:

NPCR =

∑
m,nDiff (m, n)

D
× 100%,

Diff (m, n) =

{
0, if P(m, n) = C(m, n)
1, if P(m, n) 6= C(m, n)

(22)

here D indicates to the complete pixel numbers in the
image. On the other hand numerical value of UACI is
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FIGURE 16. Histograms for each color plain data set and its corresponding cipher.

FIGURE 17. Histograms for each grey-scale plain data set and its
corresponding cipher.

computed as:

UACI =
100
m× n

m∑
1

n∑
1

|IC1(m, n)− IC2(m, n)|
255

, (23)

TABLE 6. χ2 values for each encrypted data.

where IC1 and IC2 are two encrypted images obtained from
ciphers images different in just on pixel. m and n are the
dimension of the images.

The outcomes of NPCR and UACI for the experimented
dataset are displayed in TABLE 8. From these results,
the given encryption approach has a high sensitivity to tiny

18776 VOLUME 9, 2021



J. Tamang et al.: Dynamical Properties of IAWs in Space Plasma and Its Application to Image Encryption

TABLE 7. Outcome of variance analysis for different key sets.

TABLE 8. NPCR and UACI values for encrypted dataset.

pixel changes in the original image. Consequently, encrypted
images are secured against any form of differential attacks.

5) KEY SPACE ANALYSIS
The key space of an encryption algorithm is the product of
all the keys used in the encryption process (Ks = 5n

i=1ki
where Ks is the key space and ki are the keys related to the
encryption process) [80]. The key space of a good encryption
should be greater than 2100 so that the algorithm can resist
to brute force attacks. For this case we considered 8 keys
(φ̃, ỹ, ũ, A, B, C, f0, ω). If the calculation accuracy of
each key is considered to be 1016 then the key space of
the whole algorithm is 10128. This value is greater than the
threshold value (2100) consequently the considered algorithm
can resist to brute force attacks based on the analysis of keys.
Let us mention that when initial conditions are used as key
for any encryption algorithm, special care need to be taken to
avoid non-chaotic [81].

6) KEY SENSITIVITY ANALYSIS
Any cryptosystem is required to be sensitive to tiny change
in the keys that is any slight change in the key should cause
significant effect in the encrypted data [2]. To test the sensitiv-
ity of our algorithm to keys a given plain image is encrypted
using correct key. Then correct key (A = 0.4490;B =
−1.5998;C = −3.7125; f0 = 1.9; φ̃ = −0.0524; ỹ =
−0.2; ũ = 0)is successfully to decrypt the cipher data but
a slighly set of modified keys are used unsuccessfully to
decrypt the cipher data. Figure 18 summarized the results of
key sensitivity tests.

7) NOISE ATTACK ANALYSIS
Salt-and-pepper and Gaussian are two types of noises cur-
rently encountered in image processing. This part aims to
verify if the proposed encryption algorithm is able to resist
to such type of noises [9]. In this line a certain amount of
Gaussian noise and salt-and-pepper noises are added to the
encrypted data. The proposed encryption algorithm is then
used to decrypt the infected images. Figures 19 and 20 show
that our algorithm is able to produce readable image from

FIGURE 18. Outcomes of key sensitivity analysis.

FIGURE 19. Salt-and-pepper noise analysis: the first line presents the
noise infected images with 0.5 as parameter and the second line indicate
the corresponding decrypted images.

FIGURE 20. Gaussian noise analysis: the first line presents the noise
infected images with 0.5 as parameter and the second line indicate the
corresponding decrypted images.

infected cipher. the proposed encryption algorithm is more
efficient on Salt-and-pepper noise.

8) OCCLUSION ATTACK ANALYSIS
Images usualy loss some informations during the trans-
mission process. This is called occlusion attack and a
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FIGURE 21. Outcomes of occlusion attacks.

well-designed encryption/decryption algorithm should be
able to withstand such type of attack. To test the capability
of the proposed algorithm to resist occlusion a dark matrix is
created on the encrypted image. Then the proposed method
is used to decrypt the attacked image. From the results of
Figure 21 the recovered image is readable. Consequently the
occlusion does not affect the decryption.

9) CLASSICAL TYPES OF ATTACK
Any encryption algorithm should be able to resist to the
four classical forms of attacks such as ciphertext only (The
hacker has a part of the encrypted data), known plaintext
(The hacker has a part of the plain data and the correspond-
ing encrypted data), chosen ciphertext (The hacker has the
possibilty to choose a part of the plain data and construct
the corresponding cipher data using the algorithm), chosen
plaintext (The hacker has the possibilty to choose a part of the
cipher data and construct the corresponding plain data using
the algorithm) [10]. It is obvious that a given cryptosystem is
robust to any form of the above described attacks if it resists
to chosen plaintext attack. The algorithm proposed in this
paper is sensitive to any change in chaotic system parameters
and initial seeds. In addition the encrypted data also depends
on the plain data as we use Hash algorithm with plain data
as input to compute the initial seed of the chaotic system.
Consequently even with a part of the plain data and cipher
data our algorithm can resist to chosen plaintext attack.

10) COMPLEXITY ANALYSIS
Complexity analysis is one of the most important tools to
measure the performance of an algorithm. [82]–[85] This
complexity can be computed in terms of running time or the
Encryption Throughput (ET) and the Number of Cycles (NC)
required securing one byte of the plain image. Note that the
encryption time is computed using the ‘‘tic-toc’’ function of

TABLE 9. Computational time (in milliseconds) for various size test
images and comparison with existing works.

MATLAB while ET and NC are computed as:

ET =
size of the image(Byte)
Encryption time (sec)

(24)

NC =
CPU speed (Hz)
ET (Byte/sec)

(25)

A good encryption algorithm is required to take less
encryption time, less NC, and high ET to be suitable for real
time implementation. TABLE 9 contains the running time
of the encryption algorithm while using the various size of
test image ‘‘Data1’’ (example 512× 512× 3 bytes). On the
other hand TABLE 9 provides the ET and the NC computed
with 512× 512× 3 bytes version of ‘‘Data1’’. The computa-
tional workstation is characterized by 2.4GHz processor Intel
core TM i7-3630QM 16 GB RAM and MATLAB R2014b
software. The computational time increases with respect to
the size of the plain image. Note this computational time
also relies on the capacity of the workstation (the processor
speed and the RAM). It is clearly seen from TABLE 9 and
TABLE 10 that an acceptable complexity is obtained and
the algorithm is competitive with some fastest chaos-based
cryptosystems results of the state of the art.

TABLE 10. ET and NC computed with 512×512×3 bytes version of Img01.

11) COMPARISON ANALYSIS
A variety of chaos based encryption techniques can be found
in the literature. In this part a comparative analysis between
the proposed techniques and some recent literature is done.
TABLE 11 show the outcome of comparative analysis in
terms of some well-known metrics including NPCR, UACI,
information entropy, algorithm complexity. Our algorithm
shows the highest NPCR and entropy compared to some
recents achievements in the literature. In the case of UACI
our result is poor compare to the results in some recents
achievements of the literature but the value of UACI achieved
by our work is above the threshold value which is 33.46354%
regarding the correlation the values achieved by our algorithm
are more closed to 0 than the values in some recent works
in the literature. Table 10 shows the outcome of comparative
analysis in terms of algorithm complexity. As mentioned
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TABLE 11. Outcome of comparative analysis.

above a good encryption algorithm is required to take less
encryption time, less NC, and high ET to be suitable for
real time implementation. It is clear from this result that our
algorithm achieve the smallest encryption time and NC but
the highest ET compared to some recents achievements in the
literature.

VI. CONCLUSION
The supernonlinear and nonlinear periodic IAWs have been
investigated in a nonextensive plasma system which is com-
posed of pair ions (positive and negative) through the direct
approach. Dynamical system has been formed directly from
the model equations applying the suitable transformation.
To examine dynamical behaviors, the existing DS has been
disturbed with external periodic force. The DS and perturbed
DS have been studied considering suitable values of phys-
ical parameters. The solitary, supernonlinear and nonlinear
periodic IAW solutions have been shown through phase plane
analysis for the DS. The periodic wave solution for IAW has
been obtained analytically. It has been observed numerically
that the SPIAW and NPIAW have become spiky and smooth
according to q→∞ and V →∞. Furthermore, the dynam-
ical features such as chaos, various forms of quasiperiodic
and multiperiodic orbits have been discovered under the per-
turbed DS. Multistability property of IAWs has been featured
with coexisting trajectories such as, quasiperiodic, multiperi-
odic and chaotic trajectories with same parametric values
but at different initial conditions. The coexistence of such
dynamical features has been verified by their corresponding
phase and time series plots. The positive values of Lyapunov
exponents have been presented for the chaotic feature. Suit-
able parameter values of space plasma [22], [56] have been
used in the present work. Chaotic dynamics of the proposed
IAWs system have been exploited to design efficient encryp-
tion algorithm. The security performance has been evaluated
using some well-known metrics and obtained results have
indicated that the proposed cryptosystem can resist most
of existing cryptanalysis techniques. In addition complexity
analysis shows the possibility of practical implementation of
the proposed algorithm.
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