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ABSTRACT Robust automatic speech emotional-speech recognition architectures based on hybrid convolu-
tional neural networks (CNN) and feedforward deep neural networks are proposed and named in this paper
as: BFN, CNA, andHBN. BFN is a combination between bag-of-Audio-word (BoAW) and feedforward deep
neural network, CNA based on CNN, finally, HBN is hybrid architecture between BFN and CNA. Overall
accuracy is achieved by leveraging Mel-frequency cepstral coefficient features and bag-of-acoustic-words
to feed the network, resulting in promising classification performance. In addition, the concatenated output
from the proposed hybrid networks is fed into a softmax layer to produce a probability distribution over
categorical classifications for speech recognition. The three proposed models are trained on eight emotional
classes from the Ryerson Audio-Visual Database of Emotional Speech and Song audio (RAVDESS) dataset.
Our proposed models achieved overall precision between 81.5% and 85.5% and overall accuracy between
80.6% and 84.5%, hence outperforming state-of-the-art models using the same dataset.

INDEX TERMS Bag-of-acoustic-words, convolutional neural network, feedforward deep neural network,
hybrid features, Mel frequency cepstral coefficients, support vector machine.

I. INTRODUCTION
Accurate emotional recognition from speech and song files
remain a challenging issue. In pattern recognition and artifi-
cial intelligence, recognizing an object or emotion from its
characteristic attributes is an especially challenging task in
fact.

Deep learning (DL) has shown substantial promise inmany
applications such as social network analysis [1], encryption
and decryption [2], forensics [3] and automotive work [4].
Furthermore, studies such as [5] investigates the exponen-
tial stability analysis of Markovian neural networks (MNNs)
that can be used to improve many engineering fields, such
as communication systems, power systems, production sys-
tems, and network control systems. In addition, DL has
led to significant advances in recognition research, includ-
ing speech recognition, object recognition [6], and text
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recognition [7], [8]. Moreover, deep neural networks have
been used as acoustic models because of their ability to learn
high-level representations from raw features and classify data
effectively [9]–[11]. Furthermore, emotional contents of a
patient’s speech are usually used medically as a diagnostic
tool for various disorders [3].

However researchers have faced some limitations in speech
emotion recognition [12], including the following. First, fea-
ture analysis has been studied much less in emotion recog-
nition than in speech recognition with the consequence that
there is no agreement among researchers regarding which
features are best for feature extraction. In addition, the same
mistakes have been repeated in recording for different emo-
tional speech databases because of a lack of coordination
among researchers and lack of benchmarking databases that
can be shared among researchers.

Consequently, our paper focuses on three categories of
emotional speech recognition. First, we examine feedforward
neural networks containing sequences of two blocks, MFCC
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and BoAW. Second, we examine DL methods using CNN
with vectors produced usingMFCC. Third, we investigate our
proposed hybrid networks architectures.

The contributions of this paper span multiple dimensions.
First, three new speech emotion recognition architectures
are introduced based on feedforward networks with BoAW,
CNN, and hybrid networks. Second, the performance of the
proposed architectures is compared with those of several
shallow models consisting of BoAW followed by one of
various classifiers such as support vector machines (SVMs),
k-nearest neighbor (KNN) and extreme gradient boosting
(XGBoost), and also to the state-of-the-art. Third, all of the
previously mentioned models are trained and evaluated using
the Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) dataset and MFCC feature extraction.

The remainder of this paper is organized as follows.
Section II explains prior work related to speech emotion
recognition. The details of the proposed systems with the
related background, including a description of the emo-
tion recognition methodology, are discussed in Section III.
Section V is devoted to the systems’ implementation and
performance evaluation, with comments on the metrics and
the results obtained. Finally, conclusions are drawn and future
work is discussed in Section VI.

II. PRIOR RESEARCH
In this section, the state-of-the-art for machine learning and
DL techniques on speech emotion recognition are described.
Recent research studies have shown that increasing the num-
ber of training classes has detrimental effects on the results
because the speech features extracted from emotional classes,
such as the calm and neutral classes, are closely related,
thus slowing the learning performance of DL models [13].
Consequently, our goal in this section is to classify the recent
research studies based on the number of training classes, two,
four, five, six, seven, and eight.

A. CLASSIFICATION BASED ON TWO CLASSES
Classification based on two classes is discussed in [14]
and [15]. In [14], CNN models are trained on the RAVDESS
dataset using two different classes; Sad and Happy. The
maximum recognition accuracy in [14] is 66.41%. The
authors in [15] also have used RAVDESS dataset to train
bi-directional long short-term memory (BLSTM) models
based on the same two classes, Happy achieving up to 70.4%
unweighted accuracy.

B. CLASSIFICATION BASED ON FOUR CLASSES
Most of the following research studies depend on differ-
ent datasets to classify a four speech emotions set (FES):
angry, happy, sad, and neutral. The authors in [16] used
Berlin (286 speech samples) and Hindi (100 speech sam-
ples) datasets to classify the mentioned speech emotions.
KNN usually employed for classification, providing 90%
in the angry class in both datasets, while the minimum
results achieved were 70-80% in the neutral class for the

Hindi and Berlin datasets respectively. FES is also used
in [17] for training models with data selected from the
University of Michigan Song and Speech Emotion Dataset
(UMSSED) andRAVDESS [18] datasets. Simple, simple task
(ST), multi-task feature selection/learning (MTFS/MTFL),
and group MTFS/MTFL (GMTFS/GMTFL) models were
used for classification. The best accuracy based on a
four-class emotion classification is 57.14%. In [19], FES is
extracted from the Interactive Emotional DyadicMotion Cap-
ture (IEMOCAP) dataset to train a CNN architecture using
down sampling of input features maps in convolutional layers
instead of a pooling layer. The recognition accuracy achieved
81.75% for the proposed Deep Stride CNN (DSCNN) archi-
tecture. However, the fear emotional speech class was used
instead of the neutral emotional class in FES [20]. The emo-
tional classes were created from the popular animation film,
Finding Nemo, and the emotion classification using a radial
basis function (RBF) kernel performed with an accuracy of
up to 77.5%.

C. CLASSIFICATION BASED ON FIVE CLASSES
The authors in [21] have employed five different datasets
(EMOVO [22], Surrey Audio-Visual Expressed Emotion
(SAVEE) [23], Berlin emotional speech (EMO) [24],
MOVIES [25] and Kids) with five common emotional classes
(Happiness, Sadness, Anger, Fear and Neutral). The recogni-
tion accuracy is estimated to be between 43% and 83% based
on Speeded-Up Robust Features (SURF) and BoW with an
SVM classifier. In [20], the five classes were used based
on two different datasets for training. Happiness, Sadness,
Anger, and Neutral are the four common classes in both
datasets, while the fifth emotional class is Fear for their own
dataset and Surprise for the DES dataset [26]. A linear kernel,
an RBF kernal and an SVM RBF kernel are used for emo-
tional classification. The maximum overall accuracy values
are 66.8% using five classes and 77.5% using four classes
based on the EFN dataset and 67.6% using five classes based
on the DES dataset.

D. CLASSIFICATION BASED ON SIX CLASSES
Happiness, sadness, anger, fear, neutral, and disgust were
identified as various emotional classes using the Berlin
dataset [27] in [28] and [29]. Different classifiers, such as
SVM, NB, and KNN, are used with MFCC features [28],
while KNN and Gaussian mixture model classifiers using
three features, MFCC, pitch, and energy, are used in [29].
The maximum accuracy was estimated up to 87.7% in both
research studies. Happiness, sadness, anger, fear, neutral, and
calm are the classes that were chosen for emotional recogni-
tion based on the RAVDESS dataset [30]. Two types of vocal
communication are presented; speech and song. In addi-
tion, three shared emotion recognition models for speech
and song are introduced, a simple model (single classifier
for recognition if two domains), a single-task hierarchical
model (domain classification, then emotion classification),
and a multi-task hierarchical model (domain classification,
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then independent emotion classifiers). The highest accuracy
is 53.8% usingMFCC features. In contrast, the authors in [31]
depended on the CASIA Chinese speech emotion recognition
dataset to extract six emotional classes for training, including
happiness, sadness, anger, fear, neutral, and surprise. Deep
Belief Networks (DBN) was introduced as a new classifier
and its performance is compared to those of the shallow
classifiers, Back Propagation (BP) and SVM. The average
recognition rates achieved were 92.5% and 90% for DBN and
BP, respectively. In addition, in [32], restricted Boltzmann
machines (RBMs) and DBN were used together with audio
files from one female Spanish speaker from the emotional
speech dataset [33] as part of large project, INTERFACE,
with the big six classes, joy, sadness, anger, fear, disgust and
surprise along with neutral. Those authors used two kinds
of features for extraction, MFCC and prosodic features with
RBM and DBN, providing a maximum classification error
rate of 40.82%

E. CLASSIFICATION BASED ON SEVEN CLASSES
Average scores in [20] and [34] were evaluated based on
different emotional classes; happiness, sadness, anger, fear,
neutral, boredom and disgust from the Berlin dataset. The
SVM classifier was used with different features (MFCC,
total energy, F0) [20]. The best overall accuracy is up to
63.5%, while in [34], the training is conducted using two
different approaches. The first approach depends on training
the CNN model from scratch and evaluating the prediction
performance on test audio files, while in the second approach,
a transfer learning model is explored to utilize the learning
from the pre-trained model by initializing the weights of the
CNN model before training, thereby achieving better perfor-
mance than with the first approach. The maximum overall
accuracy is greater than 84.3%.Moreover, M. Khan et al. [35]
develop their own dataset (350 samples) in English contain-
ing seven emotional classes; happiness, sadness, anger, fear,
neutral, surprise and disgust. Two classifiers KNN and SVM
were used with an average accuracy of 91.71% and 76.57%,
respectively.

F. CLASSIFICATION BASED ON EIGHT CLASSES
The authors in [15], [19], [36], [37] selected happiness, sad-
ness, anger, fear, neutral, surprise, calm and disgust from the
RAVDESS dataset as the different categories of emotional
speech. In [19], a softmax classifier was used for the classi-
fication of emotions in speech. In addition, a DSCNN model
is trained on two different types of spectrograms; raw and
clean. The overall accuracy is up to 79.5%. Zeng et al. [36]
presented a multi-task model using various deep neural net-
works, including gated residual networks as a classifica-
tion technique. The model achieved an overall accuracy of
approximately 64.48%. Anjali et al. [37] depended on inte-
gration of MFCC, spectral centroids, and MFCC derivatives
of spectral features with a bagged ensemble algorithm of
SVM for recognizing speech emotion with an overall accu-
racy achieved of 75.69%. The authors in [15] recognized

emotional speech data by using a hybrid architecture consist-
ing of BLSTM, CNN, and Capsule networks which together
classify the extracted representations. The overall accuracy
was 69.4%. On the other hand, [38] relied on only male
speech signals from the RAVDESS dataset with multiple fea-
tures that selected based on a continuous wavelet transform
and prosodic coefficients using a non-linear SVM classifier.
The maximum accuracy equals is 60.05%.

In emotional recognition, there are two separate hyper-
classes, which are high arousal and low arousal. High
arousal contains anger, happiness, and anxiety/fear, while low
arousal containing neutral, boredom, disgust and sadness.
The two hyper classes have common properties, such as
happiness/anger and neutral/sadness, sharing similar acoustic
properties in a speaker. Generally, the most important issues
that relate to prosody are pitch, intensity contour, and tim-
ing of utterances. The crucial aspects of angry and happy
speech are characterized by energy values with wider ranges,
longer utterance duration, higher pitch, and shorter inter-word
silence. These aspects show the characteristics of exaggerated
or hyper-articulated speech. The classification of disgust as
low arousal can be challenged, but according to the literature,
disgust is a low arousal emotion.

III. PROPOSED RECOGNITION SYSTEM
After the acoustic signal is received and MFCC is extracted,
speech recognition models are used to detect emotional
classes. New speech recognition architectures based on DL
algorithms are introduced in this paper. The first architec-
ture BFN presented in subsection III-A depends on using
Bag-of-AcousticWords (BoAW) and feedforward neural net-
work (FFN) to obtain the emotional class. The second archi-
tecture is CNA and the third is HBN. These are introduced in
subsections III-B and III-C, respectively. The CNA architec-
ture uses MFCC feature extraction with CNN to extract the
emotional classes. Finally, the HBN architecture combines
the BFN and CNA architectures and then concatenates them
in a fully connected layer to classify the output vector to
obtain the emotional classes.

A. FIRST PROPOSED ARCHITECTURE (BFN)
The acoustic signal is fed to a BFN, which consists of an
MFCC feature extractor, BoAW, and FFN to extract the
emotional class from the input acoustic signal as shown
in Figure 1.

1) MFCC FEATURE EXTRACTOR
MFCC is considered to be one of the acoustic low-level
descriptors (LLDs) extracted from audio signals, because the
audio signals do not follow a linear scale [39]. MFCC was
used to represent a two dimensional short-term power spec-
trum of sound. The physical frequency scale f (Hz) listened
by human ears is implemented by a mel scale fmel which
simulates the frequency perceived by the human auditory
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FIGURE 1. First proposed architecture (BFN).

system. The mel scale function was represented as (1) [40].

fmel = 2595 log10(1+
f

700
) (1)

where f is the physical frequency in Hz, and fmel is the
perceivedmel scale frequency. Then, the speech signal is split
into multiple intervals (windows) and a short time Fourier
transform (STFT) is applied to each interval to generate the
input power spectrum P(ω) which is given by (2),

P(ω) = |STFT (w(n) ∗ s(n))|2 (2)

where s(n) is the input speech, and w(n) is the weighting
window. fj is the mel log frequency that calculates from
equation (3) [41]:

fj = log10(
N−1∑
k=0

|x(k)|Hj(k)) (3)

where j = 1, 2, . . . . . . . . . ,M , (M is the number of triangle
filters). Hj(k) is the value of the j-triangle filter for the acous-
tic frequency of k .
Finally, mel frequency coefficients are obtained by apply-

ing a discrete cosine transform (DCT) on the list of mel log
frequency sub-bands to generate the spectrum (4),

ci =
fsb∑
j=1

fjcos(
π i
fsb

(j− 0.5)) 0 <= i <= nmfc, (4)

where fsb is the frequency subbands, and nmfc number of
mel frequency coefficients. MFCC are the amplitudes of the
resulting spectrum. Generally, researchers take 12-13 mel
frequency coefficients into consideration as features when
training models.

2) BAG-OF-ACOUSTIC-WORD
BoAW is one of the most popular representation methods
for emotional speech recognition [19], [21], [36], [42]. The
input audio signals have various numbers of extracted MFCC
vectors based on the length of the audio signal. However,
the classifiers required a fixed-length vector to represent the
input audio signal. Consequently, BoAW is used to resolve
this issue by implementing a fixed length vector from variable
length audio signal through the use of a clustering algorithm.
BoAW clusters divide all the input MFCC vectors based on
kmeans++ clustering [43] to generate a codebook (dictio-
nary). The codebook size represents the number of audio
words. During training, MFCC vectors of the training set
were extracted and used for training kmeans++. After the
codebook is generated, the acoustic input signal is tested
by extracting MFCC vectors and then quantizing based on
Euclidean distance to the closest codebook. Then, acoustic
wordswere aggregated by computing the occurrence frequen-
cies of each cluster as features for constructing a histogram.

3) FEEDFORWARD NETWORK
Each neuron input into FFN structure was connected to each
neuron in the next layer. Feedforward networks require deal-
ing with fixed-size input which is not deal with sequential
data of variable length. A feedforward network consists of
three types of layers in which each layer computes a vec-
tor. The input layer has a number of nodes equal to the
BoAW vectors’ dimensionality. The output layer contained
eight nodes in the softmax layer [9] for classification. Hid-
den layers are constructed from one or more layers and
represented with nonlinear functions. The DL models were
trained using the ADAptive Moment estimation (Adam) opti-
mizer [44] with a learning rate of 0.001 to update the models’
parameters during the backpropagation process. Adam is an
adaptive gradient algorithm that adapts the learning rate by
dividing it by the root mean square of multiple gradients to
enhance learning. Adam is a combination of momentum and
RMSprop [45], as shown in (5). The gradient update value in
equation 5 is split into two parts. First, the gradient compo-
nent m̂, the exponential moving average of gradients, is shown
in (6). The second part was the learning rate component v̂,
which is calculated by dividing the learning rate α by the
square root of v, as shown in (7). Given that L is the loss
function, m and v are initialized to zero, and the parameter
values α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 108 are
used. The input vectors of hidden layers are multiplied by the
weights and are used with a nonlinear function to generate
the output to the next layer. During training, the input BoAW
vectors bi are propagated from the input layer to the output
layer using linear and nonlinear activation function. The input
layer uses a linear activation function while a rectified linear
unit (ReLU) and softmax nonlinear activation function are
used for the hidden and output layers, respectively.

wt+1 = wt −
α

√
v̂− ε

m̂t (5)
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m̂t =
mt

1− β t1
(6)

v̂t =
vt

1− β t2
(7)

where

mt = β1mt−1 + (1− β1)
∂L
∂wt

vt = β2vt−1 + (1− β2)
[
∂L
∂wt

]2
Linearity : yk = Wkxk + bk (8)

ReLU : yki = ReLU (W T
k bi) (9)

Softmax : yki =
exp(xki)∑
j exp(xki)

(10)

Crossentropy− loss : L(ŷ, y)

=

∑
i

yilog(ŷi) (11)

where i is the index (i = 0, 1, 2 . . .), ŷ is the predicted value,
yi is the output vector, xi is the input vector, Wk is a vector
containing the weights related to output k , and bk is the bias
vector.

B. SECOND ARCHITECTURE (CNA)
Most audio studies convert the audio to spectrograms (image)
to apply CNN in DL models. However, we purpose to
use raw MFCC features directly that improves the results,
as described below and shown in Figure 2.

FIGURE 2. Second proposed architecture (CNA).

1) CONV1D LAYER
The input matrix in our experiments is ∈ Rf×d where f
is the number of frames, and d is the dimension of the
MFCC representation. For the CNN layer, the input layer is
convolved with N weighting filters each of which has size
S× S. These weights are learned the model’s during learning
process. In our proposed architecture, we choose to have three

layers with 64 filters of size 7 × 7, 128 filters of size 5 × 5
and 192 filters of size 3× 3, respectively. This architecture is
inspired by the architecture of various well-known models,
such as AlexNet [46] and VGG [47] which have achieved
very high accuracy in image classification tasks. Generally,
increasing the number of filters gradually assists in capturing
more information, which enables us to represent the data
in a higher space representation. In addition, bigger filter
sizes represent more global, high-level, and representative
information while smaller filter sizes collect as much local
information as possible.

2) MAXPOOLING1D LAYER
The max pooling layer, is a sample-based discretization pro-
cess which generally is inserted periodically between succes-
sive Conv layers. It aims to calculate themaximum, or largest,
value in each batch of each feature map reducing its dimen-
sionality without changing the depth dimension. This is done
by applying a max filter to no overlapping sub-regions of the
initial input. The principal function of the max pooling layer
is to overcome the overfitting problem. Pooling layers with
filter size 2 × 2 are the most common form of max pooling.
Generally, it is applied with a stride of two down samples for
every depth slice in the input doubly along both width and
height.

3) BATCH NORMALIZATION LAYER
Generally, in deep neural network architectures, after updat-
ing the weights of each mini-batch, the input distribution in
the deep network layers might change. In that case, a problem
referred to as the ‘‘internal covariate shift’’ problem [48]
arises. This problem occurs because the inputs pass through
various adjustments in intermediate layers leading to change
the values to be too high or too low while reaching distant
layers. The rule of batch normalization is to solve this prob-
lem making sure to stabilize the input provided to the later
layers to be between zero and one. Normalizing a batch can
be performed using (12) where xi is the ith value in the batch,
µβ is the mean of the batch, and σ 2

β is the variance of the
batch.

x̂i =
xi − µβ√

σ 2
β

(12)

4) DROPOUT(0.5) LAYER
This is used to prevent the model from memorizing or over-
fitting the training data by dropping n% randomly from the
weights between layers in the DL model. The value of the
dropout could be any value between 0%, and 100% with,
50% being the optimal value for a wide range of networks
and tasks, as described in [49]. Dropout of n% of weights
randomly in each batch assists in preventing overfitting and
speeds up the training process. In the testing phase, all the
weights are used without any dropout.
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FIGURE 3. Third proposed architecture (HBN).

C. THIRD ARCHITECTURE (HBN)
Combining DL features and handcrafted features shows
enhanced results in multiple studies [50]–[52]. The HBN
structure is proposed as a combination of the FBN and CNA
structures as shown in Figure3 to obtain the benefits of the dif-
ferent features extracted from each structure.Merging the two
types of audio features results in a new type of features, called
hybrid features, which have stronger discrimination ability
than single audio features. These features contain information
from the BoW vectors that depends on the histogram of the
cluster centers reflecting the frequency of frames. In addi-
tions, the hybrid features include features from the DL layers
that extract features from the raw MFCC features. Then,
the features are combined by a concatenating layer and passed
through a fully connected layer to weight each feature and
learn new representations for the audio input. Finally, we use
a softmax layer to classify the hybrid features into different
emotional classes. Our experimental results show that our
proposed method outperforms previous emotion classifica-
tion methods by yielding higher accuracy and precision on
the same audio dataset.

D. EVALUATION METRICS
Binary-class classification is considered with only two
classes applied, while multi-class classification is assigned
for applications with k classes. Multi-class classification
includes our case in which the proposedmodels are trained on
eight different emotional classes (k = 8). Moreover, various
metrics are used to evaluate the trained model. In our paper,
a confusion matrix, accuracy, precision, recall, and Receiver

FIGURE 4. Confusion matrix for multi-class classification.

operating characteristics (ROC) are used as evaluation
metrics.

1) CONFUSION MATRIX
A confusionmatrix provides valuable information for the pre-
dicted classes as compared to the actual classes that present
the classifier’s performance. This matrix contains four cat-
egories as follows. True Positives (TP) and True Negatives
(TN ) are implemented when the predicated and actual emo-
tional classes are positive and negative, respectively. The
prediction does not match the actual emotional classes in two
cases: False Positives (FP) and False Negatives (FN ). In FN,
the actual class is positive, and the predicted class is negative.
In FP, the actual class is negative, and the predicted class is
positive. Assume that the confusion matrix is denoted by Ck ,
where k is the number of class labels. As shown in Figure 4,
TPs represented on the diagonal of the matrix (grayed cells).
TP, FN , and FP for each class are provided by [53]

TPC (i) = Cij|i=j (13)

FNC (i) =
k∑

j=1,j6=i

Cij (14)

FPC (i) =
k∑

i=1,j6=i

Cij (15)

2) ACCURACY, PRECISION AND RECALL
The Accuracy (ACC) measure for the performance of the
classifier is defined as the ratio of the correctly classified
classes (diagonal) to the total number of predictions, as in (16)

ACC =
TP+ TN

TP+ TN + FP+ FN
=

∑k
i=1 Cii∑k
i,j=1 Cij

(16)

The accuracy metric does not provide a good reflection of
performance for two reasons. First, accuracy is sensitive to
imbalanced data. Second, the performance of two classifiers
can be completely different although the accuracy is the same
in both, depending on the number of correct and incorrect
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decisions [54]. Consequently, precision and recall aspects are
used for evaluating the classifiers. They are used to evaluate
the performance of the model determined from the confusion
matrix. They also focus on true positives for one class (i).
Precision is a measure of exactness that determines the false
positives in the dataset skewing the overall accuracy. Recall
is a measure of the goodness of a match, which measures the
effectiveness of a classifier to identify positive labels [55].
Precision (Pi) and Recall (Ri) are given by

Pi =
TP

TP+ FP
=

Cii∑k
j=1 Cji

(17)

Ri =
TP

TP+ FN
=

Cii∑k
j=1 Cij

(18)

Recall equation relays on TP and FN which are located in the
same column of the confusion matrix. Therefore, the classi-
fication performance with imbalanced data can be evaluated
by recall [54].
On Average:

Pavg =

∑k
i=1 Pi
k

(19)

Ravg =

∑k
i=1 Ri
k

(20)

3) RECEIVER OPERATING CHARACTERISTICS (ROC)
The ROC metric is used to evaluate the output quality of a
classifier. The ROC curve implements the fraction of correct
predictions for the positive class (number of false positives)
on the x-axis versus the fraction of errors for the negative class
(number of true positives) on the y-axis. Each classifier rep-
resents the FP, TP pairs by single points on the ROC. On the
ROC curve, the upper left corner point (0, 1) represents a
perfect or ideal classifier, because it indicates correct classifi-
cation for positive and negative samples. The lower left corner
point (0, 0) represents correct classification for all negative
samples only. In contrast, the upper right corner point (1, 1)
indicates a correct classification for all positive classifications
only. The line (LROC ) between those two points indicates
the performance of the model. Consequently, good classifiers
appear in the upper left triangle of the ROC curve above the
line LROC .

IV. MODIFIED SHALLOW MODELS
This work is an extension for our previous paper [56] that
discussed (SVM, KNN, and XGBoost) with using MFCC
feature extraction followed by BoW output vector as the
input for each classifier. For more, clarification, these mod-
els are renamed in our paper to (MBSVM, MBKNN, and
MBXGBoost) respectively to avoid the confusion as reported
in table 4. Algorithm 1 illustrates the steps of our modified
shallow models.

A. SUPPORT VECTOR MACHINE CLASSIFIERS
One of the most popular binary classification techniques that
is used in speech emotion recognition is SVM [37], [38]. It is

Algorithm 1 Proposed Model Using Different Classifiers
Require: DData = [D1,D2, . . . .DN ]. N is number of audio

files of database.
Require: CLASSES = [L1,L2, . . .Lm]. Li is the label of the

class and m is the number of classes.
1: for i in range(1,N ) : do
2: Split Di into M frames.
3: for j in range(1,M ) do
4: decode frame-j into vector v with length

512 using MFCC feature extraction.
5: end for
6: end for
7: Setting number of cluster equal to C and apply cluster

algorithm on all extracted vectors v. Similar v are grouped
together into one cluster based on Euclidean distance.

8: Build BoW using cluster centroids.
9: for i in range(1,N ) : do

10: applying the histogram on all vector of Di to get only
one vector with length C .

11: end for
12: Array_fold = Split audio data into K fold.
13: for y in range(1,K ) : do
14: Training_data= concatenate array_fold [u] where U

from 1 : K and u != y.
15: Testing data = array_Fold [y].
16: Input_Training = is a matrix with size =
<
len(tainingdata)∗c.

17: Output_Training = is a matrix with size
<
len(tainingdata)∗1.

18: Input_Testing= is a matrix with size<len(testingdata)∗c

19: Output_Testing = is a matrix with size
<
len(testingdata)∗1

20: {# Using one of different classifiers} F

21: Define model as one of SVM (Eq. 20,21), KNN
(Eq. 22), Or XGBoost (Eqs. 23)

22: model.train(input_training, output_training)
23: Output_predict = model.predict(input_testing)
24: using Output_predict and Output_test, Calculate Pre-

cision, Recall and f1 score in Testing_data for each Li
where i in range(1,m).

25: end for
26: Calculate the average of the metrics over all the K folds.

used to identify patterns and analyze the data for classifi-
cation and regression analysis. A kernel function is used to
transform the original set of features to higher dimensional
feature space, which is necessary to obtain optimum classifi-
cation in this new feature space. The goal of our proposed
MBSVM is to find the optimal separating hyperplane that
maximizes the margin of the training data which contains
eight classes as mentioned previously. We used MFCC fea-
tures (2Dmatrix) followed by BoW output vector (1D vector)
as the input to the SVM. Here, the output is a vector that
represents a probability of each class from the eight classes
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in the RAVDESS dataset. The margin can be obtained by the
following equation [57]:

Margin =
2
||W ||

(21)

where the minimization of a norm of a hyperplane normal
weight vector is shown as following [57]:

||W || =
√
(W TW ) (22)

B. K-NEAREST NEIGHBOR CLASSIFIER
KNN is a non-parametric method that is frequently used due
to its ease of interpretation and low calculation time. KNN
can be used for both classification and regression predictive
problems. In both cases, the input consists of the k closest
training examples in the future space. The output of KNN
depends on whether it is used for a regression or classification
process. In the proposed KNN model, the input is MFCC
feature that followed by the BoW output vector (1D vector).
While the output is a vector that represents the distance
between the tested label and the first neighbor from the
training classes of dataset. The distance between the item and
the first nearest neighbor can be calculated as follows [58].

d(p, q) = (q1 − p1)2 + (q2 − p2)2 + · · · + (qn − pn)2 (23)

C. EXTREME GRADIENT BOOSTING CLASSIFIER
XGBoost is a variant of the gradient tree boosting proposed
by Friedman [59]. Gradient tree boosting is a tree ensemble
boosting method that combines a set of weak classifiers to
create a strong classifier. The strong learner is trained itera-
tively starting with a base learner [60]. Both gradient boosting
and XGBoost follow the same principal. The key differ-
ences between them lie in implementation details. XGBoost
achieves better performance by controlling the complexity
of the trees using different regularization techniques [26].
An initial model F0 is defined to predict the target variable y.
While a new model h1 is fit to the residuals from the previous
step. Now, F0 and h1 are combined to give F1, the boosted
version of F0. It can be done for ‘m′ iterations to improve the
performance of F1, until residuals have been minimized as
much as possible. [60].

fm(x) < −fm−1(x)+ hm(x) (24)

The proposed XGBoost is used to predict the residuals or
errors of prior models and then added together to make the
final prediction. The input of this model is the output vector of
the BoW that uses a gradient descent algorithm to minimize
the loss when adding new models.

On the other hand, BFN uses the same features extracted
from MFCC followed by BoW. The features used as input to
the feedforward network with three dense layers and followed
by softmax layer (classification layer) with eight neurons for
predicting the target eight classes.CNA as CNN can deal with
2D input features, we use raw MFCC features as input with-
out using Bow. TheMFCC used as input to the three stages of
CNN. Each stage consists of (1D conv+ Batch norm+Max.

pooling + dropout 0.5). different filter sizes have been used
in the different stages followed by 2 fully connected layers.
Finally, we used softmax layer for classification. HBN: is
the hybrid model that merge between these two features and
hence improve the results.

V. EXPERIMENTAL SETUP AND SIMULATION RESULTS
The simulation and synthesis results of emotional speech
class extraction for the three architectures based on BoAW,
FFN, and CNN are presented in this section. The confu-
sion matrix for multiple classes, accuracy, precision, and
ROC for our three architectures and baseline algorithms are
determined and demonstrated in V-C1, V-C2, and V-C3,
respectively.

A. DATASET USED IN SIMULATION EXPERIMENTS
The proposed models and baseline models are trained over
the public dataset RAVDESS [18]. One of the most important
reasons of using RAVDESS dataset is that it contains eight
classes that increase the classification challenge as mentioned
previous. Our experiments are carried out, based on speech
and song in the RAVDESS dataset, which contains eight
different classes; (neutral, calm, happy, sad, angry, fearful,
disgust and surprise) for the speech recordings. The song
recordings contain only six emotional classes, which are the
same as in the speech recordings but with two classes, disgust
and surprised, omitted. The various classes are recorded by
24 professional actors; 12 males and 12 females. In addition,
each professional actor records the same sentence with two
different emotional intensity; normal and strong. The differ-
ent classes of speech and song recordings into RAVDESS
dataset are listed in Table 1.

TABLE 1. Speech and song recordings details of RAVDESS dataset.

In our experiments, acoustic recordings of RAVDESS
dataset are split into subsets of 80%, and 20% recordings
for training, and testing, respectively. To get more robust
results and avoid the overfitting problem, the initial training
dataset are split into multiple mini train-test splits. Therefore,
the training subset from RAVDESS is divided into n sub-
sets (folds) cross-validation paradigm which use iteratively
(n − 1) folds for training and the remaining one fold for test
set. In our experiments, n equals 5.

B. PROPOSED ARCHITECTURES’ PARAMETERS
All of the proposed architectures are implemented in Python.
All of our experiments are run on Windows 10 Pro 64-bit
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FIGURE 5. Confusion matrix of eight classes for the shallow models, (a) MBSVM, (b) MBKNN, (c) MBXGBoost, and our proposed
architectures, (d) BFN, (e) CNA, and (F) Hybrid networks. Abbreviation:- N: Neutral, C: Calm, H: Happy, SA: Sad, A: Angry, F: Fearful,
D: Disgust and SU: Surprised. (taking the same order in rows from left to right and in columns from top to down).

operating system, HP laptop with an Intel(R) Core(TM)
i5-3210M CPU @2.50GHZ process and 4.00 GB RAM.

1) MFCC FEATURES
The length of the analysis window is set to be 25 ms, and
the step between successive windows (winstep) is equals
to 10 ms. As defaults, the number of cepstrum to return
(numcep) is 13, and the number of filters in the filterbank
(nfilt) is 26. The FFT size which is a non-equispaced fast
Fourier transform (nfft) is 512. Finally, the zeros cepstral
coefficient is replaced with the log of the total frame
energy.

2) FEEDFORWARD NETWORK
The feedforward network in the proposed architectures con-
sists of a fully connected layer with 2000 nodes, a dropout
layer of 0.5, a fully connected layer with 500 nodes, a batch
normalization layer, dropout layer 0.5, fully connected layer
with 200 nodes, batch normalization layer, and a dropout
layer of 0.5. The dropout layers are used to avoid overfitting
and memorizing the training data. Batch normalization layer
is used to normalize the input vector within the batch assisting
in speeding the training.

The CNN network used in our models contains Conv1D
with 64 filters with size 7 ∗ 7 per each, a batch normalization
layer, a dropout layer of 0.5, Then, we use a Conv1D with
128 filters with size 5∗5 per each, a batch normalization layer,
and a dropout layer of 0.5. Subsequently, we used Conv1D
with 192 filters with size 3∗3 per each, a batch normalization
layer, a dropout layer of 0.5, a flattened, fully connected layer
with 200 nodes, a batch normalization layer, and a dropout
layer of 0.5.

The concatenating layer consists of a fully connected
layer with 200 nodes, a batch normalization layer, and a
dropout layer of 0.5.

The softmax layer contains eight nodes for our eight
emotional classifications.

C. EVALUATION
The multi-class classification problem is evaluated using
standard evaluation metrics, such as a confusion matrix, pre-
cision, accuracy, and ROC curves.

1) CONFUSION MATRIX OF CLASSIFICATION RESULTS
As shown in Figure 5, the confusion matrix of classification
results for the shallow models SVM, KNN, and XGBoost
are shown in (a), (b) and (c), respectively, and those for
our proposed architectures are demonstrated in (d), (e),
and (f), respectively. The total numbers of correctly classified
instances are 1898, 1147, 1324, 1966, 2015 and 2075 out
of 1452 for SVM, KNN, XGBoost, BFN, CNA, and HBN,
respectively. Consequently, our proposed models can predict
correct classification better than the shallow models, reflect-
ing the ability of our architectures to extract features to obtain
correct predictions.

2) PRECISION AND RECALL
Precisions for the shallow and proposed models are listed
in Table 2. The shallow models achieve precisions in the
range of 69-85% forMBSVM, 31-71% forMBKNN, 40-62%
for MBXGBoost, while the proposed models achieved
63-90% for BFN, 76-89% for CNA, and 66-92% for HBN.
On average, the hybrid network models outperform the shal-
low models by up to 7.5%, 27.5%, and 31.5% for MBSVM,
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TABLE 2. Precision (%) of our architectures and shallow models based on eight emotional classes.

TABLE 3. Recall of our architectures and shallow models based on eight emotional classes.

TABLE 4. Table 4 setups to compare between performance of different features/model architectures given the same dataset and number of classes.

MBKNN, and MBXGBoost, respectively. High precision
reflects the characteristic that the extraction of emotional
classes by the HBN model detected events mostly correctly.
Recall values for the shallow and proposed models are
listed in Table 3. The models achieve recall in the ranges
67-86%, 26-63%, 19-68%, 66-86%, 73-89%, and 81-88%
for MBSVM,MBKNN,MBXGBoost, BFN, CNA, and HBN
respectively. The maximum average recall for all classes is
84.2% for HBN proposed architecture.

3) RECEIVER OPERATING CHARACTERISTIC (ROC)
ROC curves illustrated in Figure 6 were created by plot-
ting the false positive rate (FPR) against the true pos-
itive rate (TPR) at various threshold settings using the
MBSVM, MBKNN, MBXGBoost, BFN, CNA and HBN
classifiers. The TPR, also known as sensitivity, measures
the proportion of positives that are correctly identified.
Similarly, the FPR, also known as specificity, measures
the proportion of negatives that are correctly identified.
The performance of each emotion can be measured by
the area under the ROC curve, which is an indication of

how each emotion is distinctively classified compared to
others.

The comparison between the state-of-the-art accuracy
(%) and the proposed model’s accuracy (%) is illustrated
in Table 4. In this table, we show only work using the
RAVDESS dataset with eight classes (only speech, only song,
or both). From Table 4, we can conclude that, in only speech
RAVDESS dataset, the maximum accuracy of the state-of-
the-art occurred when [19] used CNN and achieved 79.5 %
accuracy with a training time equal to 14 min, while the
proposed MBSVM with MFCC and BoW achieved 79.36 %
but with a training time equal to 5 min.

On the other hand, when using both speech and song of
the RAVDESS dataset, we find that [36] used GResNets and
achieved 64.48 % accuracy while our MBSVM proposed
model achieved 80.10 % overall accuracy. In addition, from
the results in Table 4, we can see that only song has the
highest result, because songs files contain hard and clear
tones making it easier for the model to obtain information
and predict the emotional classes. The proposed HBN model
achieved the highest overall accuracy equal to 90% when
using only song.
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FIGURE 6. ROC results: Shows the receiver operating characteristic to multiple classes using MBSVM, MBKNN, MBXGBoost and
our proposed architectures; (d) BFN, (e) CNA, and (F) Hybrid networks.

VI. CONCLUSION AND FUTURE WORK
In human computer interaction, automatic speech emotion
recognition has emerged recently as an important research
area. Emotion recognition in speech is a challenging problem
because it is unclear which features are effective for speech
emotion.

Three proposed architectures, BFN, CNA, and HBN, were
presented for extracting emotional classes from acoustic sig-
nals based on DL techniques. The BFN architecture is built
based on BoAW and a feedforward network, while CNA
depends on training a CNN to classify the emotional classes.
The HBN architecture is built based on a combination of FBN
and CNA to enhance the benefits derived from concatenating
different extracted features to create hybrid features. The pro-
posed architectures were evaluated based on the RAVDESS
audio dataset to classify eight emotions in speech and six
emotions in song files. Table 4 illustrates the comparison
between the proposed models and the state-of-the-art related
published work using the same dataset (RAVDESS) and
the eight classes for fair comparison. As mentioned in the
dataset section that RAVDESS dataset is split into audio
files and song files, so we compare our results with the
state-of-the-art results based on using RAVDESS audio files,
song files, or both together. All proposed models shown
in table 4 depend basically on MFCC features output vec-
tor (2D matrix) only or MFCC followed by BoW output
vector (1D vector). Each one of proposed model has its
own architecture to evaluate the performance of the modes.

Any work illustrated in literature review and not included
in table 4 can be explained by the fact that they used dif-
ferent number of classes from RAVDESS dataset or used
different dataset also with fewer number of classes. With
increasing number of predicted classes, the result challenging
is increased. All the state-of-the-art, the shallow models and
the proposed architectures that have shown previously are
based on the same dataset (RAVDESS) for fair comparison
as mentioned before. The proposed models achieved signifi-
cantly better performance in comparison to the shallow mod-
ified models; MBSVM, MBKNN, and MBXGBoost. The
average precision for the proposed BFN, CNA, and HBN
architectures were 81.5%, 83.6%, and 85.5%, respectively.
Finally, the overall accuracy of the HBN architecture was up
to 84.5%, thereby outperforming the state-of-the-art models.
We expect that our future work to include applying our archi-
tectures to other datasets with other languages and with other
DL algorithms. In addition, we expect that in our future work
we will use different datasets and used more features such
as prosody, pitch, and energy that will achieve more accurate
results.
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