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ABSTRACT Sensor-based human activity recognition (HAR) is having a significant impact in a wide range
of applications in smart city, smart home, and personal healthcare. Such wide deployment of HAR systems
often faces the annotation-scarcity challenge; that is, most of the HAR techniques, especially the deep
learning techniques, require a large number of training data while annotating sensor data is very time- and
effort-consuming. Unsupervised domain adaptation has been successfully applied to tackle this challenge,
where the activity knowledge from a well-annotated domain can be transferred to a new, unlabelled domain.
However, these existing techniques do not perform well on highly heterogeneous domains. This article
proposes shift-GAN that integrate bidirectional generative adversarial networks (Bi-GAN) and kernel mean
matching (KMM) in an innovative way to learn intrinsic, robust feature transfer between two heterogeneous
domains. Bi-GAN consists of two GANs that are bound by a cyclic constraint, which enables more
effective feature transfer than a classic, single GANmodel. KMM is a powerful non-parametric technique to
correct covariate shift, which further improves feature space alignment. Through a series of comprehensive,
empirical evaluations, shift-GAN has not only achieved its superior performance over 10 state-of-the-art
domain adaptation techniques but also demonstrated its effectiveness in learning activity-independent,
intrinsic feature mappings between two domains, robustness to sensor noise, and less sensitivity to training
data.

INDEX TERMS Human activity recognition, domain adaptation, ensemble learning, generative adversarial
networks, covariate shift, kernel mean matching.

I. INTRODUCTION
In recent years, the drastic increase in ageing population has
increased the burden on the already over-stretched health
and social care systems. Technology-based personal health-
care systems have demonstrated their potential in provid-
ing cost-effective support for the elderly people to enable
them to lead an independent, high-quality life while avoiding
institutionalised care. Sensor-based human activity recog-
nition (HAR) is about inferring people’s daily activities
from a set of unobtrusive sensors, including motion sensors,
switch sensors, RFID, and accelerometers and gyroscopes
embedded in wearables. It is the key enabler for healthcare
systems, providing a way of tracking people’s health condi-
tions, detecting early sign of disease, and providing person-
alised healthcare service. In addition, HAR is heavily adopted
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in many other applications, including smart homes [22],
robotics [31], gaming [1], and urban computing [49].

Because of its potential, HAR has been extensively studied
and numerous prototypes and testbeds have been built over
the years [8]. With the advance in machine learning and
especially in deep learning techniques [33], we can fairly
accurately recognise activities from a collection of sensor
data. However, the main challenge still resides in the lack
of training data. One type of approaches to tackle annotation
challenge is unsupervised domain adaptation, where knowl-
edge learned from a source domain (with labelled data) can
be transferred to a target domain (without labelled data) [30].

Domain adaptation techniques have been increasingly
applied to HAR applications; for example on accelerometer
data, much effort has been devoted to transferring activity
knowledge learned on one sensor position (e.g., arm) to
another position (e.g., leg) [4], [6], [20]. These techniques
often work well as they assume that the source and target
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domains share feature space and they only need to tackle the
difference in distributions. However, this assumption does not
hold for many other HAR applications where two domains
have heterogeneous feature spaces. For example on binary
sensor data, often sensor data from two different environ-
ments reside in disparate feature spaces, it is necessary to
have an intermediate way to bridge source and target feature
spaces via knowledge [47] or meta-features [10]. These tech-
niques often incur extra engineering effort.

To tackle the feature space heterogeneity between source
and target domains, we propose shift-GAN, where we
re-purpose and extend a Bi-directional Generative Adversar-
ial Network (Bi-GAN) [48], [52] from the area of image-
to-image translation to enable robust domain adaptation.

Bi-GAN allows transforming from one heterogeneous fea-
ture space to another and vice versa through two GAN mod-
els. Compared to general adversarial adaptation model where
a single GAN is employed and a generator aims to trans-
form one feature space to another, Bi-GAN enables better
translation with stronger, bi-directional, constraints. Given
the effectiveness shown by Bi-GAN in image-to-image trans-
lation, we decide that it is worth evaluating an adaptation and
extension of the Bi-GAN architecture, specifically tailored to
the HAR problem to see if it is more effective than the exiting
techniques.

Since sensor data are often imperfect and noisy, and het-
erogeneity between sensor datasets can be much larger than
that between images, which makes it challenging to generate
data that well matches to the target domain. To improve the
matching, we employ Kernel Mean Matching (KMM) [28] to
enable covariate shift correction between transformed source
data and original target data so that they can be better aligned
and thus lead to amore accurate predictivemodel on the target
dataset.

The key novelty of shift-GAN is to integrate Bi-GAN and
KMM to learn intrinsic, robust transfer between two domains,
which are activity-invariant and thus can be generalised to
new activities that are unobserved at the training time. That
is, without re-training, shift-GANwill still be able to translate
sensor features on the new activity to the target domain.
This allows continuous activity transfer over time, which is
a significant benefit to activity recognition. To the best of
our knowledge, we are the first to adapt Bi-GAN with kernel
mean matching to tackle heterogeneous feature space issue
in unsupervised domain adaption. Different from the state-
of-the-art adaptation techniques in HAR, our technique can
work well on both accelerometer and binary sensor data.
Furthermore, we have specifically looked into the impact of
sensor noise on the effectiveness of adaptation and study the
generalisation of feature transferring in Bi-GAN.

The main contributions of this article are summarised as
follows.
• We propose shift-GAN as a general unsupervised
domain adaptation technique to enable activity transfer
across heterogeneous datasets, including accelerometer
and binary sensors.

• We have extended Bi-GAN by not just performing one-
to-one instance translation but one-to-many instance
translation alongwith instance selection process to allow
more robust domain adaptation.

• We have validated shift-GAN extensively on 12 transfer
tasks across 5 datasets. All these datasets feature differ-
ent sensor deployments, spatial layouts of environments,
and different end users. Our results have demonstrated
that shift-GAN has outperformed 10 classic and deep
domain adaptation techniques.

• We also are the first to go beyond domain adaptation
and design and perform other HAR specific experiments
on sensor noise, sensitivity to training data, and gen-
eralisation to new activities. These experiments matter
a great deal in HAR and many other real-world appli-
cations where noisy data are pervasive, training data is
scarce, and new classes are constantly emerging. The
results have demonstrated the superior performance of
shift-GAN over the state-of-the-art techniques in these
experiments.

II. RELATED WORK
This section reviews the existing domain adaptation tech-
niques [7], [43] on accelerometer and binary event sensor data
in HAR applications, and compare and contrast with shift-
GAN to identify our contributions. To broaden our scope,
we also look into the general field of domain adaptation,
including supervised, unsupervised domain adaptation and
domain generalisation.

A. DOMAIN ADAPTATION IN HUMAN ACTIVITY
RECOGNITION
There have been quite a few of attempts of transfer learning
on accelerometer data; e.g., from one user to another [51],
from one body position (e.g., chest) to another (e.g., hips) [6],
and from one device to another [18]. As accelerometer data
share the same dimensions; i.e., timestamp and x-, y-, and z-
dimension, generated feature spaces can be uniform, as long
as they are using the same feature extraction technique. Thus,
the focus here is to align the distributions, rather than transfer
feature spaces.

STL (Stratified Transfer Learning) [6] has been proposed
to performwithin-activity transfer; that is, it learns an activity
model on a labelled dataset and then uses the model to gener-
ate pseudo labels on an unlabelled dataset. The knowledge
transfer is performed per activity class by using multiple
transfer kernels to project the source and target domain’s
feature spaces to a common subspace. Qin et al. [32] pro-
pose Adaptive Spatial-Temporal Transfer Learning (ASTTL)
to allow more accurate source selection to perform domain
adaption. Chang et al. [4] have looked into feature matching
and adversarial learning in adapting the activity model from
one sensor position to another. These recent techniques are
built on a similar assumption that both source and target
domains share the same feature space so that they can share
the same activity model [6] or feature extractor [4], [32].
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Domain adaptation on binary sensor data is different from
accelerometer data as the main challenge is to tackle het-
erogeneity of feature spaces. In general, most sensorised
environments have a different spatial layout and a different
sensor deployment; for example, a variety collection of sen-
sors being deployed in areas and on objects, depending on
the requirements and constraints of the environments and
their residents. Therefore, it often requires some methods
to match and align feature spaces from the source to the
target domain. Ontologies have been a popular approach that
leverages the semantics of sensor placement such as location,
which enables meaningful sensor feature transfer [34], [40],
[46]. For example, Rosales and Ye [36] propose to a 2-staged
domain adaptation where semantics similarity is employed
to perform linear transformation of sensor features from one
domain to another domain and then a variational autoen-
coder (VAE) is used for fine alignment between transferred
features and source features. Other than semantics, Feuz and
Cook [10] map feature spaces via meta-features on each
sensor; that is, the time a sensor being activated, and intervals
and sequence between sensor activation. These approaches
have achieved promising results in resolving heterogene-
ity between feature spaces but they require extra effort to
craft the knowledge [34], [36], [40], [46] and learn meta-
mapping [10]. Also the effectiveness of these approaches is
significantly subject to the reliability of such knowledge [36].

Different from the above techniques, shift-GAN enables
unsupervised domain adaptation on both accelerometer and
binary sensor data. It does not assume homogeneity of fea-
ture space, and does not require extra engineering effort.
shift-GAN takes advantages of image-to-image translation
techniques and covariate shift in a staged domain adaptation
process to best align feature spaces.

B. DOMAIN ADAPTATION IN MACHINE LEARNING
Domain adaptation has long been an important topic in the
area of machine learning [38], [53], which can be categorised
into supervised domain adaptation where labels on the target
domain are available, unsupervised domain adaptation where
labels on the target domains are not available, and domain
generalisationwhere a domain agnostic model is generalised
by learning from multiple domains. Our technique falls into
the category of unsupervised domain adaption. In the follow-
ing, we will briefly introduce representative approaches in
the other categories and then focus on unsupervised domain
adaption.

1) SUPERVISED DOMAIN ADAPTATION
As labels are available in supervised domain adaption, it is
possible to perform within-class adaptation. For example,
Xu et al. [45] propose d-SNE where samples from both
source and target domains are transformed to common latent
space; i.e., stochastic neighborhood embedding (SNE) space,
and then a modified Hausdoff distance is employed to min-
imise the distance between samples from the same classes
but maximise the distance between samples from different

classes. Morsing et al. [26] propose to deal with covariate
shift by connecting samples in a penalty graph structure.

2) DOMAIN GENERALISATION
A classic approach in domain generalisation is to combine
training samples from different source domains to train a clas-
sifier and regulate the weights of the classifier for an unseen
target domain. CCSA (Classification and Contrastive Seman-
tic Alignment) is one of the first deep learning techniques
that tackle both domain adaptation and generalisation. It uses
contrastive loss to encourage samples with the same class
labels from different domains to be close in the embedding
space [27]. Li et al. [21] employ an adversarial autoencoder to
align distributions from different domains where Maximum
Mean Discrepancy (MMD) is used to minimise the difference
in distributions.

3) UNSUPERVISED DOMAIN ADAPTATION
Feature transformation is a classic type in unsupervised
domain adaptation, which maps the features of the source
and target domain into a high-dimensional space. Previous
work [29] has demonstrated that finding good feature rep-
resentations can help reduce the difference in distributions
between domains. Pan et al. [29] have proposed to find such
representation through transfer component analysis (TCA).
TCA learns transfer components across domains in a Repro-
ducing Kernel Hilbert Space (RKHS) using MMD. Grau-
man [12] have proposed to minimise the distance between
the source and target domains with a kernel-based method
called geodesic flow kernel (GFK) that integrates an infinite
number of subspaces to represent the geometric changes and
statistical properties from the source to the target domain. The
above feature transformation methods require that feature
distributions of the source and target domain share a common
support. However, this condition is rarely met in real world
adaptation tasks.

Deep Adaptation Network (DAN) [24] embeds the hid-
den representations of the task-specific layers of a CNN in
RKHS and explicitlymatches themean embeddings of source
and target domain distributions. Similarly, Long et al. [23]
propose to project deep features from all the task-specific
layers into RKHS and use multi-kernel learning to match the
embeddings.

Domain-Adversarial Neural Network (DANN) [11] is
proposed to learn domain-invariant features by combining
domain adaptation with feature learning. The distribution
alignment between two domains is achieved through standard
backpropagation training. Tzeng et al. [39] have proposed an
unsupervised adversarial adaptation method called Adversar-
ial Discriminative Domain Adaptation (ADDA) that learns a
discriminative representation using the labels in the source
domain and builds an asymmetric mapping learned through a
domain-adversarial loss to map the target data to the source
representations. Saito et al. [37] employ a task-specific clas-
sifier as a discriminator to consider the relationship between
target samples and class decision boundaries when aligning
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distributions. Zhao et al. [50] have proposed multi-source
distillation domain adaptation that first adversarially maps
the target domain into each source domain and selects the
source training samples that are close to the target domain
to fine-tune the source classifier. Then the improved source
classifiers will classify the mapped target samples, and the
prediction results will be aggregated for a final prediction.

Chen et al. have designed a Re-weighted Adversarial
Adaptation Network (RAAN) for unsupervised domain adap-
tation to reduce disparate domain discrepancies and adapt
the classifier [5]. First, they train a domain discriminator
network together with a deep convolutional neural network
in an adversarial manner to minimise the optimal transforma-
tion based on EM distance. To adapt the classifier, the label
distribution is matched by estimating a re-weighted source
domain label distribution. Adversarial Domain Adaptation
with Domain Mixup (ADADM) [44] advances adversarial
learning bymixing transformed source and real target domain
samples to train a more robust generator.
shift-GAN also employs adversarial adaptation and the

difference is that we use bi-directional GANs from image-
to-image translation: generating target features from source
and vice versa. We hypothesise that by imposing the
bi-directional constraints shift-GAN can enable more reli-
able, generalised feature transformation than a single GAN
based adversarial adaptation.

III. SHIFTED UNSUPERVISED DOMAIN ADAPTATION
shift-GAN is proposed as an unsupervised domain adap-
tation technique for resolving heterogeneous feature space
between source and target domain. It has two stages:
(1) we first perform bi-directional domain transformation via
GANs [48], and then (2) perform covariate shift correction
to align transformed target features with original source fea-
tures. We hypothesise that through these two steps we will
achievemore robust, effective feature transformation and lead
to improved activity recognition on the target domain. In the
following, we will introduce the research problem and chal-
lenges shift-GAN tackles and then we detail each component
of shift-GAN.

A. PROBLEM DEFINITION
Let Ds = {(Ex

(i)
s , y

(i)
s )}Nsi=1 be the labelled source domain and

Dt = {Ex
(i)
t }

Nt
i=1 be the unlabelled target domain, where Exs(∈

RMs ) and Ext (∈ RMt ) is aMs andMt -dimensional feature vec-
tor, andMs can be different fromMt . Both domains share the
same label space Y . shift-GAN aims to perform adaptation
betweenDs andDt with the objective to predict labels for all
the instances in Dt .
We will illustrate the above definition through an example

in Figure 1. Assume that there are two sensorised house
settings (i.e., source and target) having different spatial lay-
outs and installed with different sensors (as marked in red
dots) [17]. The sensor data collected on these two houses
are different and so are the sensor features extracted. The

FIGURE 1. A use case [17] of generalised unsupervised domain
adaptation.

activity set Y to predict can be the same; i.e., a common set
of daily activities such as preparing breakfast and performing
personal hygiene.
shift-GAN aims to learn a feature space transformation

function gs→t that maps the source domain features into the
target domain features; i.e., gs→t (Exs) = Ẽxt . Then, we can build
a classifier with transformed data {(Ẽx(i)t , y

(i)
s )}Nsi=1, with which

we can predict labels on real target data Dt . For example
in Figure 1, given the source domain’s data are annotated with
the activities of having breakfast and taking shower, shift-
GAN will be able to recognise the same activities on the
target domain data by learning the transformation functions
between these two datasets.

We consider the transformation function gs→t is gener-
alised or activity-invariant, if it can be applied to sensor data
on emerging, new activities that have not been observed in
Ds. Let D′s = {(Ex

′(i)
s , y′(i))}

N ′s
i=1 be a new collection of labelled

source domain’s data, which has the same feature space as
Ds but has a different label space; that is, y′(i)s ∈ Y ′s and
Y ′s∩Ys = ∅. The transformation function is regarded intrinsic
to features, independent of specific activity classes if gs→t (Ex ′s)
still holds on the new data D′s without the need of retraining;
i.e., gs→t (Ex ′s) = Ẽx

′
t . In Figure 1, if the source domain’s data

are annotated with a new activity ‘leaving home’, we can use
the function to transform the source domain data on this new
activity to the target domain, without the need of retraining
the function.

B. OVERVIEW OF shift-GAN
shift-GAN consists of the following four steps:

1) Feature space transformation – perform unsupervised
feature space transformation between source and target
datasets with GAN; that is, we learn the mapping func-
tion gs→t and obtain X̃t = gs→t (Xs).

2) Feature distribution alignment – shift the transformed
features X̃t towards the real target data Xt ; that is, X̄t =
βX̃t , where β = [β1, β2, . . . , βN ], N is the size of
transformed samples X̃t , and βi is a weighting factor on
each transformed sample, satisfying P(Xt ) = βP(X̃t ).

3) Classifier training – train a classifier on the aligned,
transformed features X̄t and their corresponding labels
inherited from the source domain.

4) Prediction – use the trained classifier to predict labels
on the data in the target domain.
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C. FEATURE SPACE TRANSFORMATION VIA GAN
Now we introduce the basic GAN concepts and detail the
characteristics of our Bi-GAN architecture, inspired by other
works on bi-directional GANs [15], [52], and specifically
inspired by Bi-GAN [48]. In the following, we will first
present a short recap of various Bi-GAN architectures and
illustrate why Bi-GAN in [48] is best suited to our purposes.

1) OVERVIEW OF BI-GAN ARCHITECTURES
GAN has been widely applied in domain adaptation, and a
generator aims to takes target samples as input and generate
source samples and a discriminator aims to tell whether the
generated samples are from real source domain [39]. In recent
years, the research in GAN has well advanced and several
coupled GAN architectures have been proposed in domain
adaptation and image-to-image translation [48], [52]. For
example, DupGAN [15] learns domain-invariant represen-
tation via an encoder, a generator, and two discriminators.
The encoder aims to encode samples from both domains
into a latent space, a conditional generator decodes latent
representations back into source and target domains con-
ditioned on the domain code, and discriminators on each
domain to tell whether a sample is from the specific domain
or generated. However this approach assumes both source
and target domain shares the same feature space, due to the
design on the encoder. Bi-directional GAN [48], [52], orig-
inated in image-to-image translation, unpairs two GANs to
enforce cycle (or bi-directional) consistency between source
and target domains; that is, making sure each image can be
recovered through two generators’ operation. This approach
has achieved promising performance and does not assume
the same feature space between source and target domains.
Therefore, we will base our approach on this architecture.
In the following, we will present the preliminaries of GAN
and Bi-GANs.

2) GENERATIVE ADVERSARIAL NETWORK (GAN)
The idea behind GAN is to train two models – a generator
and a discriminator – in an adversarial process. The generator
G takes as input a random noise vector z and uses a mul-
tilayer perceptron with θ (G) as parameters such as weights
and biases. The discriminatorD estimates the probability of a
given sample coming from a real dataset. It takes as an input x
and uses another multilayer perceptron with θ (D) parameters.
The models are represented by two functions, each of which
is differentiable bothwith respect to its inputs and parameters.

The two models compete against each other during the
training process: the generator G is trained to capture the
real data distribution so that its generative samples can be
as real as possible. While, the discriminator D is trained to
maximise the probability of assigning the correct label to both
training examples and generated samples from G. In other
words, D and G are playing a minimax game. The discrim-
inator wishes to minimise JD(θ (D), θ (G)) while controlling
only θ (D). The generator wishes to minimise JG(θ (D), θ (G))
while controlling only θ (G). Their interaction can be sum-
marised in the following loss function. Let Pd be the original

FIGURE 2. The workflow of Bi-GAN.

data’s distribution, Pg be the generator’s distribution, and
Pz be the noise variable z’s distribution.

min
G

max
D

L(D,G)

= Ex∼Pd [logD(x)]+ Ez∼Pz [log(1− D(G(z)))]
= Ex∼Pr [logD(x)]+ Ex∼Pg [log(1− D(x))], (1)

where Ex∼Pd [logD(x)] corresponds to the log-likelihood of
maximising the probability of assigning the correct label,
and Ex∼Pg [log(1 − D(x))] represents the log-likelihood of
generating samples as real as possible.

3) BI-DIRECTIONAL GAN (BI-GAN)
Figure 2 describes the architecture of Bi-GAN. The Bi-GAN
model consists of two GANs: {Gs,Ds} and {Gt ,Dt }, each
composed of a generator and a discriminator on the source
and target domain respectively. Gs(Exs) = Ẽxt takes a source
instance Exs and generates a corresponding instance Ẽxt in the
target domain. Gt (Ext ) = Ẽxs takes a target instance Ext and
generates a corresponding instance Ẽxs in the source domain.
Both generators are trained to generate fake samples as close
as to the real samples in the other domains and their objective
function is to minimise the reconstruction losses:

Lgs = ||Gt (Gs(Exs, z), z′)− Exs||, (2)

Lgt = ||Gs(Gt (Ext , z′), z)− Ext ||, (3)

where z and z′ are random noise introduced in Gs and Gt .
The discriminatorDs is a binary classifier to detect whether

an input is generated by Gs or a real sample from the target
domain, and Dt is to detect whether an input is generated
by Gt or a real sample from the source domain. Their loss
functions are defined as:

Lds = Ds(Gs(Exs, z))− Ds(Ext ), (4)

Ldt = Dt (Gt (Ext , z′))− Dt (Exs) (5)
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Algorithm 1 Bi-GAN Training [48]

Data: Unlabelled source domain Ds = {Ex
(i)
s }

Ns
i=1 and

unlabelled target domain Dt = {Ex
(i)
t }

Nt
i=1

Build two generators GA and GB and two discriminators
DA and DB
repeat

foreach iteration do
sample L-sized instances from both Ds and Dt ;
{Ex(j)s }Lj=1 ⊆ Ds and {Ex

(j)
t }

L
j=1 ⊆ Dt

update the parameters on Ds to minimise
1
L

∑L
j=1 Lds (Exs, Ext )

update the parameters on Dt to minimise
1
L

∑L
j=1 Ldt (Ext , Exs)

end
sample L-sized instances from both Ds and Dt ;
{Ex(j)s }Lj=1 ⊆ Ds and {Ex

(j)
t }

L
j=1 ⊆ Dt

update the weights on both generators to minimise
1
L

∑L
j=1 Lg(Exs, Ext )

until converge;

The combined loss function on both generators and dis-
criminators is:

Lg(Exs, Ext ) = λs||Gt (Gs(Exs, z), z′)− Exs||
+λt ||Gs(Gt (Ext , z′), z)− Ext ||

−Dt (Gt (Ext , z′))− Ds(Gs(Exs, z)) (6)

Algorithm 1 adopts the same training process of Bi-
GAN [48], which does not need labels on neither source
nor target domains. At the end of training, both generators
act as the mapping functions. Bi-GAN enables to transform
examples from the source domain to the target domain.
In principle, the generator can generate many instances on
each source example. The quality of each instance can vary
due to the random variable z. In image-to-image application,
human experts can visually inspect the images and perform
the selection process. However, this practice is infeasible for
sensor data generation, so we extend one-to-many instance
generation and selection process.

For a given source example Exs, we use Gs to generate
N number of target samples, calculate their reconstruction
loss using Eq (2) (3), and order them in an ascending order.
Then we select the top-k (1 ≤ k ≤ N ) samples that have
the smallest reconstruction loss. The rationale is to choose
the best transformed samples for the target domain while
covering the diverse feature space by using k samples. In the
end, we will have X̃t = {Ẽx

(j)
t }

N ′s
j=1 (N ′s = k ∗ Ns), where

Ẽx(j)t = Gs(Ex
(i)
s ) (1 ≤ i ≤ Ns and 1 ≤ j ≤ N ′s).

D. COVARIATE SHIFT CORRECTION VIA KERNEL MEAN
MATCHING
The transformed examples X̃t might still not reflect the
true target data distribution. To better align the distribution,
we are looking into Kernel Mean Matching (KMM), which is

designed as a non-parametric distribution matching method
between training and testing samples. KMM reweights the
training examples such that the means of the training and test-
ing examples when projected in a ReproducingKernel Hilbert
Space (RKHS) are close. In this way, the training data will be
better aligned with testing data, leading to improved classi-
fication accuracy [28]. KMM has been successfully applied
with GAN to control the image generation process [16].
Inspired by the promising results, we will apply KMM to
shift feature distributions to improve classification accuracy.
In the following, we will briefly introduce the theoretical
background of KMM and illustrate how it is integrated in
shift-GAN.

The idea of KMM is to assign each instance in generated
target domain data {Ẽx(i)t }

N ′s
i=1 with an importance weight βi,

which will be factored in a weighted loss function on a
classifier f :

Lw(f ) =
N ′s∑
i=1

βil(f (Ẽx
(i)
t ), y(i)). (7)

The purpose of the importance weight is to shift the
source domain data closer to the target domain data such that
P(Xt ) = βP(X̃t ), where β = [β1, β2, . . . , βN ′s ]. In order to
find suitable values of β ∈ RN ′s , we need to minimise the
discrepancy between means of X̃t and Xt subject to

βi ∈ [0, 1] and |
1
N ′s

N ′s∑
i

βi(x(i)s )− 1| ≤ ε, (8)

where ε is set as 0.01. The first part limits the scope of dis-
crepancy between P(X̃t ) and P(Xt ) and ensures the robustness
by limiting the influence of individual instances. The second
part ensures that βP(X̃t ) is close to a probability distribution.

To find β, a feature spaceF is used, which is a RKHS with
a universal kernel k(x, x ′) = 〈8(x),8(x ′)〉. With the feature
map 8: Xt → F , we define

Kij := k(Ẽx(i)t , Ex
(j)
t ) (9)

κi :=
N ′s
Nt

Nt∑
j=1

k(Ẽx(i)t , Ex
(j)
t ). (10)

Then the discrepancy equation is defined as:

||
1
N ′s

N ′s∑
i=1

βi8(Ẽx
(i)
t )−

1
Nt

Nt∑
j=1

8(Ex(j)t )||2

=
1
N ′2s

βTKβ −
2

N 2
t
κTβ + C (11)

where C is a constant. Thus, finding suitable β can be formu-
lated as a quadratic problem [13], such that

min
β

1
2
βTKβ − κTβ

subject to βi ∈ [0,B] and |
N ′s∑
i=1

βi − N ′s| ≤ N
′
sε. (12)
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Algorithm 2 shift-GANTraining

Data: Labelled source domain Ds = {(Ex
(i)
s , y

(i)
s )}Nsi=1 and

unlabelled target domain Dt = {Ex
(j)
t }

Nt
j=1

Learn a generator Gs by training a Bi-GAN with
{Ex(i)s }

Ns
i=1 and {Ex

(j)
t )}Ntj=1 in Algorithm 1

Generate top-k samples in the target domain on each
source sample Ex(i)s : {Ẽx(l)t }

N ′s
l=1, N

′
s = k ∗ Ns

Learn β with {Ẽx(l)t }
N ′s
l=1 and Dt using Eq (12)

Build a SVM classifier f with β and {Ẽx(i)t }
N ′s
i=1

Predict labels for instances in Dt

FIGURE 3. The overall workflow of shift-GAN.

E. PREDICTION ON TARGET DATASET
Algorithm 2 presents an overall algorithm of shift-GANand
Figure 3 shows the workflow. It starts with training two
generators Gs and Gt and then with Gs we can transform
source dataset into target dataset. Then we align the trans-
formed data with unlabelled target dataset to learn weighting
factor β. After alignment, we build a SVM classifier with the
transformed source dataset, with which we can predict labels
on the transformed target dataset.

As shown in the next sections, shift-GAN can learn
invariant transformation functions between source and target
domain. When there are new activities introduced on the
source dataset, then we just need to repeat the steps 2-5 in
Algorithm 2 to retrain β and build a classifier for recognising
these activities on the target dataset.

IV. EXPERIMENT SETUP
The main goal of the evaluation is to assess the effectiveness
of shift-GAN in generalised unsupervised domain adaptation;
that is, how accurately shift-GAN can recognise activities in
the target domain without using any labelled data in the target
domain, and to what extent the domain adaptation being
learnt can be generalised to new, unseen activities. In the
following, we will introduce the experiment setup and the
implementation details.

A. DATASETS AND PREPROCESSING
To assess the generality and feasibility of shift-GAN, we con-
sider two most common types of smart home datasets: ambi-
ent binary sensors and accelerometers. For ambient binary

sensor datasets, we use three datasets collected and curated
by the University of Amsterdam (named HA, HB, and HC
respectively in the remainder of this article) [41]. They are
collected on three different users in three different residential
settings, each being deployed with binary sensors, including
infra-red position sensors, switch sensors, and water flow
sensors. All these sensors output binary readings (0 or 1),
indicating whether or not a sensor fires. For binary sensor
data, we employ the state-of-the-art technique to extract fea-
tures [9]; that is, the activation ratio within a fixed interval
(i.e., 60 seconds) as sensor features.

For accelerometer data, we use two widely-used datasets:
PAMAP (PAMAP) [35], and UCI daily and sports
(DSADS) [2], [3] datasets. The PAMAP dataset records
12 activities performed by 9 subjects, including sitting, lying,
house cleaning, and ironing. Each subject wears 3 accelerom-
eter units on their dominant arm, chest, and dominant side
ankle. The DSADS consists of 19 daily activities performed
by 8 subjects, including exercising on a stepper, rowing, and
running on a treadmill. Each subject wears 5 accelerometer
units on their torso, right arm, left arm, right leg, and left
leg. We use the feature dataset [42] generated from these
two datasets. That is, 27 features are extracted per sensor
on each body part, including mean, standard deviation, and
spectrum peak position. For the experiments, we use similar
and different body parts as described in Table 1. Beyond the
tasks within each dataset, we also consider the tasks between
PAMAP andDSADS on their four common activities, includ-
ing walking, standing, sitting, and lying.

All these 5 datasets are collected by third-parties and
are publicly available. Table 1 records their main statistics
and Figure 4 presents the activity distribution of 4 datasets.
We skip DSADS because it has equal activity distribution.
These 5 datasets exhibit a wide range of domain adapta-
tion challenges, especially the varying feature complexity
(from 14 to 405) and the large number of activities (from
6 to 19). Also there exists high similarity between activ-
ity classes and high diversity of patterns in one activity
class. All these challenges have added extra complexity to
unsupervised domain adaptation, which will be discussed
later.

B. shift-GANCONFIGURATION
shift-GAN consists of two main components: Bi-GAN and
SVM with KMM. For the Bi-GAN, both generators Gs and
Gt have the identical network architecture. The leaky ReLU
activation function is used in both generators with the excep-
tion of the output layer which uses Tanh function.

All models are implemented with PyTorch, the loss func-
tion of GAN is minimised using the Adam optimisation.1

The optimiser is parameterised with a learning rate of 10−2

and the mini-batch size is set to 100. In order to choose the
best setting, we have done the grid search on the number of

1The implementation of shift-GAN and grid search results can be openly
accessed at https://github.com/An5r3a.
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TABLE 1. Transfer learning tasks of accelerometer data and statistics of datasets.

FIGURE 4. Activity distribution of the 4 datasets used in evaluation.

layers from 1 to 3 and the number of neurons from S−S/2 to
S+S/2, where S is the number of sensor features and choose
the setting that leads to the highest accuracy for each dataset.
Similarly, we have run grid search for configuring the weights
of source and target generators λs and λt in Eq (6) in the range
of [100, 1000].

V. RESULTS AND DISCUSSION
In this section, we evaluate the proposed approach shift-
GAN in unsupervised adaptation and compare with state-
of-the-art domain adaptation techniques. More specifically,
we seek to validate the following claimed contributions:
• Effectiveness –How accurately shift-GAN can recognise
activities in the target dataset, compared with state-
of-the-art domain adaptation techniques? We will also
perform ablation analysis to assess the contribution of
KMM, and as well as stability and convergence analysis
on Bi-GAN working on sensor data.

• Generality – Can shift-GAN be activity-independent;
that is, the learnt domain adaptation can be applied to
new, emerging activities that have not been observed
during the training?

• Robustness – How robust shift-GAN can perform in the
face of sensor noise?

• Stability – How well shift-GAN can maintain the accu-
racy when the amount of training data is reduced?

The performance is measured in F1 score, which is the har-
monic mean of precision and recall. As the selected datasets
have imbalanced activity distribution, we report both the
micro-F1 score which aggregates the contributions of all
instances, and themacro-F1 scorewhich computes the metric
independently for each class and then takes the average. For
each experiment, we run 10 times and report the mean of
macro and micro F1-scores as the final result.

A. EFFECTIVENESS OF DOMAIN ADAPTATION
1) GOAL
Our first experiment is to assess the effectiveness of domain
adaptation of shift-GAN.

2) EVALUATION PROCESS
To demonstrate the effectiveness of shift-GAN, we com-
pare it with 10 state-of-the-art domain adaptation tech-
niques. First we select 5 classic techniques that have
achieved best performance in transferring heterogeneous fea-
ture spaces [36] including Geodesic Flow Kernel (GFK) [12],
Transfer Component Analysis (TCA) [29], Feature-Level
Domain Adaptation (FLDA) [19], Joint Distribution Adapta-
tion (JDA) [25], and Importance-weighting with logistic dis-
crimination (IW) [14], along with a linear baseline technique
Canonical Correlation Analysis (CCA). There exists many
deep learning-based domain adaptation techniques [53]. Here
we mainly focus on the recent adversarial techniques that
have achieved high adaptation accuracy and demonstrated
robustness in transferring heterogeneous feature spaces.
Therefore, we select Adversarial Discriminative Domain
Adaptation (ADDA) [39], Domain-Adversarial Neural Net-
work (DANN) [11], Deep Adaptation Networks (DAN) [24],
and Adversarial Domain Adaptation with Domain Mixup
(ADADM) [44]. Alsowe comparewith a recent domain adap-
tation technique that has been evaluated on the same datasets
and tasks, which is Stratified Transfer Learning (STL) [6].
For each technique, we use all the source domain data and
randomly split the target domain data into 80% for training
and 20% for testing. The labels on the target dataset are not
used during training.

3) RESULTS
Table 2 compares the micro and macro F1-scores of shift-
GANand state-of-the-art techniques. shift-GAN achieves
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TABLE 2. Mean of micro- and macro-F1 scores between shift-GAN and comparison techniques.

higher accuracy averaged across 12 tasks, compared to the
state-of-the-art techniques. More specifically, the perfor-
mance improvement in micro F1 of shift-GAN over each
technique is: 5% (DAN), 12% (ADADM), 19% (DANN),
37% (ADDA), 26% (GFK), 33% (TCA), 43% (JDA), 49%
(FLDA), 65% (IW), and 68% (CCA). In a similar way,
the improvement in macro-F1 of shift-GAN over each
technique is: 8% (DAN), 13% (ADADM), 14% (DANN),
25% (ADDA), 31% (GFK), 40% (TCA), 42% (JDA), 46%
(FLDA), 62% (IW), and 65% (CCA). This results in the
averaged gain of 36% in micro F1 and 35% in macro F1.
shift-GAN outperforms the adversarial domain adap-

tation techniques DAN, ADADM, DANN, and ADDA.
ADADM allows for heterogeneous feature spaces and
achieves much higher performance as the mixture of source
and target samples allows for training more robust generator.
This is also the reason that ADADM achieves the high-
est accuracy on the H-C task, where the feature spaces on
hand and chest are significantly different. DANN and ADDA
only work on the homogeneous feature spaces. We have
applied semantics similarity matrix [36] to transform target
to source samples to allow domain adaptation between House
A, B, and C. However, shift-GAN significantly outperforms
them. The results demonstrate the need for bi-directional
GANs to enable heterogeneous feature spaces and the cyclic
consistency constraints allow for more effective feature
transformation.

DAN outperforms shift-GAN on the binary datasets.
The reason is that it leverages convolutional layers to
learn transferred features on combined source and target
features and then minimises the discrepancy on embed-
dings on task-specific layers. Combining features together
allows better feature contrast and alignment than shift-
GAN where the focus is only to learn the mapping func-
tions between domains. However, when the dimension
and discrepancy of features increases (e.g., the dimen-
sions of accelerometer and binary sensor data are 81 and
23 respectively), such fine-grained layer-wise alignment
does not work and Bi-GAN that explores the holistic map-
ping functions between domains achieves much higher
accuracy.

Among the classic domain adaptation techniques, GFK and
TCA perform better than all the others, and these will be
taken forward for the other comparison experiments. TCA
learns transfer components across domains in a RKHS using
Maximum Mean Discrepancy (MMD). This set of common
transfer components underlie both domains such that the
distance across domains is reduced in a RKHS. Its poor
performance indicates that shift-GAN is better than TCA in
capturing inherent common representations of the source and
target domain.

GFK performs better than the other techniques, but
still 25% less than shift-GAN in both micro and macro
F1-scores. Figure 5 presents the confusion matrix of shift-
GAN and GFK on the A-B task. We can see that GFK
has good discriminative power, however, shift-GAN is more
capable of recognising activities that have less distinctive
patterns like ‘Drink’, and is better at finding discriminative
features between activities that fire the same set of sen-
sors; for example, ‘Toilet’ and ‘Shower’. Therefore, we con-
clude that shift-GAN is more effective than GFK when
dealing with imbalanced datasets and is better at recognis-
ing activities that have less frequent patterns than the other
techniques.

CCA, IW and FLDA perform the worst. Compared to CCA
and IW, shift-GAN is less affected by the sample size and it
performs well when there is little overlap between the source
and target domain [19]. FLDA focuses on a feature-level
domain adaptation by describing the shift between the target
and source domain for each feature individually. It assumes
strong correlation between features on the corresponding
activities in the source and target domain. This assumption
is not valid on binary data because different activities can
deploy the same set of sensors. This is why FLDA performs
better on accelerometer data but much worse on binary sensor
data. In comparison, shift-GAN does not assumes such strong
correlations, but learns non-linear transformations between
source and target feature spaces usingGANs, leading tomuch
more improvement in adaptation accuracy. JDA is unable to
adapt the marginal distributions and conditional distributions
when the source and target domains are very dissimilar, where
shift-GAN has demonstrated superior performance.
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TABLE 3. Comparison of training time (in minutes).

FIGURE 5. Comparison of confusion matrices on task A-B between
shift-GAN and GFK.

shift-GAN is computationally efficient compared to
these state-of-the-art techniques. Table 3 compares the
training time between shift-GAN and the other techniques.
The training time is averaged on binary and accelerometer
tasks. On the binary tasks, shift-GAN has averaged 3 mins
of training time per task, which is close to the best per-
forming technique (i.e., DAN in 2.7 mins) and much lower
than ADADM in 34.1 mins. On the accelerometer tasks,
shift-GAN has the second shortest training time, just after
DAN.

Table 4 compares the accuracy of shift-GAN and the accu-
racy of STL and other comparison techniques reported in [6],
including Principal Component Analysis (PCA), Kernel Prin-
cipal Component Analysis (KPCA), TCA, GFK, Transfer
Kernel Learning (TKL). To be consistent, we report the
instance accuracy on 4 tasks being reported on STL. shift-
GAN has better or comparable performance against those
state-of-the-art techniques. The improvement is more observ-
able in tasks RA-T and H-C where the increase in accuracy is
43% and 25% respectively. The proposed method performs
better than STL because in the pre-annotation step of STL,
the classifiers are biased towards the majority class, and
thus the instances belonging to the minority classes might
be incorrectly labelled with the majority classes. This bias
results in the failure in the later alignment process where fea-
ture alignment is performed per class between the source and
target domain. In shift-GAN, Bi-GAN training on unlabelled
source and target examples, so the labels do not play a role in
transforming feature spaces across domains. Thus, it makes
the transformation more robust and activity-independent.

B. ABLATION ANALYSIS
shift-GAN is composed of two components: Bi-GAN and
KMM. We hypothesise that KMM is important to shift the
Bi-GAN generated samples closer to true examples in the
target domain and thus leads to higher accuracy in domain
adaptation. To validate this, we run ablation analysis, where
we compare the performance of shift-GAN with and without
KMM.
shift-GAN has demonstrated its strength of performing

a fine-grained feature space alignment. Figure 6 compares
the micro and macro F1-scores of shift-GAN and Bi-GAN
(that is, shift-GAN without KMM) on 12 tasks. As we
can see, introducing prior knowledge to SVM classifier has
improved the performance. shift-GAN outperforms Bi-GAN
on 8 out of 12 tasks with the averaged gain of 5% in micro-
F1 and 9 out of 12 tasks with the averaged gain of 9% in
macro-F1.
shift-GAN outperforms Bi-GANwhen the dimension of

sensor feature is higher and the number of activity class
is larger. For example, with 19 activity classes on DSADS
dataset, shift-GAN can achieve the averaged gain of 15.3%
in micro- and macro-F1. The main reason resides in insta-
bility of Bi-GAN in generating samples in high-dimensional
spaces. As presented in Figure 6, Bi-GAN works well on
low-dimensional datasets with a smaller number of classes,
which has achieved slightly higher F1-scores than shift-
GAN as the domain adaptation through Bi-GAN is effective
and the samples generated are reliable. The performance on
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TABLE 4. Accuracy comparison between shift-GAN and domain adaptation techniques in [6].

FIGURE 6. Ablation analysis of shift-GAN: with and without KMM (i.e., Bi-GAN only).

FIGURE 7. Comparison of loss performance and ROC curves for tasks B-C and D-P (DSADS-PAMAP) during training.

Bi-GAN drops significantly on the tasks of H-C, DSADS-
PAMAP, and PAMAP-DSADS. The H-C task on PAMAP
dataset is complicated with a large number of classes (e.g.,
12 vs. 7 on A-B) and imbalanced class distribution as shown
in Figure 4.

For the tasks between DSADS and PAMAP, the challenge
is the high-dimensional feature space matching. It is different
from image-to-image translation [48], where the image size in
both source and target domain is fixed and the feature spaces
are more similar than sensor data; that is, the pixel positions
such as contour of faces are matched between source and
target domain. This also explains why the Bi-GAN achieves
much higher F1-scores on the tasks of RA-LA, RL-LL, and
RA-T, where the feature spaces are better matched; that is,
the dimension and the semantics of feature space are the
same. The feature space alignment is mainly on fine-grained,
local adjustment. However, for the tasks betweenDSADS and

PAMAP, the distance of their feature spaces are much larger:
the dimension is different (i.e., 405 in DSADS and 243 in
PAMAP), and the semantics of each feature are different. This
leads to ineffectiveness of Bi-GAN. With the help of KMM,
shift-GAN improves the performance over Bi-GANwith 19%
in micro-F1 and 11% in macro-F1.

C. STABILITY AND CONVERGENCE OF GAN
Stability and difficulty to converge are two classic prob-
lems in GAN. These two can be a significant concern for
unsupervised domain adaptation. Since we do not use any
labels on the target domain, the performance of domain
adaptation relies on stable feature space transformation
between two domains. For this purpose, we have recorded
the loss on both generators and discriminators over epochs
and compare the performance of domain adaptation in
ROC curves.

VOLUME 9, 2021 19431



A. Rosales Sanabria et al.: Unsupervised Domain Adaptation in Activity Recognition: A GAN-Based Approach

FIGURE 8. Micro and Macro F1-scores on activity discovery.
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FIGURE 9. Performance of shift-GAN in recognising known and unknown activities.

Figure 7 contains four plots of the performance of the
discriminator and generator during the training process for
the tasks of B-C and DSADS-PAMAP. The discriminator and
generator are on the primary GAN; i.e., from source to target
domain. With both loss and accuracy, we can see that in our
experiments GAN has converged well on sensor data, even
on high-dimensional data.

D. GENERALISED DOMAIN ADAPTATION
1) GOAL
Our next experiment is to assess the generalisation of shift-
GAN in transferring the activities that have not been observed
in the training data. That is, after training both generators
Gs and Gt , if the source domain has a new set of data that
is labelled with a new set of activities Y ′s different from
the original activity set Ys, can we transfer the knowledge
on these new source data to predict the labels in Y ′s on the
target domain? This experiment tries to demonstrate the learnt
mappings are intrinsic to both domains, independent of the
activity classes.

2) EVALUATION PROCESS
The evaluation process works as follows. Given |A| as the
total number of the common activities between both source
and target domain, we start with n (≤ |A| − 1) activities,
and take all the source domain data on these n activities
and 80% unlabelled training data on the target domain for
training shift-GAN. For the rest of |A| − n number of activ-
ities, we use the trained Bi-GAN models to generate tar-
get domain data, apply KMM, and build a classifier on the
generated and corrected target domain data. We assess the
accuracy of recognising both n known and |A| − n unknown
activities on the target domain. We set n to be |A| − 1
to 2. For each setting, we run 10 iterations and report the
F1-scores on both known and unknown activities. We will

compare shift-GAN with the best performing classic tech-
niques – GFK and TCA, but not with deep learning tech-
niques, as they learn feature transferring and classification
altogether, which make it impossible to introduce new classes
without retraining the whole technique.

3) RESULTS
The experiment results over the 12 transfer learning tasks are
listed in Figure 8, where shift-GAN significantly outperforms
TCA and GFK. As expected, the classification performance
decreases when less activities are available for training; that
is, when the number of known activity is small. However,
shift-GAN is able to recreate instances for the unknown
activities. This can be seen from the average F1-scores sum-
marised in Figure 9 where the difference in accuracy between
the known and unknown activities is not too big. It is interest-
ing to observe a very stable trend in F1-scores for the known
activities. This shows that shift-GAN is effective in learning
feature representations for each activity individually and is
capable to use the knowledge learnt from the source domain
to predict a class label for a new activity from the target
domain.

E. ROBUSTNESS TO SENSOR NOISE
1) GOAL
Our third experiment is to assess the robustness of learnt
domain adaptation against to sensor noise. Noise is pervasive
in all the sensor data and over time, sensors’ performance
can degrade and generate abnormal data. It is desirable that
the domain adaptation can learn intrinsic feature mapping,
independent sporadic, unexpected noise.

2) EVALUATION PROCESS
We use 80% of the target domain data for training and 20%
for testing. In the testing phase, we inject Gaussian noise to
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FIGURE 10. Comparison of macro F1-scores between shift-GAN and state-of-the-art-technique: DAN, ADADM, GFK and TCA, with Gaussian noise injected.

the testing data in the target domain. We randomly selected k
percentage of sensor features and randomly sample Gaussian
noise with mean and variance between 0 and 1. k varies
from 25% to 100% with a step size of 25%. Note that a key
outcome of this experiment is to measure the stability of shift-
GAN by systematically increasing the percentage of noise
sensor features until all sensor features are affected. A sensor
feature can happen to not be selected or be selected more than

once during the simulation process but in the final experiment
(k = 100%) all sensor features will be compromised. The
reason behind this experiment is that in reality, the perfor-
mance of the sensor can gradually or drastically vary over
time. We try to simulate a real-world situation and its impact
in our proposedmethod.Wewill compare shift-GANwith the
best performing deep and classic techniques: DAN,ADADM,
GFK and TCA.
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FIGURE 11. Macro F1-scores over different training percentages.

3) RESULTS
Figure 10 compares the accuracy of shift-GAN and the
existing techniques on different levels of sensor noise.
shift-GAN performs generally better than the other four

methods across the different tasks and various percentage
of noise sensor features. shift-GAN have achieved higher
macro-F1 scores than DAN (11.7%), ADADM (1.8%), GFK
(28.2%), and TCA (34.2%). This further demonstrates that
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using GAN for domain adaptation plus KMM for shift cor-
rection are stable and effective methods in domain adaptation
tasks. ADADM, mixing up the samples, can be more robust
in dealing with noise, as the accuracy on ADADM does
not vary much with different noise effects. DAN achieves
better performance on H-C and DSADS-PAMAP tasks, since
concatenating source and target features will lead to more
robust feature learning.

It is also evident that classic techniques are more sensitive
to noise. For example, TCA degrades abruptly when noise is
introduced in binary sensor data, and leads to low accuracy
when a small amount of noise is introduced in accelerome-
ter data. Also, we can notice that the performance of TCA
does not varies in experiments H-C, DSADS-PAMAP and
PAMAP-DSADS regardless of the amount of noise. This is
because TCA is unable to find a feature representation for
each activity in both domains and its biased towards one
class; that is, after the domain adaptation process the feature
representation is not meaningful which makes the SVM clas-
sifier struggle in distinguishing between classes and will only
predicts one. In DSADS-PAMAP and PAMAPS-DSADS
experiment, TCA is not only affected by the noise but also
by the dimension of the dataset. GFK is mainly affected by
the noise and the size of the dataset.

F. IMPACT OF TRAINING DATA
1) GOAL
Our last experiment is to assess the impact of training data on
the effectiveness of domain adaptation; that is, if we reduce
the amount of training data, will shift-GAN still perform
well? This is an important aspect in human activity recog-
nition as annotating sensor data with activity labels is a time-
and effort-consuming task and often incurs privacy risk.

2) EVALUATION PROCESS
We assess the stability of shift-GAN by varying the size of
training and testing sets and observe the effects on the classi-
fication accuracy. For each experiment, we randomly select p
percentage of target data for training and the remaining data
for testing. We vary p from 20% to 80%, with a step 20%.
We compute ten times each experiment and we report the
averaged macro F1-scores for each task.

3) RESULTS
Figure 11 presents macro-F1 scores over different training
percentages on 12 transfer learning tasks. From the results,
we observe that shift-GAN achieves better macro-F1 across
various learning tasks; more specifically, 3% over DAN,
16% over ADADM, 25% over GFK and 35% over TCA,
by averaging the accuracy across all tasks and all the sensor
percentages. When training data is small; i.e., 20%, shift-
GAN only outperforms on 3 tasks: RA-LA, RL-LL, and
RA-T; achieves similar accuracy to the best performing
technique on 3 tasks: A-B, B-C, and DSADS-PAMAP; and
gets lower accuracy on the other 6 tasks. The reason that DAN

and ADADM perform better still resides in the fact that they
have integrated feature transfer learning with classification.

All techniques are more stable in the accelerometer exper-
iments independently of the percentage of training data com-
pared to the binary ones. This is probably due to the fea-
ture representations of the datasets. The binary sensor data
collected in the in-the-wild real-world environments is more
sparse, noisy, and imbalanced across classes while the accel-
eration sensor data curated in the controlled environments is
balanced in class distribution.

VI. CONCLUSION AND FUTURE WORK
This article proposes shift-GAN as a generalised unsuper-
vised domain adaptation algorithm to enable transferring
activity recognition systems across heterogeneous domains
without the need of labels in the target domain. We have con-
ducted extensive empirical experiments on a dozen transfer
tasks in both binary sensor and accelerometer sensor data.
Our results have shown that shift-GAN outperforms the state-
of-the-art transfer learning techniques on most of the tasks.
Our technique leverages the generative capability of GAN in
mapping features between the source and target domain, even
on high dimensional and high heterogeneous spaces. The
promising results pave the future for scaling activity transfer
to a large number of environments. That is, we will only
need a well-annotated source domain data and shift-GAN can
enable the activity transfer to the other environments without
extra effort on labelling.
shift-GAN has demonstrates its generalisation capabil-

ity as the feature mapping function learnt can be activity-
independent. We can generate target sensor data from new,
emerging activities on the source domain, without the need
of retraining the bidirectional GAN. This generalisation capa-
bility will enable continuous domain adaptation; that is, when
there is a new activity from the source domain, we can transfer
it to the target domain.
shift-GAN has exhibited robustness to sensor noise, and

outperformed the existing techniques on 7 out of 12 tasks.
It has achieved higher accuracy on the sensitivity to training
data experiments, however, it does not outperform when the
training data is small and two domains have feature spaces of
high dimension and heterogeneity. For the latter conditions,
none of the existing techniques performs well; i.e., the accu-
racy is between 40% and 60%. One possible direction for
improvement is to use feature extractor to project both source
and target domains into a lower-dimensional reference space,
based on which to perform feature transfer.

In the future, we will further demonstrate the generality
of our approach by testing shift-GAN on other types of data
including image and text data. Also, we will look into a more
unified network to bypass the need for the SVM classifier.
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