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ABSTRACT Students will experience a complex mixture of mental states during discussion, including
concentration, confusion, frustration, and boredom, which have been widely acknowledged as crucial
components for revealing a student’s learning states. In this study, we propose using multimodal data to
design an intelligent monitoring agent that can assist teachers in effectively monitoring the multiple mental
states of students during discussion.Wefirstly developed an advancedmulti-sensor-based system and applied
it in a real university’s research lab to collect a multimodal ‘‘in-the-wild’’ teacher-student conversation
dataset. Then, we derived a set of proxy features from facial, heart rate, and acoustic modalities and used them
to train several supervised learning classifiers with different multimodal fusion approaches single-channel-
level, feature-level, and decision-level fusion to recognize students’ multiple mental states in conversations.
We explored how to design multimodal analytics to augment the ability to recognize different mental states
and found that fusing heart rate and acoustic modalities yields better recognize the states of concentration
(AUC = 0.842) and confusion (AUC = 0.695), while fusing three modalities yield the best performance in
recognizing the states of frustration (AUC = 0.737) and boredom (AUC = 0.810). Our results also explored
the possibility of leveraging the advantages of the replacement capabilities between different modalities to
provide human teachers with solutions for addressing the challenges with monitoring students in different
real-world education environments.

INDEX TERMS Educational support, data-driven application, multimodal learning analytics, multimodal
sensing, students’ mental states detection, supervised classification.

I. INTRODUCTION
Conversation-based discussion is one form of typical com-
plex learning activities held in higher education today in
which students are required to complete a series of complex
learning tasks including answer questions, generate expla-
nations, express opinions, and transfer acquired knowledge.
A broad range of remarkable research has validated the
idea that students’ may consistently experience a mixture
of multiple mental states, such as concentration/engagement,
anxiety, delight, satisfaction, confusion, frustration, bore-
dom etc., in complex cognitive learning [1]–[6]. Those men-
tal states can be used as crucial components for inferring
students’ learning situations. Among them, negative emo-
tional/mental states such as irritation, frustration, and anger
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are often aroused when students make mistakes, struggle at
troublesome impasses, or face failure. Alternatively, a series
of positive mental states such as delight, excitement, and
satisfied are often aroused when they complete tasks, conquer
challenges/difficulties, or gain insight [7]–[9]. Furthermore,
D’Mello and Graesser [9] explored the dynamic changes in
a student’s learning-centered mental states, concentration,
confusion, frustration, and boredom, when they complete
complex learning activities such as conversation-based dis-
cussion. They suggest that a student commonly enters learn-
ing activities with a state of engaged concentration, and this
state will remain until they reach a difficult impasse, which
may result in their state transitioning to confusion. At this
point, two transition paths are described that students may
go through. One is that they go back to being engaged if
the impasse has been resolved, which can be due to pos-
itive accomplishments brought about by solving problems
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or achieving goals. Alternatively, if the impasse cannot be
resolved, the student may get stuck, and their state may
then transition to frustration, at which point, the student is
unlikely to transition back to confusion or concentration, and
if the state of frustration persists, it may be more likely to
transition to boredom, and the student will finally abandon
the pursuit of their learning goals. In his work, the defini-
tions of those four mental states have also been clarified;
(1) engaged concentration is the state of interest in being
involved in activities, (2) confusion arises from a clear lack
of understanding of the current content, (3) frustration is a
state of dissatisfaction or annoyance with the content, and
(4) boredom is a state of becoming weary due to no longer
being interested in the content. An ideal teacher should be
sufficiently sensitive to monitor the students’ mental states
during learning, especially for those negative ones such as
confusion and frustration, and infer the need for latent assis-
tance in order to provide personalized and adaptive coaching
support. For the case of discussion activity, when a student is
found to be confused with the current discussion opinion, the
teacher should give further explanation, or when the student is
found to be frustrated with the discussion content, the teacher
can change how discussion topic is directed to help students
regain their motivation to participant the discussion, thereby
maximizing students’ learning outcomes.

For one-to-one coaching activities, observing students’
external responses, such as their facial expressions or speech
statements, is a common way for teachers to monitor stu-
dents’ learning situations and to determine what kind of
support to provide and at what times [10]. However, for the
case of offlinemulti-participant discussion activities, teachers
have difficulty capturing changes in the mental states of
each participant, especially for those students who engage in
few interactions in a discussion and who, most of the time,
prefer to participate as if they were an audience member.
In addition, the outbreak of COVID-19 around the World
from early 2020 has changed people’s daily lives, such as by
requiring them to wear a mask to carry out daily communi-
cation. This has undoubtedly brought greater difficulties for
teachers in observing the complex mental states of students
in discussion activities, since facial expressions are not suf-
ficiently available anymore. On the other hand, carrying out
remote lectures or discussion activities has gradually become
a popular form of modern coaching; however, because some
students tend not to use cameras or tend to mute microphones
during remote educational activities, this will lead to facial
and auditory cues being completely unavailable at certain
times, which undoubtedly brings another challenge for teach-
ers in capturing the mental state of students.

There has been increasing attention on automatically
detecting students’ complex learning-centered mental states
during learning, and research has benefited from online envi-
ronments that make it possible to generate and accumulate
massive amounts of high-frequency learning data. Most pre-
vious work has focused on detecting students’ single men-
tal state such as in terms of engagement, when they are

interacting with an online tutor system or completing learning
tasks in a computer environment, such as problem solving,
essay writing, programming testing, and game design [4],
[11]–[15]. Some of these works used uni-variate modality
signals, that is, video [11], audio [4], [12], and physiological
measures [13]. Most recently, with the emergence of mod-
ern sensors, opportunities to support novel methodological
approaches to measure a student’s mental state from various
perspectives have been explored to improve recognition accu-
racy. The authors of [16] used facial cues and heart rate cues
to predict students’ engagement as they work on writing tasks
in a computer environment; [14] integrated facial and EEG
signals to describe a group ofmiddle school students’ engage-
ment level while they interacted with an online learning tutor
system.

However, it is still an open question on how to effectively
monitor students’ multiple mental states including concen-
tration, confusion, frustration, and boredom while they inter-
act with a human teacher in real-world learning activities.
We attempt to explore these questions by leveraging mul-
timodal data to design an intelligent monitoring agent that
can effectively sense the multiple mental states of students in
real-world learning activities. To achieve this goal, we devel-
oped an advance multi-sensor-based data collection system
and applied it on an environment of a discussion held in a uni-
versity’s research lab to record the visual, physiological, and
audio data of students while they interacting with a teacher.
Then, we derived a series of proxy features from multimodal
cues and used them to generate a set of machine learning
models to predict the multiple mental states of students,
as shown in Fig.1. In this study, we would like to explore how
to fuse different modalities to provide the best combination
in identifying different mental states. Meanwhile, we also
investigate the possibility of using the supplementation and
replacement capabilities ofmodalities to provide solutions for
navigating situations in which certain modalities are unavail-
able in real-world educational settings.

A. NOVELTY AND CONTRIBUTIONS
There are several novel contributions in our work that are
preliminarily different from relevant studies; (1) Instead of
learning interactions between students and computer tutors
or pre-designed script-based learning activities in both HCI
or HHI environments, we are interested in paying attention
to an ‘‘un-plugged’’ scenario in which students and their
advisor teacher have a coaching-driven conversation in real
discussion-based learning activities. Therefore, our study
aims to analyze a series of ‘‘true feelings’’ exposed dur-
ing these real conversations, increasing the applicability and
practicality of our results for real-world coaching activities.
(2) Since ‘‘in-the-wild’’ contexts with real operational envi-
ronments and real teacher-student conversations pose unique
challenges in terms of collecting, validating, and interpret-
ing data, we developed a multi-sensor-based data-collection
system for supporting the generation and accumulation
of massive amounts of multimodal data in ‘‘in-the-wild’’
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FIGURE 1. The framework for identifying students’ multiple mental states based on multimodal data.

educational settings. This additionally aims to provide an
enormous amount of rich high-frequency data resources to
support other multi-angle analysis work in real-world edu-
cational activities. (3) With a few exceptions, most exist-
ing work has focused on using a uni-variate modality to
analyze students’ single mental state, such as engagement,
or basic emotional states such as joy and sadness. In com-
parison, this study attempts to integrate multiple modalities
including facial, heart rate, and acoustic cues to generate an
intelligent monitoring agent that effectively senses multiple
learning-centered mental states of students–concentration,
confusion, frustration, and boredom. Our results provide evi-
dence of the potential practical value of taking advantage
of the supplemental and replacement capabilities between
the different multimodal data to explore students’ ‘‘in-the-
wild’’ mental states in different real-world educational envi-
ronments.

II. RELATED WORK
The research regarding the detection of students’ mental
states in learning activities range from early studies that used
uni-variate modality to characterize students’ mental states
in learning activities to the recent development of multi-
modal learning analytics (MMLA) to measure students’ mul-
tiple mental states in learning activities from high-frequency
multivariate modalities. Most previous work has focused
on detecting students’ mental states when they complete
pre-designed learning tasks in a computer environment, and
only a few exceptions focused on analyzing the mental states
of students when they are interacting with a human teacher in
the classroom or in an offline educational environment.

A. FACIAL-MODALITY-BASED DETECTION
With the development of computer vision technologies, there
has been a rich body of research work that uses facial features
extracted from video streams for the task of detecting human
mental states. Hoque et al. [17] derived a set of mouth-related
features from video to characterize smiling movements and
explored the possibility of a ‘‘smile’’ being used to identify

frustration or delight. De et al. and Gomes et al. [18], [19]
employed eye-related features from facial signals like blink-
ing and gaze to analyze students’ concentration states during
learning activities. Grafsgaard et al. [20] used a series of
video-based cues to characterize facial expressions and pre-
dicted students’ engagement, frustration, and learning gain.
bosch et al. [21] used several facial related features extracted
from video to describe the movement in the brow, eye, and
lip areas, and they trained several supervised learning models
including logistic regression and Bayes net on the basis of
those visual features to predict multiple mental states when
students are playing a physics game in a computer envi-
ronment. This work validated the predictive ability of facial
features by achieving AUC scores of 0.610 for boredom,
0.649 for confusion, 0.867 for delight, 0.679 for engagement,
and 0.631 for frustration.

B. PHYSIOLOGICAL-MODALITY-BASED DETECTION
More recent work in this space has been able to accurately
predict students’ learning-centered mental states or simply
basic emotional states when they are engaged in learning
activities. Mental states are generally considered to be related
to thoughts and feelings controlled by the autonomic nervous
system (ANS), and their changes can be observed through
physiological signals such as the heart rate (HR) and brain
waves [22]–[24]. This theoretical fact makes the heart rate
(HR), heart rate variability (HRV) or EEG signal the most
widely used clues in the work of emotional/mental state
detection. Hellhammer assessed HR changes before, dur-
ing, and after cognitive tasks to measure students’ stress
level [25]. Pereira et al. used HR and HRV to predict stu-
dents’ stress state [26]. Muthukrishnan validated the predic-
tive ability of HRV features in predicting students’ learning
performance [27]. In our previous work [28], we took advan-
tage of the use of heart rate signals to predict the appro-
priateness of students’ answers, and we suggested that their
mental confidence toward correctly giving answers could be
indicted by their HR and HRV features. Several pieces of
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work [29]–[32] employed EEG signals in a prediction task
regarding students’ mental states such as engagement in a
student-computer interactive learning environment.

C. ACOUSTIC-MODALITY-BASED DETECTION
It is widely believed that emotional/mental state information
may be transmitted from speech signals and can be expli-
cated from linguistic and audio channels. Students’ learning
in computer environments makes it easy to collect a large
amount of text-related log records, and several pieces of
research derived a number of linguistic signals on the basis of
text content to predict learning-centered mental states. Reilly
et al. [33] used a set of linguistic features to predict how
students reached consensus and their level of understanding
of problems. Kovanovic et al. [34] took advantage of textmin-
ing technologies to extract a number of text-based features
from online discussion transcripts to predict students’ cogni-
tive presence. However, for face-to-face conversation-based
learning activities, a secretary is often required to manu-
ally record the content of the discussion, which will bring
high costs and low accuracy of the recorded text due to
the deviation between the original intention of the speaker
and the understanding of the recorder. In addition, emotion
recognition in conversations (ERC) has become one of the
hottest topics in the NLP field and is gaining increasing atten-
tion from the community. Castellano et al. [35] proposed a
method for extracting speech features includingMFCC, pitch
contour, etc. with other modality cues to classify eight basic
emotions: anger, despair, interest, irritation, joy, pleasure,
pride, and sadness.

D. MULTIMODAL-LEARNING-ANALYTICS BASED
DETECTION
There are several inspired pieces of related literature that use
MMLA to detect themental states of students during learning.
The authors of [16] used facial cues and heart rate cues to
predict student engagement as they work on writing tasks in
a computer environment. They generated a set of supervised
learning models based on logistic regression and Bayes net,
achieving AUC scores of 0.660 for classifiers based on facial
modality and AUC scores of 0.730 for classifiers based on a
combination of facial and heart rate modalities. These results
suggest that physiological data can extend beyond what can
be easily perceived by humans (e.g., facial expressions). Chen
et al. [36] analyzed a series of video records of one child
solving math problems with his mom to extract a series of
features frommultiple modalities such as facial, acoustic, and
other interactive cues in order to characterize the child’s mul-
tiple mental states including confusion, frustration, joy, and
engagement demonstrated during learning activities. Peng et
al. [14] integrated multiple modalities of facial and EEG sig-
nals from a group of middle school students to describe their
engagement level when they interacted with an online learn-
ing tutor system. Wampfler et al. [37] adopted a bio-sensor
and stylus to record several physiological signals such as
heart rate and skin temperature and writing-related features

such as writing speed when students worked on math tasks in
a computer environment to predict their mental states

E. CURRENT STUDY
The literature review shows that there has been a lot of work
exploring the automatic measurement of the mental states
of students when they engage in a series of pre-designed
learning tasks in a computer environment. However, there
are many questions that remain unanswered with regard to
how to measure the mental states of students when they
completing face-to-face ‘‘conversation tasks’’ with a human
teacher, and how we could effectively design detectors to
address the challenges with monitoring students in ‘‘in-the-
wild’’ education environments.

Therefore, in this study, we would like to challenge
the research question of recognizing students’ multiple
learning-centered mental states, concentration, confusion,
frustration and boredom, when they are having coaching-led
conversation-based discussion with their teacher in the wild.
We took advantage of modern sensor technologies to col-
lect a multimodal dataset–we used the Apple Watch for
real-time heart-rate data detection, integrated the ARKit
frame work and iPhone front-camera to track and collect
facial motion signals, and used AirPods together with pin
microphones to record the audio of discussions. A video-
audio-based retrospective annotation tool was developed to
collect ground-truth measurements of the multiple mental
states of students. A set of multimodal features were extracted
and used to train a series of supervised classifiers with various
multimodal fusion methods. We validated the performance of
automatic detectors at the student level to ensure generaliza-
tion to new students.

III. DATA COLLECTION METHODOLOGY
A. PARTICIPANTS AND EXPERIMENT SCENARIO
Data for our multimodal dataset was collected on the basis
of participants including four graduate students (one female
student and three male students) and their advisor professor.
The students ranged in age from 21 to 24 years. The professor
has been guiding these students for 2 years by holding regular
small-group progress report meetings every week.

As shown in area (a) of Fig. 2, we selected a scenario
held in a real-world university’s research lab, which is the
main way for the professors to check the research progress
of students and provide appropriate guidance. This kind of
research-progress-report meeting is held once a week, and
the meetings go as follows: (1) students report their lat-
est research progress in order; (2) the professor may ask
questions about the details of the experiments based on the
content of the current student’s report, ask the student to
explain in detail if some point is not clear, or conduct further
discussion with student around a certain research problem.
One regular meeting generally took around 3 hours in total,
with an average length of around 50 minutes for each stu-
dent’s report chunk, including a 10-min presentation and
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FIGURE 2. (a) Small group face-to-face conversation-based coaching discussion. (0) Data collection system was placed on a desk in front of each of
participant. (b) Multi-sensor-based data-collection system. (1) ARKit running on iPhone for face tracking. (2) AirPods for recording audio. (3) Apple Watch
for detecting heart rate. (4) Ricoh THETA for recording panorama video of the experiment in 360 degrees.

a 30–40-min. conversation discussion chunk. We observed
that each student’s conversation chunk were carried out only
between the current presenter-student and the advisor pro-
fessor. We selected this real-world discussion activity as our
experimental scenario, and we attempted to explore how to
detect the mental states of students when they have those
conversations with their advisors. In addition, according to
students’ report, they were not subject to external distractions
such as wearing devices to collect data, since they were
completing a series of real conversations with their professor
in a real regular learning activity.

B. MULTI-SENSOR BASED MULTIMODAL
DATA-COLLECTION SYSTEM
We developed a multi-sensor-based data collection system
shown in area (b) of Fig. 2 to collect multimodal data involv-
ing facial, heart rate, and audio signals as students held dis-
cussions with the professor. Before the meeting, all partic-
ipants were asked to initiate the data collection mechanism,
whichwas placed on a desk in front of each of them, by choos-
ing their name and meeting date and then pressing the record
button on the iPhone; then, the multi-modal data-collection
functions for each device were synchronized and started. All
of the sensors were working with the same timestamp.

• Facial data collection: We used the ARKit framework
to integrate the front-facing camera of the iPhone to
detect the face and track the positions of the face with
six degrees of freedom, and we then generated a virtual
mesh overlaid over the face to simulate facial expres-
sions in real-time, an example was shown as Fig. 3.

• Heart rate data collection: We employed HealthKit
framework running on a paired Apple Watch to detect
students’ changes in heart rate for the entire discussion,
The students were asked to wear the Apple Watch on

FIGURE 3. An example of facial movements detected from a student.

their wrist, and it was started at the same time as the
iPhone.

• Audio data collection: We used AirPods to syn-
chronously record the participants’ audio data. Partici-
pants wore the AirPods in each ear for the entire dis-
cussion. In the case that the audio data could not be
recorded due to equipment failure or lack of power,
we also required students to wear pin microphones to
record their audio data. We also used Google Cloud
Speech-to-Text to convert speech content into text con-
tent, and asked the speakers to manually modify the
text that was translated incorrectly while listening to a
recording of their speech as well as to add a period after
each complete sentence so that entire speech statements
could be divided into sentence units. These text data in
sentence units were stored in csv format, and we used
them as subtitles for the video in the annotation work
that we will explain in the next section.

• Panorama video recording: We used a Ricoh THETA set
in the middle of where the participants were seated to
record panorama video of the experiment in 360 degrees;
this was for providing audio-video reference for annotat-
ing participants’ mental states.

C. OBSERVER RETROSPECTIVE ANNOTATION OF MENTAL
STATES
Generally, there are two common ways of annotating men-
tal states: self-report and observation by a third party.
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Considering that self-reporting by the participants themselves
may lack a certain degree of objectivity, our ultimate goal
was to develop a monitoring agent that augments the per-
ceptual ability of teachers (third party) in observing students’
mental states, so we adopted the second method, annotation
by third-party observation, to collect ground truth data of
the students’ mental states. We employed two independent
annotators to do the annotation work. They included one
professor and one PhD course student who both came from
the same research lab as the participants but did not attend the
experiment meetings. The annotators have rich experiences
in annotating such kind of data through observing students’
facial expressions, body movements and verbal speech. Such
as they were asked to observe students’ facial expressions,
body language (hand gestures, eye contact) and speech cues
(speed of speak, manner of speak, tempo of speak) to judge
their certainty level of giving appropriate answers in Q&A
session in discussion meeting and their overall confidence
levels. Therefore, in this study, we employed these two
annotators as external observers to annotate mental states of
speaker-students by observing their facial expressions, upper
body movements (since the participants were sitting, most
of the body movements occurred on the upper body, such as
raised hand and body leaned forward), speech cues (speed of
speak, manner of speak, tempo of speak, and text content of
speech).

To better implement this annotation work, a video-audio-
based retrospective annotation tool was developed as shown
in Fig. 4. All of the video segments (with a mean length
of 10 secs for each video segment) of each student hav-
ing conversations with their professor were extracted from
the panorama video (10-second windows was inspired by a
number of previous studies [38], [39]). Before annotation,
we made clear the definitions of these four states to all of
the annotators. Then, the annotators needed to watch the
video segments and comprehensively observe the student’s
facial expressions, acoustic cues (speed of speak, manner
of speak, tempo of speak), text content of speech (subtitle
information of the current speech sentence displayed at the
bottom of the screen), and upper body movements (hand
movements, body positions). Finally, the annotators needed
to annotate the student into one of the four mental states that
they thought the student most clearly showed by selecting
the corresponding buttons at the bottom of the screen. The
annotators can repeat to watch the video as many times
as they want, and if there was no clear mental state, they
did not need to choose any buttons. We adopted Cohen’s
Kappa [40] to measure the inter-rater agreement of these
two different annotators. According to the explanation of
the kappa value, if it varies from 0.41 to 0.60, the agree-
ment level is considered to be moderate, and if it falls
within the range of 0.60–0.80, it is considered to indicate
substantive agreement between different subjective opinions.
If the kappa value is in the range of 0.81–0.99, the two
annotators were considered to have almost reached perfect
agreement.

FIGURE 4. Tool for annotating mental states.

D. MULTIMODAL DATASET
We recorded a total of 10 meetings, accumulating 1967 min-
utes worth of video-audio and physiological data with
a mean length of 491 minutes for each student. There
were 9507 video clips that needed to be annotated with a
mean length of 10 secs for each clip. We computed the Cohen
Kappa value of the judgement for each mental state between
these two annotators (which we treated as a binary labeling
task). We got a Cohen Kappa score of 0.64 and 0.71 for
the inter-agreement level on the judgment of concentration
and frustration, which suggests that these two annotators
were in substantive agreement on their judgment of these
states. Furthermore, we achieved a Cohen Kappa value of
0.44 for confusion and 0.50 for boredom, which indicates a
moderate agreement level between the two annotators in their
judgment of confusion and boredom. Finally, we obtained
1772 successful observations of mental states which received
consistent judgment from the two annotators, and used that
data as the ground-truth of the mental states of students in
this study. Looking at the details of the data, concentration
was the most common mental state observed by annotators
(75.2%), followed by frustration (10.4%), confusion (9.6%),
and boredom (4.8%).

IV. METHODOLOGY FOR RECOGNIZING MULTIPLE
MENTAL STATES
In this section, we present how we designed multimodal ana-
lytics to develop an intelligent agent that identifies students’
mental states including concentration, confusion, frustration,
and boredom in conversation-based discussion activities.
There are twomain parts; in the first part, three types of proxy
features are derived separately from three modality streams:
the facialmodality, heart ratemodality, and acousticmodality.
In the second part, we explain how we built several super-
vised learning classifiers based on those selected features
using different modality fusion methods, signal-channel-
level, feature-level, and decision-level fusion, to recognize
learning-centered mental states. To reduce the dimension of
the feature space and select the important features of each
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FIGURE 5. (a) Example of measurement of the movement of eye-closure
and eye-opening, where the natural state is the state when the eyelid is
opening with a relative coefficient of 0.00, and the maximum movement
of the eyelid is the state when it is closed with a coefficient of 1.00. (b)
Example of measurements of the actions of speaking and smile by
calculating the movement of the lips along the vertical direction and the
movement of both of the mouth corners among the four quadrants,
in which the natural state of the mouth is the natural closed state without
movements of the lips or mouth corners, with a coefficient of 0.00, while
the respective maximum movements with a coefficient of 1.00.

modality, we apply a feature selection process (only on the
training dataset) for the three kinds of extracted features
separately. Leave-one-student-out cross-validation was per-
formed to validate the recognition performance of each clas-
sifier.

A. EXTRACTION OF MULTIMODAL FEATURE SETS
1) EXTRACTING FACIAL FEATURES
Aswe introduced in the last section, with the aid of the ARKit
library, which was integrated with the depth camera of the
iPhone, various types of information regarding the students’
face were detected, such as the face position and orientation,
along with a series of blend shape coefficients to describe the
facial expression of a recognized face in terms of the move-
ments of specific facial features. The blend shape coefficient
was a floating point number indicating the current position
of the respective feature relative to its neutral configuration,
ranging from 0.00 (neutral) to 1.00 (maximum movement).

Considering that previous lines of work have explored the
effectiveness of using facial related features in the eye and
mouth areas to analyze students’ mental states in learning
activities, we decided to focus on the facial cues of these areas
as well. As shown in Fig.5, the related facial mesh that we
adopted characterized the dynamic facial features in the eye
and mouth areas. Area (a) of Fig.5, shows the measurement
of the movement of closing the eyelids along the vertical
direction, where the natural state is the state when the eyelid
is opening (relative coefficient of 0.00), and the maximum
movement of the eyelid is the state when it is closed (coeffi-
cient of 1.00). Area (b) showsmeasurements of themovement
of the lips along the vertical direction and the movement of
both of the mouth corners among the four quadrants, where
the natural state of the mouth is the natural closed state with-
out movements of the lips or mouth corners, which is detected
as shown with the facial mesh in the upper left corner of (b).
The facial mesh in the bottom left corner shows the mouth

state in the open state when the lips move in the vertical direc-
tion. At the same time, the correlation coefficient depicting
the mouth opening movement moves in the positive direction,
and the maximum value is 1.00. In addition, the four facial
meshes on the right side of panel (b) present measurements
of the movement of the mouth corners in four quadrants,
where we define the movement of the corners of the mouth
in the first and fourth quadrants to represent the ‘‘smiling’’
state and its movement in the second and third quadrants to
represent the ‘‘frowning’’ state. Then, based on those blend
shape coefficients extracted from raw videos at an average
frequency of 30.0 Hz, a sequence of dynamic facial features
were derived to characterize the movement patterns of the
eye and mouth. We used the first 300 frames (10 seconds)
from each entire meeting video as a baseline in computing
the features.
• Eye-related features: We used coefficients describing
the changes in the closure of the eyelids over the left
and right eyes to detect eye-blink events, which have
often been used as a proxy in recognizing mental states.
We took the average of the eye-lids’ movement coef-
ficient of both eyes when the Pearson’s r score was
equal or higher than 0.70. However, when head rota-
tion outside this range was detected, as often happens
in ‘‘in-the-wild’’ uncontrolled environments as in our
study, we only used the movement coefficient of the
visible eye. The raw eyelid-movement coefficient time
series was further denoized using a Savitzky-Golay fil-
ter [41] with a window of 15 frames to remove arti-
facts introduced when the device occasionally lost track
of faces, leading to incorrect measurements. We then
applied peak detection [42] methods to detect the local
maximum (peak, eye-shut) and local minimum (valley,
eye-opening). Eye blinks were detected by identifying
a complete cycle from open (low coefficient) to close
(high coefficient) and then back to open. We filtered out
fake blinks by setting a threshold of 0.50 as theminimum
peak coefficient since it may indicate eye squinting and
a minimum between-peak duration of 0.40s since an
eye-blink cycle is around 0.40 to 0.60s. Eye-blink rate
was calculated based on the identified eye-blink events
as one of the eye-related features. In addition, we derived
two other related features to describe the sustained dura-
tion of eye-closure and eye-opening. Presumably, when
a student’s concentration level is heightened, the dura-
tion for which their eyes remain open may increase,
while eyes closed for a long period of time may indicate
that a student is squinting or feels bored.

• Mouth-related features: Like the action of the eyes open-
ing and closing, mouth movement dynamics may reveal
students’ underlying cognitive and mental processes
manifested through prototypical patterns such as ‘‘smil-
ing,’’ which reflects a positive mental state of feeling
accomplished or happy or ‘‘frowning,’’ suggestive of a
negative mental state such as confusion or frustration.
We define the ‘‘smiling’’ state as when two corners of

VOLUME 9, 2021 18241



S. Peng, K. Nagao: Recognition of Students’ Mental States

FIGURE 6. Example of mouth movement patterns observed from one student when he conversed with teacher: left and right corners of lips and
middle points of upper and lower lips. (a) Mouth open, (b) mouth close, (c) frown, (d) smile, (e) the movement of the corners of the mouth is detected
in the first and third quadrants, (f) the movement of the corners of the mouth is detected in the second and fourth quadrants.

the mouth respectively appear in the first and fourth
quadrants with a minimum movement coefficient of
0.30, and when the movement of the corners of the
mouth is detected in the second or third quadrant with
a maximum movement coefficient of -0.30, we regard
the state at this time as the ‘‘frowning’’ state. Besides
these basic patterns of mouth movements, from the data
itself, we also found a state of interest, that is, the corners
of the mouth show a slanted line, which means that
the movement of the corners of the mouth is detected
in the first (or second) and third (or fourth) quadrants.
Presumably, when a student is confused or frustrated
with the discussion content, the movements in the mouth
area would appear diagonal. To filter out fake ‘‘diagonal
lines’’ that occur due to actions made when speaking,
we set a threshold for an effective slanted line, that
is, when the slope of the line between the corners of
the mouth falls between −0.57 and 0.57 (The angle
between the line of corners and the x-axis ranged from
30◦ and 150◦). Then, the sustained duration of ‘‘frown-
ing’’, ‘‘smiling’’ and ‘‘diagonal lines’’ were calculated
by measuring the movement of both mouth corners
among the four quadrants. Furthermore, it is generally
believed that the visual cues that describe the actions of
mouth during speaking could be used to reveal the men-
tal sates of students in conversations. Considering that,
we alsomeasured themovement of lips along the vertical
direction to capture the mouth open-close actions during
speaking, and calculated the velocity and acceleration of
mouth open-close actions as another two mouth-related
features. In Fig. 6, we present those patterns of mouth
movements observed from a student when he conversed
with the teacher.

We measured eye- and mouth-related dynamic events for
a given time window of 3 sec. and then computed several
statistical features including mean, standard derivation (std.),
max, min, range, and root mean square (RMS) over the entire
video segments.

2) EXTRACTING HEART-RATE FEATURES
We detected students’ heart rate (HR) from the sensor on
the Apple Watch, and the data was a uni-variate continuous

value within the range of 0–150 beats per minute reported
at a frequency of approximately 1.0 Hz. Considering the
individual differences of the participants, the first 5 minutes
of HR data before each experiment was used as a baseline in
computing theHR features.We first sampled theHR values to
the same frequency as the facial data and then experimented
with two different methods of extracting features from those
values.
• Aggregated heart rate features: One of the methods was
deriving a series of simple statistic features including
the mean, standard deviation (std.), root mean square
successive difference (RMSSD), max, min, variance,
slope, mean gradient, and spectral entropy for the entire
segments.

• Sequential pattern heart rate features: In the second
method, we explored rich feature representations that
can describe the moment-by-moment dynamic changes
in the HR value using symbolic aggregate approxima-
tion (SAX) [43], [44], which was done in two steps.
First, the piecewise aggregate approximation (PAA) [45]
algorithm was applied to the standardized raw sampled
heart-rate time series T = {t1 . . . tn}, with zero mean
and unit variance, where T is the time of each speech
video segment. We then divided the time series of length
T seconds into w (w = 5) equal-length segments and
represented the w-dimensional space with a real vector
T = {t1 . . . tw}, where the ith element of T was com-
puted with the following (1):

t i =
w
n

n
w i∑

j= n
w (j−1)+1

tj (1)

Second, we mapped the PAA sequences of values into
a finite list of symbols. The discretion threshold was
chosen so that the distribution of symbols was approxi-
mately uniform. We chose an alphabet of size 3 {a, b, c}
to represent the PAA sequences to reflect the underlying
dynamics of heart rate transition among three levels, i.e.,
low, medium, and high. In Fig. 7, we give an example of
the SAX representation ‘‘cbaaa’’ generated from a raw
heart rate time series as a way of characterizing temporal
dynamic patterns. Then, we used a featurization method,
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FIGURE 7. Example of sequences generated from HR time series using
SAX representation.

‘‘Bag-of-Words,’’ where each word is a SAX pattern
such as ‘‘cbaaa.’’ Altogether, we had 243 ‘‘words’’ of
HR SAX patterns.

3) EXTRACTING ACOUSTIC FEATURES
We used openSMILE [46] to extract audio features. OpenS-
MILE is often used for automatically extracting the features
of audio signals and also for classifying speech and music
signals. Since openSMILE is used by the OpenEAR project
for emotion recognition [47], various standard feature sets for
emotion recognition are available on openSMILE. We used
The INTERSPEECH 2009 Emotion Challenge feature set,
which contains 384 standard audio features that have been
validated in terms of prediction ability regarding the task
of recognizing emotional/mental states. These features are
based on 16 base contours (MFCC 1–12, RMS energy, F0,
zero crossing rate, and HNR) and their first derivatives (with
10-ms time windows). Features for a whole chunk were
obtained by applying 12 functions [mean, standard deviation,
kurtosis, skewness, minimum and maximum value, relative
position, and range as well as two linear regression coeffi-
cients with their mean square error (MSE)]. The entire audio
data of each discussion was recorded by AirPods and stored
in mp3 format. We converted it to wav format and segment
them based the same start and end timestamp of each video
segment we introduced before. We then used the openSMILE
API to extract 384 features for the acoustic channel.

B. SUPERVISED CLASSIFICATION OF STUDENTS’
MULTIPLE MENTAL STATES
We built a line of supervised learning models with three
different multimodal fusion methods as shown in Fig. 8.
The feature vectors for each modality are denoted as fhr , fa,
and ff , which respectively represent a set of modalities of
M = {heart rate, acoustic, facial}. First, three baseline pre-
dictionmodels were separately built on the basis of individual
channels: fhr , fa, and ff . Second, we built four feature-level
fusion prediction models in which we combined the three
modalities together and trained a multi-label classifier called
the ‘‘Combo. classifier,’’ along with three other classifiers
based on two modalities each time (fhr + fa; fhr + ff ; fa+ ff ).

Considering that if the numbers of features that we adopt from
different modalities are extremely unbalanced, the modality
for which more features are used will dominate the final pre-
diction results. we performed feature selection to separately
selected features for each modality and ranked them accord-
ing to feature importance for prediction, which we explain in
detail in the following section. We chose a similar number of
features from each modality to use to build each feature-level
classifier. Finally, we also built decision-fusion level classi-
fication models, in which we used three single-channel-level
classifiers as base classifiers to make classifications on the
same test instances separately. We then voted on the predic-
tion results (the probability of belonging to each category)
which were denoted as Ohr , Oa, and Of , respectively, and the
result of the base classifier with the highest decision proba-
bility was selected as the final decision of each instance. The
advantage of building decision-level fusion learning models
is that, even in the case that some of the modality information
was corrupted due to signal noise, was missing, or could not
be captured due to occlusion or sensor artifacts, etc., which
often occurs in the data collecting process in ‘‘in-the-wild’’
environments, we could still obtain final prediction results by
training the available base classifiers on the instances.

1) FEATURE SELECTION
Considering that using all features for each modality we
extracted may decrease the performance of the learning pre-
diction models, we applied RELIEF-F [48] to select features
to reduce the dimensionality of raw features and extract the
important features of each modality regarding the prediction
tasks. We did so on training data only. RELIEF-F algorithm
can deal with multi-class problems and is more robust with
incomplete and noisy data. It randomly selects an instance
R and then searches for k nearest instances from the same
class called ‘‘nearest hits instances’’ as well as k nearest
instances from each different class called ‘‘nearest misses.’’
Then it updates the weight of all attributes depending on R,
nearest hits, and nearest misses. A feature importance list
will be returned in which features are ranked by weight.
To decide the subset of features of each modality to be
used, we selected several proportions used to extract a fea-
ture subset from each modality and validated the predictive
performance by using each proportion of features. Due to
there being 252 HR related features, 384 acoustic related
features, and only 48 facial related features, we separately
tested 3 different proportions of facial related features with
(0.30, 0.50, 0.70), as well as 4 different proportions both
of HR and acoustic features with (0.05, 0.08, 0.10, 0.15).
We will report the proportions of each modality that provided
the best predictive performance in the results section.

2) SUPERVISED CLASSIFIERS AND VALIDATION
Due to the class distribution of mental states being highly
skewed, which is a common situation in the work regard-
ing detecting emotional/mental states of human in the
wild. We adopt Synthetic Minority Oversampling Technique

VOLUME 9, 2021 18243



S. Peng, K. Nagao: Recognition of Students’ Mental States

FIGURE 8. Supervised learning mental-state-prediction classifiers with different multimodal fusion approaches.

(SMOTE [49]) in the training data (we do not use it in testing
data) to cope with data imbalance in order to improve model
fitting. SMOTE creates synthetic instances in minority class
by projecting new data points in the feature space between an
instance and randomly chosen nearest within-class neighbors.
We built a set of multi-class classifiers based on three kinds
of supervised-learning machine learning models including
support vector machine (SVM), random forest (RF), and
multi-layer perceptron (MLP). We then performed leave-
one-student-out cross-validation to evaluate the prediction
performance of each classifier. Due to the receiver operating
characteristic (ROC) curve being insensitive to changes in
class distribution [50], the area under curve (AUC) of the
ROC curve (chance level = 0.5) scores was used as our
primary evaluation metric. We will report the aggregate AUC
(Since AUC is defined only for binary classes, we calculated
AUC for each class with others and average the results [50])
to measure the overall performance of each classifier in iden-
tifying all mental state classes as well as the performance of
eachmodality fusionmethod in recognizing eachmental state
class separately. The confusion matrix for each mental state
class will also be reported.

V. RESULTS
A. OVERALL PERFORMANCE
Table. 1 presents the aggregate AUC scores of each
multi-class classifier in recognizing all mental states classes
and the models that achieved the best overall performance
(in bold) along with the feature numbers we used from each
modality when the best performance was yielded.

For the overall performance of single-channel classifiers.
The RF classifiers (using 300 trees, along with balanced class
weights and hyperparameter optimization using randomized

TABLE 1. Mean AUC scores of each classifier with different modality
fusion approach.

search with 100 iterations) did a better job both in using the
single HR modality and in using the single acoustic modality
to recognize students’ multiple mental states by demonstrat-
ing a better identification capability. Among them, the RF
classifier based on the HR modality achieved a mean AUC
of 0.704, which was slighter better than the MLP classifier
with a mean AUC of 0.690. In addition, there were 10 top-
ranked HR related features that we used to generate the HR
modality based classifiers and that achieved the best perfor-
mance.Meanwhile, the RF classifier also showed outstanding
performance in using acoustic cues to recognize all of the
mental state classes, which yielded a mean AUC of 0.728,
stronger than the SVM classifier with a mean AUC of 0.694
and better than the MLP classifier with a mean AUC score
of 0.721; the first 20 top-ranked acoustic features we used
to achieve the best performance. However, a difference was
noticed for the facial-based single-channel classifiers, that is,
the MLP model (7 layers; with active function of relu along
with using cross-entropy as loss function) could learn the
facial features better than the other two supervised learning
models, with a mean AUC score of 0.718, a small advantage
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FIGURE 9. Recognition performance for each mental state class using different multimodal fusion approaches.

over the RF model, which had a mean AUC of 0.716, but
stronger than the SVM model, which had a mean AUC of
0.651. For both multi-class classifiers that were built using
feature-level fusion and decision-level fusion approaches,
we adopted the most predictive features from each channel
we introduced above to build classifiers.

For the feature-level fusion classifiers, first of all, the RF
classifiers displayed an over-all outstanding classification
ability for all modality fusion methods. Second, we could
order these four feature-fusion methods as Combo. > HR +
Acoustic > Acoustic+ Facial > HR+ Facial. We also noticed
that fusing channels provided a significantly notable overall
recognition performance improvements over each individual
channel. Among them, fusing the HR and acoustic channels
helped with improving the overall recognition performance
by increasing the mean AUC scores by 5.5% over HR indi-
vidual channel and by 3.1% over acoustic individual channel.
In particular, combining the three modalities (AUC = 0.763)
showed the best recognition ability over using only any single
modality and any of the other combination methods in iden-
tifying the mental states of students.

For the decision-level fusion classifiers, we used a vot-
ing method on the output of each base single-channel clas-
sifier and made the final decision for the classification
results. Building these classifiers will be of benefit for some
inevitable situations in the data collecting process in ‘‘in-
the-wild’’ educational environments; that is, in cases where
some modality cannot be detected due to obstacle occlusion
or the target students move outside the detectable area, we can
still obtain final prediction results by voting on the output
of each available single-channel classifier. From the results
shown in the last row, we got a mean AUC score of 0.734
for the MLP classifiers and 0.733 for the RF classifier, which
guarantees that our models could still work well in real-world
educational settings.

B. RECOGNITION PERFORMANCE FOR EACH MENTAL
STATE CLASS
One of our ultimate goals is to provide human teachers with
solutions to help them design multimodal analytics to meet

the requirements of identifying different mental states in
different educational environments. Therefore, we examined
the performance of the classifiers based on each individual
channel and the classifiers based on the feature-fusion level
in discriminating each mental state class as shown in Fig. 9.
In addition, both of classifiers are based on the RF learning
models that achieved the best performance as we presented
above.

From the perspective of helping teachers augment their
just-in-time decision-making capabilities, we are more inter-
ested in how to effectively recognize students’ states of con-
fusion and frustration as much as possible. As shown in
the second bar group of Fig. 9, fusing the HR and acoustic
modality (yellow bar, AUC = 0.695) was more effective
than any of the other fusion approaches; in addition, fusing
those two modalities helped with improving the prediction
ability over only using the single HR modality and single
acoustic modality, increasing the AUC score by 6.5% and
3.3%. Contrary to expectations, only fusing the external cues,
the acoustic and facial modalities (green bar, AUC=0.647),
reduced the capability of the individual acoustic channel used
to recognize the state of confusion with decreasing the AUC
score by 1.5%. However, adding the physiological cue of the
heart rate to the combination of acoustic and facial channels
reversed the decrease in AUC scores from combining only
the external cues, becoming another outstanding model that
contributed the second best performance in accurately iden-
tifying the state of confusion. These interesting results may
suggest that, for the task of recognizing students’ confusion
in such interactive conversation activities, the observational
information that external clues can provide is limited and
confused to some extent. Instead, psychological cues can
make up for this deficiency by revealing the confusion state
of the students. Furthermore, combining the three modalities
yielded the second best performance in recognizing the state
of confusion with an AUC of 0.690, which is slightly lower
than the performance of only combining HR and acoustic
modality. This result provides support to our argument that we
can take advantage of the replacement capabilities of different
combinations between modalities to address the monitoring
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challenges, such as situations in which students are wearing
a mask in an offline conversation activity or have turned off
their camera in an online learning environment. Our proposed
monitoring agent can still recognize that students are in a state
of confusion by using the combination of HR and acoustic
modalities. Meanwhile, for identifying the state of frustra-
tion, the combination of three modalities achieved the best
recognition performance with an AUC of 0.737 as shown in
the third bar group of Fig. 9. These results indicate that mul-
timodal data can provide complementary information to each
other, which results in augmenting the overall recognition
ability in identifying the mental states of students.

Furthermore, from the perspective of providing teachers
with solutions regarding what kind of discussion topic stu-
dents are more interested in or are prone to lose interest in
order to help the teachers with adjusting and arranging their
coaching strategies, we are more concerned about how to
design multimodal analytics to effectively detect concentra-
tion or boredom in students during the discussion process.
As shown in the first bar groups of Fig. 9, the combination of
the HR and acoustic modalities (yellow bar, AUC = 0.842)
showed an overall outstanding recognition ability than any of
the other modality-fusion methods in recognizing the state
of concentration. What is more, the fusion of the HR and
acoustic modalities enabled the modalities to provide each
other with additional information, enhancing the ability to
recognize the state of concentration better than the classifiers
using only the single HR or single acoustic modality. For
recognizing the state of boredom, the best pair was the com-
bination of the three modalities (purple bar, AUC = 0.810).
We also reported the confusion metric for each mental state

class using different multimodal fusion methods, as shown
in the tables. 2,3, 4,5, 6,7, 8. In each confusion metric, the
value (in bold) of each row shows the percentage of inputs
belonging to that class that were correctly classified.

TABLE 2. Confusion matrix for recognizing mental states using HR
single-channel based classifier.

Similar with the results we reported previously, the HR
+ acoustic modalities showed a good ability in accurately
identifying the states of concentration and confusion, This
indicates that the combination of physiological and acoustic
cues can adequately meet the requirement for identifying
concentration and confusion in students in learning environ-
ments such as when most of the students’ facial information
cannot be detected due to the camera being turned off in
a remote course or the student wearing a mask. Addition-
ally, the combination of three modalities did a better job
in accurately recognizing the states of frustration and bore-
dom. Furthermore, we noticed that the classifier based on

TABLE 3. Confusion matrix for recognizing mental states using facial
single-channel based classifier.

TABLE 4. Confusion matrix for recognizing mental states using acoustic
single-channel based classifier.

TABLE 5. Confusion matrix for recognizing mental states using HR and
acoustic modality fusion based classifier.

TABLE 6. Confusion matrix for recognizing mental states using HR and
facial modality fusion based classifier.

TABLE 7. Confusion matrix for recognizing mental states using acoustic
and facial modality fusion based classifier.

the fusion of three modalities, the classifier based on the
fusion of acoustic and facial modalities, and the classifier
based on the fusion of HR and acoustic modalities all showed
quite similar capabilities in accurately identifying the state
of boredom. These results provide more evidence to verify
the possibility of using the replacement capabilities between
different combinations of modalities to provide solutions to
address the monitor challenges such as the certain modalities
are unavailable in real-world educational settings.

VI. APPLICATION TO EDUCATIONAL SUPPORT
In this section, We propose how to use our proposed intel-
ligent monitoring agent from the aspects of real-world data
circulation to implement educational support applications
as shown in Fig. 10, as well as elaborate the novelty and
contributions of this research and highlight its social value. In
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FIGURE 10. Overview of educational support system.

TABLE 8. Confusion matrix for recognizing mental states using combo.
classifier.

this study, we aim to provide solutions for teachers to address
the challenges with monitoring the multiple mental states of
students in real-world coaching activities involving multiple
students. At present, the limitations of teaching environments
and tools have brought about various obstacles for teachers in
effectively coaching students. For example, for both offline
or online teaching activities, capturing the mental states of
all students in time to infer their learning problems and
traditionally evaluating students’ learning statuses (such as
by observing their expressions and answers) is difficult due
to the unavailability of observable information. In order to
help teachers find alternative solutions to effectively identify

these statuses and to solve these serious difficulties facing
the educational community, our proposed intelligent monitor-
ing agent leverages machine intelligence to effectively assist
‘‘busy’’ teachers as well as educators in remote coaching
environments to augment their perceptual abilities so that
they can more effectively monitor multiple learning-centered
mental states. In particular, the agent may identify those
students who are in need of assistance by recognizing that
they are having difficulty learning (by detecting mental state)
so that the teachers can provide appropriate alternative solu-
tions that are adapted to the unique limitations in real-world
educational settings.

For the target applications, we suggest applying the agent
both for offline and online discussion learning environments
involving multiple participants, as well as for the activity of
students learning through an online tutoring system. Students
learning with online tutor systems has been a commonly
used self-learning method; however, for this case the moni-
toring of learning situations is often not sufficient. The lack
of external intervention may lead to high drop-off rates or
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other aspects of sub-optimal learning outcomes. As shown in
Fig.10, We firstly suggest using the proposed multi-sensor-
based data collecting system to collect multimodal data
including heart rate, facial, and audio data from students
who taking part in those learning activities. Then, we input
this information into the proposed mental-state recognition
models to detect the mental states of students. For the cases
of multi-participant coaching activities, our proposed mental
state detector can not only assist ‘‘busy’’ teachers to effec-
tively monitor multiple students’ mental states, but also take
advantage of the replacement capabilities between different
combinations of modalities. This may provide human teach-
ers with alternate solutions for addressing the challenges with
monitoring students when in online learning activities, the
visual or audio modalities may not be available. Similarly,
in offline learning activities, the facial modality is sometimes
not available when students wear masks. Additionally, the
proposed system could also act as a virtual teacher with high
practicality to support the student who learn through an online
tutoring system.

Furthermore, we also suggest several feedback func-
tions for helping cultivate learning outcomes. We designed
a real-time feedback mechanism to alert teachers of the
negative states of students during learning, such as when
students are confused with opinions or when they start
feeling hopeless or frustrated with the learning content,
helping the teacher make just-in-time decisions. This may
help to avoid negative mental states, which, if left to
persist through a lack of external intervention, could
result in students losing interest and motivation in learn-
ing, hindering learning progress and decreasing learning
outcomes.

In addition, we do not recommend always giving feedback
to students in real time because this will interfere with their
thinking process. In those cases, the unresolved contents can
be returned as post-class materials. For the purpose of train-
ing, we hope to summarize and give feedback on students’
unresolved content after a discussion and encourage them
to spend much time reconsidering the appropriate answers
and thinking about the opinions/comments that they did not
understand during a discussion. Another type of post-class
feedback we would like to provide to teachers is to help
them discover which discussion content the students showed
a high level of concentration for and where the students
became bored and sleepy. This will assist teachers in effec-
tively designing and arranging the lecture items or discussion
strategies to increase the students’ interest in learning asmuch
as possible. Beyond providing post-class feedback to stu-
dents and teachers, we also suggest designing post-class feed-
back functions for online learning tutoring system developers
regarding what kind of learning content students show clear
concentration for with a high level of interest and for what
kind of learning content students lose motivation. We would
like to feed back such information to system developers
to provide them with solutions for optimizing the learning
components.

VII. CONCLUSION
In this study, we aimed to leverage machine intelligence to
generate an intelligent monitoring agent to provide teach-
ers with solutions to challenges with monitoring students
regarding the recognition of multiple mental states including
concentration, confusion, frustration, and boredom in differ-
ent educational environments. We proposed that multimodal
data can be used to augment the practicality of the monitor-
ing agent. To validate our arguments, we explored how to
effectively design multimodal analytics to improve the ability
to identify students’ specific mental states, as well as how
to take advantage of the supplementation and replacement
capabilities between modalities to address challenges when
modalities cannot be collected, in order to improve the prac-
ticality of the monitoring agent.

To achieve these goals, we first took advantage of modern
sensor technologies to accumulate and archive a massive
multi-modal dataset, for which we used the Apple Watch
for real-time heart-rate data detection, integrated the ARKit
framework and iPhone front-camera to track and collect
facial motion signals, and AirPods with pin microphones
to record the audio of discussions. We used our data col-
lection system to record and accumulate an ‘‘in-the-wild’’
conversation-based discussion dataset generated between a
teacher and students in a real university research lab. We then
derived a series of interpretable proxy features from visual,
physiological, and audiomodalities separately to characterize
multiple mental states. For visual, we extracted lines of facial
related features to describe dynamic patterns of eye blinking
and mouth movements (speaking and smiling). For the phys-
iological modality, in addition to the use of statistic features,
we also attempted to capture moment-by-moment temporary
patterns from heart-rate time-series data by extracting SAX
HR sequences. For audio, we used the openSMILE tool to
compute numbers of features for capturing students’ mental
states from acoustic cues. Then, we trained a set of supervised
learning SVM, RF, and MLP classifiers separately using
different multimodal fusion approaches including single-
channel-level, feature-level, and decision-level fusion for rec-
ognizing students’ multiple mental states.

From the results of this study, we suggest taking advantage
of the combination of HR + acoustic to better recognize
the states of concentration and confusion. In addition, using
this combination to develop a monitoring agent can also
overcome such challenges when students’ facial modality
cannot be detected due to masks being worn or cameras
turned off in online learning environments. Furthermore,
fusing three modalities can better recognize the states of
frustration and boredom. What is more, the results also
indicate the possibility of recognizing boredom in students
by using only the acoustic and facial fusion based classi-
fier or the HR and acoustic fusion based classifier. These
results provided experimental evidence in support of our
arguments that using effectively designed multimodal analyt-
ics by taking advantage of the supplementation and replace-
ment capabilities between modalities makes it possible
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to adapt to different challenges in real-world education
environments.

A. LIMITATIONS AND FUTURE WORK
We would like to point out the limitation of this study and
propose the future work. The main limitation is collecting
enough reliable ground truth data samples on the mental
states of students when they are in real-world discussion
activity. In this work, we selected those data samples that
matched two experienced annotators as the ground truth data.
However, we noticed the relative low inter-rater agreement
among the annotators on some specific mental state of stu-
dents, such as the state of boredom. We think that when
students are completing discussion with their professor in a
real-world learning activity, some of the states, especially the
state of boredom, is hard to identify, which makes it difficult
for annotators to form a unified judgment standard for judg-
ing the bored state. This is an inevitable limitations brought
from ‘‘in-the-wild’’ data. To address this limitation, wewould
like to make such attempts in the future work, (1) adopt the
affect detection protocol such as Baker-Rodrigo Observation
Method Protocol (BROMP) to pre-train the annotators before
encoding the data in order to improve the low inter-rater
agreement; (2) use the self-report method along with the third
party observations since the students will be invited to watch
their discussion video and report their mental states using our
developed annotation tool.
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