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ABSTRACT Images taken in extremely low light suffer from various problems such as heavy noise, blur, and
color distortion. Assuming the low-light images contain a good representation of the scene content, current
enhancement methods focus on finding a suitable illumination adjustment but often fail to deal with heavy
noise and color distortion. Recently, some works try to suppress noise and reconstruct low-light images from
raw data. But these works apply a network instead of an image signal processing pipeline (ISP) to map the
raw data to enhanced results which leads to heavy learning burden for the network and get unsatisfactory
results. In order to remove heavy noise, correct color bias and enhance details more effectively, we propose a
two-stage Low Light Image Signal Processing Network named LLISP. The design of our network is inspired
by the traditional ISP: processing the images in multiple stages according to the attributes of different tasks.
In the first stage, a simple denoising module is introduced to reduce heavy noise. In the second stage,
we propose a two-branch network to reconstruct the low-light images and enhance texture details. One branch
aims at correcting color distortion and restoring image content, while another branch focuses on recovering
realistic texture. Experimental results demonstrate that the proposed method can reconstruct high-quality
images from low-light raw data and replace the traditional ISP.

INDEX TERMS Low-light enhancement, image enhancement, artifacts removal, image signal processing,
deep learning.

I. INTRODUCTION
Typically, the raw sensor data we captured will be processed
by an in-camera image signal processing pipeline (ISP) to
generate JPEG-format images. And the key steps in the ISP
include: ISO gain, denoising, demosaicing, detail enhancing,
white balance, color manipulation and color mapping. The
quality of these JPEG-format images is very important both
for our daily life and for many computer vision tasks, e.g.,
video surveillance, segmentation, and object detection [1],
[2]. However, images captured in low-light environments
suffer from various problems such as heavy noise, color
distortion and blur. And these problems will be aggravated by
quantization, clipping, and other processing in the traditional
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ISP. High ISO, large aperture, or long exposure time can be
used to brighten the images, but they also lead to various
drawbacks, for example, the amplified noise or inevitable
blur.

Researchers have proposed lots of techniques to restore
low-light images. Retinex [3], [4] and histogram equalization
[5] are traditional methods to brighten images. Due to the
lack of content understanding, these methods may produce
unnatural results. Recently, deep learning-based approaches
have revealed their superior performance in image enhance-
ment. Some methods [6], [7] directly kindle low-light images
without special consideration about noise or blur. Other meth-
ods focus on some challenges which are related to low-light
image enhancement such as denoising [8], [9], demosaicing
[10], deblurring [11], multiexposure image fusion [12], [13].
However, these methods still cannot produce high-quality
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enhanced images for the following reasons: First, most low-
light enhancement methods cannot handle images taken in
extremely dark conditions that contain severe noise and color
degradation. Under these conditions, JPEG-format images
cannot provide enough information due to the information
loss during the traditional ISP. What’s more, heavy noise
often leads to inaccurate white balance and blurred results.
Second, sequentially denoising, deblurring, and correcting
color bias may accumulate errors. Hence, we need an effec-
tive method that can operate directly on raw sensor data and
produce pleasant enhanced images.

In this paper, we propose a Low Light Image Signal
Processing Network (LLISP) to address the extremely low-
light enhancement problem. As the traditional ISP cannot
work well in such conditions, we reconstruct the images
directly from raw sensor data to avoid further information
loss. Inspired by the traditional ISP, we firstly use a U-net-
based module [14] to remove noise as heavy noise is one
of the most challenging problems in dark conditions, which
also influences detail enhancement and white balance. Then,
a two-branch network is proposed to reconstruct images and
refine textural details simultaneously. Specifically, different
network architectures are used in different branches. The
reconstruction branch aims at correcting color distortion and
restoring image content. Hence, we use a U-net [14] to learn
high-level features. The enhancing branch aims at recovering
texture and focuses on detailed information. In this branch,
the resolution of features is not reduced to persevere structural
integrity and the dilated convolution [15] is applied to enlarge
the receptive field.

In summary, we make the following contributions:

• We propose a novel two-stage low-light enhancement
net which can directly brighten extremely low-light
images from raw data and replace the traditional ISP.
The proposed method inherits the benefits of both end-
to-end network and traditional multistage ISP.

• A two-stream structure is presented in the second stage,
which consists of a reconstruction branch and a texture
enhancing branch. The reconstruction branch restores
images from both original input and pre-denoised fea-
tures. The texture enhancing branch utilizes gradient
information to reduce artifacts and enhance details.

• Experimental results demonstrate that, to enhance
extremely dark images, a pre-denoising module is indis-
pensable and can improve the robustness of the proposed
method.

The rest of the paper is organized as follows. Section II
briefly introduces the related works. Section III describes the
proposed method in detail. Experimental results are shown in
Section IV. Finally, Section V concludes this paper.

II. RELATED WORK
Low-light image enhancement has a long history and it covers
lots of aspects such as denoising and demosaicing. We pro-
vide a short review of previous arts closely related to our task.

A. LOW-LIGHT IMAGE ENHANCEMENT
Classic approaches can be roughly divided into two main cat-
egories: histogram equalization (HE) [16]–[18] and gamma
correction (GC) [19]. These methods ignore the relation-
ship between individual pixels and their neighbors. As a
result, they often produce artifacts and compromised aes-
thetic quality. Another technical line is based on the Retinex
theory [4], [20]–[22], which decomposes the image into two
components, i.e., reflectance and illumination, and enhances
the illumination component. But a global adjustment tends
to over-/under- enhance local regions. To further improve
the adaptability of enhancement and avoid local over/under
enhancement due to uneven illumination, Wang et al. [23]
enhances the image via multi-scale image fusion. Unfortu-
nately, these approaches still cannot handle heavy noise and
color bias. Besides, the lack of understanding of the image
content causes unnatural enhancement.

Deep learning-based methods perform more global anal-
ysis and try to understand image content. Some works use
paired data to learn the mapping function from low-light
images to high-quality outputs [6], [24], [25]. Other works
use unpaired data to train the models which release the neces-
sity for collecting paired data [7]. However, these approaches
generally assume that the images do not suffer from heavy
noise and color distortion. As a consequence, under extremely
low-light conditions, they may either enhance both the noise
and scene details, or fail to recover the low visibility of
low-light images. Compared with these methods, our LLISP
brightens up the image while preserving the inherent color
and details via a proper image processing pipeline and effi-
cient utilization of the raw data.

More recently, some approaches [26]–[28] use neural net-
works to replace the traditional ISP and directly reconstruct
high-quality images from raw data. By using raw data, they
avoid information loss caused by the traditional ISP. How-
ever, these works tend to learn the ISP pipeline as a black-
box, which increases the learning burden of networks and
causes the inefficient utilization of data. Different from those
approaches, our LLISP pays more attention to model a proper
image processing pipeline and make full use of the raw data.

B. IMAGE DENOISING METHODS
Image denoising is a hot topic in low-level visual tasks
and is very essential for further image processing. Clas-
sic approaches [8], [9] use specific priors of natural clean
images such as pixel-wise smoothness and non-local simi-
larity. Recently, deep convolutional neural networks have led
to significant improvement in denoising. Some works focus
on applying effective network structure to learn the mapping
between noisy images and clean images, e.g., auto-encoders
[29], residual block [30] and non-local attention block [31].
Other works focus on simulating realistic noise models for
better performance on real-world denoising tasks [30].

In our work, we adopt a simple but effective pre-denoising
module so that we can avoid the disruption of severe noise on
the subsequent enhancement.
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C. IMAGE SIGNAL PROCESSING PIPELINE
In order to reconstruct the images from raw data more accu-
rately, it’s necessary to be clear of the in-camera ISP. Typical
ISP in our daily used cameras includes: ISO gain, denoising,
demosaicing, detail enhancing, white balance, color manip-
ulation, then mapping the data to sRGB color space and
finally saving to file. There are many classical approaches
for the above steps [32]. Recently, lots of deep learning-based
methods have been proposed and outperform those classical
approaches. Some works focus on applying convolutional
neural networks (CNN) for specific steps in the ISP, such
as demosaicing [10] or white balance [33]. Other works
[26], [34] use deep learning models to replace the entire ISP
pipeline. In this paper, we propose a deep network to replace
the entire ISP for low-light image reconstruction. Inspired by
the typical ISP, the proposed net also adopts a multi-stage
enhancement strategy.

III. METHOD
The proposed LLISP aims at removing noise, correcting
color bias and reconstructing high-quality images from raw
data. As illustrated in Fig. 1, the proposed LLISP network
consists of two components: a Denoising Module (DNM),
an Enhancement Net (EN).

A. DATA PREPARING
In the training stage, four types of data are used, i.e., low-light
raw data (Iraw), amplification ratio k , ground truth raw data
(GTraw), and ground truth sRGB data (GTsRGB). The data can
be collected from commonly used digital cameras or smart-
phones. In our experiment, we use the SID dataset [26], which
consists of raw short-exposure images and the corresponding
long-exposure images both in raw and RGB format. The cor-
responding exposure time for these images is also provided
in the dataset. Following SID [26], the amplification ratio k
is set to be the exposure difference between the input and
reference images (e.g., x100, x250, or x300) for both training
and testing. We scale the low-light raw data (Iraw) by the
desired amplification ratio k to get the inputs (I∗raw) for our
LLISP. Specially, in the testing phase, k can be specified by
users.

B. STAGE I: DENOISING MODULE
Denoising is very essential and important in the image pro-
cessing pipeline, especially for low-light images that suffer
from heavy noise. Because heavy noise significantly influ-
ences subsequent processes, e.g., deblurring, white balance,
and color mapping, we put the DNM in the first stage to
obtain relatively clean data and reduce the difficulty for the
following stages. Formally, given the scaled low-light raw
inputs (I∗raw), we can generate clean raw data (Craw ) as,

Craw = DNM (I∗raw) (1)

The architecture of this module can be seen in Table 1.
Commonly used U-net [14] is selected as the backbone of
the DNM for its effectiveness in denoising tasks. The input

and output channels are set to 4 to suit for raw data. As a
trade-off between efficiency and restoration performance,
the kernel size is set to (3,3) following SID [26]. Considering
the fact that, in extremely low-light conditions, even the long-
exposure ground truth data still has noise, besides the pixel-
wise LossL1, we also add the LossTV to further smooth the
denoised output. LossL1 is defined as the l1 distance between
the output of the denoising module and ground truth raw
data (2). LossTV is defined as a total variation regularizer to
constrain the smoothness of outputs (3)

LossL1 = ||Craw − GTraw||1 (2)

LossTV = ||∇hCraw||22 + ||∇vCraw||
2
2 (3)

where∇h and∇v denote the gradients along the horizontal and
the vertical directions.

The total loss function for DNM is defined as LossDNM (4).
We empirically set α1 = 1, α2 = 0.05. Note that the DNM is
firstly pre-trained viaGTraw and then fixed during the training
stage of the following module.

LossDNM = α1LossL1 + α2LossTV (4)

C. STAGE II: ENHANCEMENT NET
After obtaining pre-denoised raw data from DNM, the EN
aims at mapping the raw data to final sRGB outputs, which
corresponds to the processes that need global information in
traditional ISP as shown in Fig. 2. To produce high-quality
outputs, the EN consists of two branches, i.e., the Reconstruc-
tion Branch (RB) and the Texture Enhancing Branch (TEB).

1) RECONSTRUCTION BRANCH
The RB is responsible for global color mapping which is
similar to white balance and color space mapping steps in
the traditional ISP. The architecture of the RBnet can be seen
in Fig. 1(b). For accurate color mapping, a global under-
standing of the whole images is required. U-net architecture,
which has a large receptive field, is used to extract high-level
features. Specifically, to avoid checkerboard artifacts, we use
bilinear interpolation for upsampling. Considering the loss of
details caused by the denoising module, we input the original
images and the denoised images together to this branch to get
reconstructing features (RBfeature). The input channel is set to
8 and the output channel is set to 12. Formally:

RB∈R
H ,W ,12

feature = RBnet ([Craw, Iraw]) (5)

where [,] denotes the channel-wise concatenation operation.

2) TEXTURE ENHANCING BRANCH
The TEB aims at reducing artifacts and preserving high-
frequency details which may be ignored in the RB net. The
architecture of this branch can be seen in Fig. 1(c). In this
branch, we use dense connection [8] and dilated convolutions
[15] to make full use of multi-scale features and keep a
large receptive field. Instead of using denoised images as
input, we simply calculate the gradients of denoised images
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FIGURE 1. The architecture of our proposed LLISP. Our proposed LLISP consists of two stages: The first stage is responsible for denoising. In the second
stage, the divide and conquer network is responsible for producing high-quality images in sRGB color space. The image reconstruction branch takes
denoised raw data and original raw data as input to reduce color bias and recover image content. Using gradient information as input, the texture
enhancing branch pays more attention to texture details and cooperates with the reconstruction branch to generate images with fewer artifacts.

FIGURE 2. The key steps in the traditional image processing pipeline. Although different cameras may apply different algorithms in the detail
enhancing step, most of them use frequency filters to decompose the signal into different layers.

as inputs(ITEB). Formally:

I∈R
H ,W ,4

TEB = ||∇hCraw||22 + ||∇vCraw||
2
2 (6)

where∇h and ∇v denote the gradients along the horizontal
and the vertical directions respectively. The input channel for
TEBnet is set to 4 and the output channel is set to 12. Formally,
the output of TEB can be written as (7)

TEB∈R
H ,W ,12

feature = TEBnet (ITEB) (7)

3) FUSION AND DEMOSAICING
After concatenating the features generated from the above
two branches, we use convolution layers and a sub-pixel
layer [35] to fuse them and up-sample data to the original
resolution. The final output ORGB is written as (8)

ORGB = FD([TEBfeature,RBfeature]) (8)

where [,] denotes the channel-wise concatenation operation.
We train the Enhancing Net using l1 distance defined as
LossEN

LossEN = ||ORGB − GTsRGB||1 (9)

IV. EXPERIMENTS
A. DATASET
We adopt the Sony set in [26]. This set is captured by
Sony α7IIS. It includes 2697 raw short-exposure images
and 231 long-exposure images. The resolution of images is
4280 × 2832. The exposure time for low-light images is

set between 1/30 and 1/10 second and the corresponding
long-exposure ground truth images are captured with 100 to
300 times longer. We use the same training and testing set
following [26]. In their public dataset, approximately 20% of
the images with different exposure time are selected to form
the test set.

B. IMPLEMENTATION DETAILS
Our proposed framework is implemented with Pytorch and an
Nvidia TITAN-V GPU is used in experiments. The architec-
ture of the denoisingmodule is listed in Table 1, and the archi-
tecture of the enhancement net can be seen in Fig. 1. We train
the denoising module with a learning rate 10−4 for 2k epochs.
Then, we fix theweights of the denoisingmodule and train the
Enhancing Net for 3k epochs using ADAM [36] optimizer.
The learning rate is set to 10−4 and is reduced to 10−5

after 1500 epochs. We randomly crop 512 × 512 patches
for training and apply random flipping and rotation for data
augmentation. Following Chen et al. [26], we subtract the
black level and divide themaximal pixel value tomap the data
between 0 and 1. It takes 30 hours to train the whole net in
which about 10 hours are used for pretraining. It takes about
0.5s to process one full-resolution image (4280× 2832). Our
code is available at https://github.com/Aacrobat/LLISP.

C. AMPLIFICATION RATIO k
The amplification ratio determines the brightness of the out-
puts. In our network, we firstly scale the low-light raw data
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FIGURE 3. Qualitative results of state-of-the-art methods and our proposed LLISP evaluated on the SID test set. As we can see, the traditional
ISP breaks down in extremely dark conditions, and most existing enhancing methods cannot reconstruct images successfully. Focusing on
severe noise and the extremely dark conditions, both Chen et al. [26] and our method get much better results. Compared with Chen et al., our
method can recover color distortion accurately and suppress artifacts.

by the desired amplification ratios. This is similar to the ISO
gain in cameras. During the training stage, the amplification
ratios are set to be the difference between the exposure time
for inputs and their ground truth images. During the test stage,
users can adjust the brightness of the output images by setting
different amplification factors. In Fig. 4, we show the effect of
the amplification factors on images captured by smartphones.

By choosing different amplification ratios, we can test
the amplification range in which our method can pro-
duce high-quality results. Images with different exposure
time and different amplification ratios are fed into the
network. As shown in Fig. 5, longer exposure time and
smaller amplification ratios will produce better results. Our
method can reconstruct high-quality results with an amplifi-
cation ratio up to 100. However, the enhanced results with
an amplification ratio of 300 still suffer from color bias
and blur.

D. QUALITATIVE EVALUATION
Wefirstly compare our model with the traditional ISP.We use
the in-camera auto-bright to kindle the dark inputs. As we
can see in Fig. 3(a,i), in extremely dark conditions, the tra-
ditional ISP breaks down. Most existing low-light enhance-
ment methods [6], [7], [37] only focus on adjusting illu-
mination without considering noise and other degradations.
It can be seen in Fig. 3(b-d,j-l), heavy noise and color bias
seriously spoil the enhanced results. Applying an existing
denoising algorithm [9] after the enhanced images cannot
produce promising results, which can be seen in Fig. 3(f,n).
Taking heavy noise into consideration, Chen et al. [26] and
our method start from raw data and get much better results.
Compared with Chen et al., our method can recover color
distortion accurately and suppress artifacts.

Since previous methods designed for JPEG-format images
cannot handle extremely dark images, we mainly compare
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TABLE 1. The architecture of the denoising module.

FIGURE 4. The effect of different amplification ratios on the same images
captured by smartphones.

with Chen et al. [26] to show our improvements in detail.
It can be seen in Fig. 6a, because of the heavy noise, it is easy
to produce artifacts during the enhancement. Owing to the
denoising module and the texture enhancing branch, we can
reduce artifacts during enhancing and produce more realistic

FIGURE 5. The effect of different amplification ratios on images with
different exposure time. The images were chosen from the SID test set.

images. Fig. 6b and Fig. 6c show that our method can correct
color bias and preserve details.

As shown in Fig. 7, we test our model on three common
cameras.We can see that, when there is a domain gap between
training and testing data, our two-stage model has a stronger
generalization ability. By using the denoising module, we can
get clearer results (the third row of Fig. 7), and eliminate
the influence of noise on white balance (the first row of
Fig. 7). Thanks to our effective two-branch enhancing mod-
ule, our results can preserve more details (the second row
of Fig. 7).

E. QUANTITATIVE EVALUATION
In this section, we compare our approach with the state-of-
the-art methods [6], [7], [26], [28], [37]–[39]. We also use
the existing denoising method BM3D [9] post-hoc to the
results produced by Lime [37]. Besides, a baseline that simply
duplicates the U-net is introduced. The first U-net learns to
denoise the low-light raw data, and the second U-net learns
to map raw data to sRGB outputs.

Table 2 reports quantitative results for different low-light
enhancing methods. It can be seen from the first five rows,
the traditional ISP cannot handle extremely dark scenes.
Using the spoiled sRGB images produced by traditional ISP
as inputs, most existing enhancing methods cannot remove
heavy noise and color bias. It is necessary to begin with
raw data and suppress the heavy noise. Our baseline out-
performs CAN and Chen et al., which means that simply
denoising the data before enhancing it is very helpful for
extremely low-light image enhancement tasks. Thanks to our
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FIGURE 6. Qualitative results for our proposed LLISP. As we can see, our method can accurately reconstruct low-light images.

effective two-branch Enhancement Net, we further improve
the accuracy from 29.18/0.815 to 29.68/0.832 with respect to
PSNR and SSIM. We also employ the LPIPS metric [40] to
measure perceptual distance. Higher distance means further
different and lower means more similar. As we can see from
Table 2, in terms of SSIM and LPIPS, our proposed method
outperforms the state-of-the-art methods by a large margin.
The experimental results demonstrate we can achieve state-
of-the-art results both in pixelwise distance and perceptual
similarity.

F. ABLATION STUDY
Ablation experiments are performed in order to have a better
understanding of our model and prove the indispensability of
each module.

1) DENOISING MODULE
In this part, we show the importance of theDNMand compare
the impact of different architectures and loss functions for this
module. A single network can theoretically complete denois-
ing and color space conversion at the same time. But heavy
noise affects accurate color reconstruction and it is difficult
for networks to optimize both tasks at the same time. Learn-
ing denoising and color reconstruction in separate stages
improves the final accuracy. As we can see from the second
row of Table 3, we use the state-of-the-art denoising model
RNAN [31] and retrain it using our dataset for denoising.
However, due to the large memory consumption of the non-
local module, we have to chop the input images into blocks
which will result in uneven brightness and poor results. Note
that although the addition of TV regularization term leads to

16742 VOLUME 9, 2021



H. Zhu et al.: LLISP: Low-Light Image Signal Processing Net via Two-Stage Network

FIGURE 7. Qualitative results of state-of-the-art methods and our
proposed LLISP evaluated on daily used cameras (Canon Eos 80 D: 1st
row, iPhone7: 2nd row, Huawei meta20: 3rd row.

TABLE 2. Quantitative evaluation of low-light image enhancement
algorithms in terms of PSNR/SSIM/MAE/NIQE/LPIPS. The best results are
highlighted in bold. Note that a ∗ indicates that we use the PSNR, SSIM
and LPIPS values reported in their original papers.

TABLE 3. Ablation study on the denoising module. The results are in
terms of PSNR/SSIM. We also compare the L1 distance between denoised
images and corresponding ground truths in denoising stage. The best
results are highlighted in bold.

higher l1 error between denoised images and corresponding
ground truths in the denoising stage, the smoothened images
with TV loss can help subsequent enhancements and thus
obtain better results.

2) TEXTURE ENHANCING BRANCH
In this part, we show the indispensability of the TEB and
compare different types of inputs for this branch. An inter-
esting result is shown in the third row of Table 4. If we
input the original images into the TEB, the final results are
even worse than removing this branch, which indicates that
the improvement of this branch is not because of increased
parameters but because of more reasonable utilization of

TABLE 4. Ablation study on the texture enhancing branch. The results are
in terms of PSNR/SSIM. The best results are highlighted in bold.

TABLE 5. Ablation study on the reconstruction branch. The best results
are highlighted in bold.

gradient features. We have also tried to use a simple edge
detection algorithm such as Canny to extract the edges of
denoised images and input them to the network. However,
the edge detection algorithm will ignore the texture details
and only retain the edge information, which is not conducive
to texture enhancement and artifact removal.

3) RECONSTRUCTION BRANCH
As shown in Table 5, due to the loss of details caused by
the denoising process, putting the original images and the
denoised images into the network together can obtain better
results.

V. CONCLUSION
In this paper, we present a novel low-light enhancement
method LLISP. Inspired by the traditional ISP, our network
firstly focuses on image denoising, and then finishes other
image processing steps by a two-branch enhancement net.
Extensive experiments depict the effectiveness and indispens-
ability of different modules of the network. The proposed
method is not only applicable to the training dataset but also
applicable to raw data captured by different devices.
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