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ABSTRACT The random array subset selection (RASS) jammer, which randomly selects a subset out of the
transmit array antenna from time to time, was verified to effectively counter against multistatic radar system
(MSRS). However, the countermeasure ability of RASS is restricted, because the probabilities of activating
antenna elements for transmission are constrained to be identical. To further enhance the countermeasure
ability, we propose the resource allocation of distributed jammer under random selection (RADJRS) in this
paper, where antenna elements of the jammer are activated randomly with different probabilities, abandoning
the previous constraint and generalizing RASS. We establish an optimization model with respect to the
selection probabilities, whose objective function is minimizing the output-to-input jamming energy ratio of
the jamming suppression method used in MSRS. This non-convex optimization model is then relaxed into
a convex problem, facilitating the solution of the problem. Numerical results verify the feasibility of the
relaxation and demonstrate that RADJRS outperforms the RASS when fighting against MSRS.

INDEX TERMS Random selection, resource allocation, jamming suppression, MSRS.

I. INTRODUCTION
Fighting against MSRS [1]–[3] has become an important task
for the electronic countermeasure (ECM), which transmits
jamming signals towards hostile radar to protect friendly
target from being detected. The challenge lies in the fact
that MSRS has high spatial resolution, because it synthesises
large virtual antenna aperture by fusing received signals from
widely separated radar systems. The enhanced angular res-
olution enables MSRS to distinguish the radar returns and
disruptive jamming signals in spatial domain, e.g., by using
some jamming suppression methods like subspace-based
method [4], blind separation method [5] or adaptive filter
method [6].

Utilizing jammer network to counter MSRS is a natural
idea. A recent paper [7] proposed to use RASS to counter
MSRS, and demonstrated that it significantly outperforms the
traditional approach that applies a full antenna array to trans-
mit jamming signals. In contrast, RASS jammer randomly
selects antenna elements to transmit jamming signals, which
forms stable mainlobe and random sidelobe. The random
sidelobe destroys the coherence between received signals
of different radar stations in MSRS, remarkably degrading
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the jamming suppression performance of MSRS. Following
previous approach [9], it is constrained in [7] that all the
array antennas are activated with the same probability. Under
this constraint, it is proved that the countermeasure ability
achieves its best when all the probabilities are set as 1/2.

This paper extends the previous work [7] by omitting the
equal-probability constraint, in order to further enhance the
countermeasure performance against MSRS. To this end,
we propose RADJRS, where the probabilities to activate
antenna elements are different and are optimized under the
objective of enhancing jamming performance. Therefore,
RASS is a special case of RADJRS with extra constraint, and
is expected to be sub-optimal to RADJRS.

Particularly, we model the optimization problem with
respect to the probabilities of activating antenna elements.
In the optimization model, the objective function is set to
minimize the output-to-input jamming energy ratio after the
jamming suppression method [8] used in MSRS, which indi-
cates the processing gain of MSRS as well as the loss of
RADJRS against MSRS.The established optimization prob-
lem is generally non-convex. To efficient solve the problem,
we relax the resource allocation problem into a convex prob-
lem. Numerical results validate that such relaxation is feasible
and the proposed RADJRS leads to the better countermeasure
performance than the previous RASS method.
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The rest of this paper is organized as follows: The system
and signal models of MSRS and RADJRS are introduced in
Section II. Section III establishes the optimization problem
with respect to probabilities of selecting antenna elements
to transmit jamming signals. Simulation results are given in
Section IV. Section V briefly concludes the paper.

II. SYSTEM MODEL
In this section, the geometry of the radars, jammer and target,
followed by the signal models of the RADJRS is introduced.
Then we analyze the advantage of the RADJRS when facing
the MSRS under the adaptive filter based jamming suppres-
sion method.

A. SIGNAL MODEL OF THE JAMMER
We consider a scenario that a jammer network, closely dis-
tributed around the target, is fighting against a MSRS to
protect the target from being detected. The geometry is shown
in Fig. 1. The MSRS is composed of one main radar and
K − 1 auxiliary radars, which are exactly synchronized. The
main radar transmits signals and receives the echoes, while
the auxiliary radars operate passively, i.e., they only receive
the target returns without transmitting any signals.

FIGURE 1. Geometry of the MSRS, target and jammer [7].

We then present the transmit signals of the jammer, which
has N elements. These N elements operate coherently, which
means that they are accurately synchronized and transmit the
same jamming signal r(t), with its autocorrelation function
given by Rrr (t) = E[r(t)r∗(t)]. We assume that the locations
of the MSRS is known to jammer by some reconnaissance
technologies or information pre-loaded by intelligence ser-
vices, and the jamming signal is pointed towards the main
radar. Denote by dk,n the distance between the n-th jammer
element and the k-th radar, k = 1, 2, . . . ,K , n = 1, 2, . . . ,N .
Here, k = 1 represents the main radar, and k = 2, 3, . . . ,K
represent the auxiliary ones. Traditional jammer operates
all the elements simultaneously, and the transmit signal is
given by

ṽ(t) = α1 r(t) ∈ CN , (1)

where αk is the steering vector of the jammer towards the k-th
radar, given by

αk =
[
ej2πdk,1/λ, ej2πdk,2/λ, . . . , ej2πdk,N /λ

]T
∈ CN , (2)

and λ is the wavelength of the transmit signal.
Different from the traditional jammer, RASS jammer ran-

domly selects a part of elements in each time slot, and the
selected elements are varied from a slot to another, generating
stable mainlobe and random sidelobe of the beam of jam-
ming, as is shown in Fig. 1. To represent this, we use a random
switch vector p(t) = [p1(t), p2(t), . . . , pN (t)]T ∈ {0, 1}N

to denote which elements are operating at the time instant t .
Particularly, when the n-th element is active, pn(t) = 1, and
0 otherwise. The transmit signal of a RASS jammer is written
as

v(t) = [p(t) ◦ α1]r(t) ∈ CN , (3)

where ◦ is the Hadamard product. Following [7], we assume
that pn(t) obeys the Bernoulli distributionwith probabilityPn,
and pn(t) is independent with respect to the element index n
and time t . The expectation of p(t) is written as

pe := E[p(t)] = [P1, ...,PN ]T ∈ RN , (4)

and the variance of pn(t) is given by

Var[pn(t)] = Pn(1− Pn). (5)

In this paper, we abandon the assumption that P1 = ... = PN ,
which is used in [7]. Instead, we will study the optimization
of pe to maximize the jamming efficiency in the next section.

B. SIGNAL MODEL OF THE MSRS
We now introduce the signal model ofMSRS, followed by the
jamming rejection methods. The received signal x(t) ∈ CK

is the superimposition of target echoes s(t) ∈ CK , jamming
signals q(t) ∈ CK and noises n(t) ∈ CK , given by

x(t) = s(t)+ q(t)+ n(t), (6)

where the k-th entries of these vectors, denoted by the
subscript (e.g., xk (t)), corresponding to the k-th radar in
the MSRS. To emphasize the main radar, we let xa(t) =
[x2(t), x3(t), . . . , xk (t)] ∈ CK−1 denote the signal received
by the auxiliary radars. Thus, we have x(t) = [x1(t), xTa (t)]

T .
Similarly, we define sa(t), qa(t), na(t) ∈ CK−1 such that
s(t) = [s1(t), sTa (t)]

T , q(t) = [s1(t), qTa (t)]
T , and n(t) =

[n1(t),nTa (t)]
T . Here, we assume that n(t) is the white Gaus-

sian noise with the variance of σ 2I .
When the radar is interfered by a RASS jammer,

the received jamming signal is given by

qk (t) = αHk v(t). (7)

For notation convenience, we define A = [α2, ...,αK ] ∈
CN×(K−1), such that qa(t) = AHv(t).
We then consider the jamming suppression approach in

MSRS. The main radar first estimates the jamming signal
q1(t) with a linear filter, denoted by q̂1(t) = wHxa(t), and
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then the main radar cancel q̂1(t) from the received signal to
achieve jamming suppression. Here w is the filter that should
be designed. We use the least mean square (LMS) adaptive
filter algorithm [6] to design w, given by

min
w

E
[
|q1(t)− wHxa(t)|2

]
, (8)

yielding w = r1aR−1aa , where

r1a = E[x1(t)xHa (t)],

Raa = E[xa(t)xHa (t)]. (9)

The estimate of q1(t) is then expressed as

q̂1(t) = r1aR−1aa xa(t). (10)

For the sampling signal with points number L, the above
matrices can be obtained as the sampled correlation matrices
by

r̂1a =
L∑
t=1

x1(t)xHa (t),

R̂aa =
L∑
t=1

xa(t)xHa (t). (11)

Then, the estimation of jamming signal is eliminated from
the main radar, given by

x1(t)− q̂1(t) = s1(t)+ n1(t)+ q1(t)− q̂1(t). (12)

Here, q1(t) − q̂1(t) is the remainder of the jamming signal
after jamming suppression method.

In the next section, we will optimize pe to increase the
remainder energy of the jamming signals.

III. TRANSMIT PROBABILITIES OPTIMIZATION
In this section, we aim at maximizing the jamming perfor-
mance by optimizing the transmit probabilities pe. Partic-
ularly, we use the output-to-input jamming energy ratio to
evaluate the jamming performance (which will be explained
later), and model an optimization problem that maximizes
this ratio. To solve the optimization problem efficiently,
we relax it into a convex problem.

A. OPTIMIZATION CRITERION
We use the output-to-input jamming energy ratio to evaluate
the performance of the jamming suppression method, given
by

β = Jo/Ji, (13)

where Jo = E[|q1(t) − q̂1(t)|2] and Ji = E[q1(t)q∗1(t)] are
the output and input energy of the jamming signals under
the jamming elimination method, respectively. In a jamming
scenario, radar performance mainly relies on the remained
energy of jamming signals. Therefore, we adopt the output-
to-input jamming energy ratio as criterion rather than evalu-
ating the signal intensity received by the radar. Particularly,
β indicates the jamming suppression performance of radar:

For an effective suppression method, Jo is expected to be far
less than Ji, which leads to a small value of β. Therefore,
higher values of the ratio β indicate worse performance of
the jamming suppression method. We note that both Jo and Ji
rely on the values of pe.
We aim at affecting the jamming rejection performance of

MSRS, by carefully designing pe.We regard this as a resource
allocation problem, because the probability Pn, the n-th entry
of pe, represents the availability of the n-th element, a kind
of hardware resource allocated for jamming. Particularly, we
model the following constrained optimization problem:

max
pe

Jo
Ji
, s.t. 0 ≤ Pn ≤ 1, n = 1, ...,N . (14)

By substituting the expressions of Jo, Ji and q̂1(t) in (10)
into (13), we rewrite (13) as

β = σ 2α
H
1 U(UHAAHU + σ 2I)−1UHα1

αH1 UU
Hα1

, (15)

where U ∈ CN×N is a matrix satisfying

UUH
= V := E[v(t)vH (t)], (16)

and depends on pe.We put the proof of (15) in theAppendixA
for the sake of readability.

The objective function (15) with respect to pe is quite
complex. In the sequel, we will first simply the optimization
problem by relaxing the objective function.

B. RELAXED OBJECTIVE FUNCTION
Observing (15), we let α̃ = UHα1, and then β has a form of
Rayleigh quotient with respect to B−1, i.e.,

β = σ 2 α̃
HB−1α̃

α̃H α̃
, (17)

where B = UHAAHU + σ 2I . According to [10], the β is
bounded by the eigenvalues of B−1, i.e.

λmin(B−1) ≤ β ≤ λmax(B−1), (18)

where λmin(·) and λmax(·) represent the minimum and maxi-
mum eigenvalues of a matrix, respectively. By the property of
eigenvalue of inverse matrix, we have the following inequal-
ities,

1
λmax(B)

≤ β ≤
1

λmin(B)
. (19)

Instead of directly maximizing β, we minimize λmax(B).
Since the eigenvalues of UHAAHU + σ 2I equal to those of
AHVA + σ 2I , respectively [10], we relax the optimization
problem (14) to

min
pe

λmax

(
AHVA+ σ 2I

)
,

s.t. 0 ≤ Pn ≤ 1, n = 1, ...,N . (20)

Since (20) is a convex problem, as stated in the following
proposition, global optimal solution can be obtained with
some generic convex toolboxes. The (20) can be transformed
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in to a semi-definite programming problem (SDP). With a
certain solution accuracy ε, in the worst case the complexity
of the SDP problem solved by primal-dual interior-point
algorithm is O(N 4.5 log(1/ε)).
Proposition 1: The optimization problem (20) is equiva-

lent with a convex problem.
Proof: See Appendix B for the proof and a brief discus-

sion on the computational complexity. �
Particularly, when we impose the assumption

P1 = ... = PN to (20), implying the resource allocation
problem in [7], we obtain the solution P1 = ... = PN = 0.5
as present in the following proposition.
Proposition 2: The objective of the following optimization

problem

min
pe

λmax

(
AHVA+ σ 2I

)
,

s.t. 0 ≤ Pn ≤ 1, n = 1, ...,N ,

P1 = P2 = · · · = PN . (21)

reaches its minimum when P1 = ... = PN = 0.5.
Proof: See Appendix C. �

Since (21) is a special case of (20), (20) yields better
countermeasure ability. In the next section, numerical results
are given to validate our analysis.

IV. NUMERICAL RESULTS
In this section, the performance of the proposed optimized
RADJRS is demonstrated by numerical results. First, we give
the simulation settings. Next, we compare the original objec-
tive function in (14) with its relaxation in (20). Finally,
we show numerical results of jamming performance, which
indicate that the proposed RADJRS outperforms the tradi-
tional RASS.

We consider an MSRS with K = 6 radars. Their
three dimensional coordinates are set as follows: (0,0,0) m,
(200,0,0) m, (0,200,0) m, (200,200,0) m, (300,0,0) m and
(0,300,0) m. The target is located at (2,2,15) km, equipped
with a jammer closely positioned to it. The array elements
of the jammer share the same x and y coordinates with
the target, while their z coordinates are set randomly. The
first radar is the main radar, transmitting linear frequency
modulation (LFM) signal with the bandwidth of 10 MHz,
the duration of 10 µs and the center frequency of 5 GHz.
We uniformly divide the duration of LFM into L = 200 time
slots. The σ 2

= 10−2 is the radar receive noise variance
and the

E[||q1(t)||22]
E[||n1(t)||22]

= 40 dB. The jammer uses Gaussian

noise of the same bandwidth as its baseband signal r(t),
continuously jamming towards the main radar. The input JSR
with respect to each element of jammer’s array antenna is

set as
E[||q1(t)||22]
E[||s1(t)||22]

= 23 dB. The distributed jammer randomly

transmit jamming signal in each time slot.
In the first experiment, we consider the relationship

between the output-to-input jamming energy ratio β and
the relaxed one λmax

(
AHVA+ σ 2I

)
. In this experiment,

we perform 10000 Monte-Carlo trials. In each trial,

FIGURE 2. The relationship between β and λmax
(
AHVA+ σ2I

)
.

we randomly generate pe, and then calculate the cor-
responding β and λmax

(
AHVA+ σ 2I

)
, yielding a pair

(β, λmax
(
AHVA+ σ 2I

)
). All the pairs are shown together

in Fig. 2, from which we find that when the β achieves its
maximum, the corresponding λmax

(
AHVA+ σ 2I

)
achieves

its minimum. Therefore, it is feasible to use (20) as a relax-
ation of the original resource allocation problem (14).

FIGURE 3. Values of λmax
(
AHVA+ σ2I

)
versus pe = [P1,P2]T .

Next, we depict the shape of objective function
λmax

(
AHVA+ σ 2I

)
versus the jamming transmit probabil-

ity pe. In this experiment, the jammer has N = 2 elements
with the z coordinates being 15006 m and 15116 m. The
transmit probability P1 and P2 range from 0.02 to 1 with a
step of 0.02, and λmax

(
AHVA+ σ 2I

)
is calculated at each

grid of (P1,P2). The results is shown in Fig. 3. From this
figure, we find that the objective function is convex, verifying
Proposition 1. Larger value of λmax

(
AHVA+ σ 2I

)
repre-

sents lower value of β and thus worse jamming performance.
We also find that four corners of the figure have large values
of λmax

(
AHVA+ σ 2I

)
. For example, at the upper right

corner of figure (where P1 = P2 = 1), which means that the
elements are transmitting jamming signal deterministically
all the time, λmax

(
AHVA+ σ 2I

)
reaches its maximum.
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This phenomenon indicates that the randomness on selecting
transmit elements is important to fight against MSRS.

In addition, we compare the global minimum and the min-
imum along the anti-diagonal of Fig. 3. The former repre-
sents the optimal performance that the proposed RADJRS
can achieve, while the latter is the optimum that the pre-
vious RASS method [7] reaches, because the anti-diagonal
expresses the constraint of P1 = P2. The global mini-
mum is 5.712, achieved at (0.46, 0.54), lower than the min-
imum along the anti-diagonal, 5.9067, achieved when P1 =
P2 = 0.5. The result indicates the necessity of omitting the
constraint P1 = P2 and optimizing the entries of pe.
Finally, we compare the performance of RASS and

RADJRS under the constraint of fixed transmit energy ‖pe‖2.
We set ‖pe‖2 =

√
Np, and we vary p from 0.1 to 1 with step

0.1. In RASS, the jamming transmit probability pe1 follows
P1 = ... = PN = p. In RADJRS, the transmit probability
pe is obtained by solving (20) with an additional constraint
‖pe‖2 =

√
Np (which is still convex). We set N = 3, and

the z coordinates of jammer’s array elements are 15006 m,
15116 m and 15188 m, respectively. The results are presented
in Fig. 4, where each dot of RASS is obtained by 100 Monte
Carlo trials. The results are simulated under a computer with
an Intel 3.30 GHz i5-4590 CPU and 8GB RAM. The dots of
RADJRS are obtained with convex toolbox, where the CPU
computing times range from 0.53s to 0.69s. By applyingmore
efficient convex solvers or some greedy approaches, we may
further reduce the consuming time, to meet real-time compu-
tation requirements. We remain this for future investigation.
As is shown in Fig. 4, RADJRS achieves higher β than RASS,
indicating the advantage of RADJRS over RASS.

FIGURE 4. The output-to-input jamming energy ratio β of RASS and
RADJRS versus p under the average energy constraint ‖pe‖2 =

√
Np.

V. CONCLUSION
In this paper, the RADJRS, whose array elements use differ-
ent probabilities to transmit jamming signal, was proposed
to enhance countermeasure ability of jammer. The transmit

probabilities of array elements are optimized by maximizing
the output-to-input jamming energy ratio of radar, which uses
LMS adaptive filter to suppress jamming signal. To solve the
optimization problem efficiently, we relax it into a convex
problem. Simulation results demonstrate that the proposed
method significantly improves the jamming performance and
energy transmit efficiency over the previous RASS method
that restricts the transmit probabilities of jamming elements
being identical.

.

APPENDIX A
PROOF OF (15)
In this appendix, we provide the proof of (15). We will
provides the deductions of the numerator and denominator in
(13) to give the proof. Firstly, we provide the expressions of
numerator and denominator under our signal model. Then the
eigen-decomposition method is used to simplify the numera-
tor to achieve (13).

In (13), the numerator is written as Jo = E[|q1(t)− q̂1(t)|2]
and the denominator is written as Ji = E[q1(t)q∗1(t)].

Firstly, we provide the deduction of the numerator Jo. The
Jo = E[|q1(t)− q̂1(t)|2] can be further expressed as

E[|q1(t)− q̂1(t)|2] = E[q1(t)q∗1(t)]+ E[q̂1(t)q̂∗1(t)]

−E[q1(t)q̂∗1(t)]− E[q̂1(t)q∗1(t)].

(22)

There are four expectations in the right side of the (22).
The expressions of q1(t) and q̂1(t) is given in (7) and (10)
respectively. Then we can provide the expressions of the
expectations as following:

E[q1(t)q∗1(t)] = E[αH1 v(t)v
H (t)α1]

= αH1 E[v(t)v
H (t)]α1

= αH1 Vα1, (23)

E[q̂1(t)q̂∗1(t)] = E[r1aR−1aa xa(t)x
H
a (t)R

−H
aa r1a]

= r1aR−1aa E[xa(t)x
H
a (t)]R

−H
aa rH1a

= r1aR−1aa RaaR
−H
aa rH1a

= r1aR−Haa rH1a, (24)

E[q1(t)q̂∗1(t)] = E[αH1 v(t)x
H
a (t)R

−H
aa rH1a]

= αH1 E[v(t)q
H
a (t)]R

−H
aa rH1a

= αH1 E[v(t)v
H (t)A]R−Haa rH1a

= αH1 VAR
−H
aa rH1a (25)

and

E[q̂1(t)q∗1(t)] = E[r1aR−1aa xa(t)v
H (t)α1]

= r1aR−1aa E[qa(t)v
H (t)]α1

= r1aR−1aa E[A
Hv(t)vH (t)]α1

= r1aR−1aa A
HVα1. (26)

The above deductions use the assumption that the target
echoes, jamming and noise are mutually uncorrelated, e.g.
E[qa(t)s

H
a (t)] = 0, E[qa(t)n

H
a (t)] = 0 and E[sa(t)nHa (t)] = 0.
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The r1a and Raa are the cross-correlation and autocorrela-
tion as given in (9).

r1a = E[x1(t)xHa (t)]

= E[(s1(t)+ q1(t)+ n1(t))(sa(t)+ qa(t)+ na(t))
H ]

= E[q1(t)qHa (t)]

= E[αH1 v(t)v
H (t)A]

= αH1 VA (27)

and

Raa = E[xa(t)xHa (t)]

= E[(sa(t)+ qa(t)+ na(t))(sa(t)+ qa(t)+ na(t))
H ]

= σ 2I + E[qa(t)q
H
a (t)]

= σ 2I + AHVA. (28)

Then we take the expression of r1a and Raa into the four
expectations,

E[q1(t)q∗1(t)] = α
H
1 Vα1,

E[q̂1(t)q̂∗1(t)] = α
H
1 VA(σ

2I + AHV A)−HAHVα1,

E[q1(t)q̂∗1(t)] = α
H
1 V A(σ 2I + AHV A)−HAHVα1,

E[q̂1(t)q∗1(t)] = α
H
1 VA(σ

2I + AHVA)−1AHVα1. (29)

Taking the (29) into the (22), we can get the expression of
Jo in our signal model, written as

E[|q1(t)− q̂1(t)|2]

= αH1 Vα1 − α
H
1 VA(σ

2I + AHVA)−1AHVα1. (30)

Next, we will use the eigen-decomposition method to sim-
ply the Jo in (30).

According to (16), the V can be expressed as V := UUH .
Then the (22) can be derived into

E[|q1(t)− q̂1(t)|2]

= αH1 U[I − UHA(σ 2I + AHUUHA)−1AHU]UHα1.

(31)

We defineBwithB := AHU , and the singular decomposition
ofB is written asB := 960H . Then expression in the square
brackets in (31) can be deducted into

I − UHA(σ 2I + AHUUHA)−1AHU

= I − BH (σ 2I + BBH )−1B

= I − 06H9H (σ 2I +960H06H9H )−1960H

= I − 06H9H [9(66H
+ σ 2I)9H ]−1960H

= I − 06H9H9(66H
+ σ 2I)−19H960H

= I − 06H (66H
+ σ 2I)−160H

= σ 20(66H
+ σ 2I)−10H

= σ 2(σ 2I + UHAAHU)−1. (32)

Then the(22) can be simplified as

E[|q1(t)− q̂1(t)|22] = σ
2αH1 U(σ 2I + UHAAHU)−1UHα1,

(33)

which is the numerator given in (15).

Next we consider the denominator Ji = E[q1(t)qH1 (t)],
whose expression is given in (23). Then we have
Ji = αH1 Vα1, which is the denominator in (15). Then we
can get the (15).

APPENDIX B
PROOF OF PROPOSITION 1
In this appendix, we provide the proof of Proposi-
tion 1. Firstly, we transform the objective function into a
semi-definite programming problem with a linear objective
function and a inequality constraints. Then we use the defini-
tion of quasiconvex function to show that the inequality con-
straints is quasiconvex. By [11], the quasiconvex constraints
is equivalent to a class of convex constraints. Then we can
proof that the (20) is equivalent to a convex problem.

Firstly, we transform the eigenvalue objective function
under semi-definite programming (SDP). The (20) is trans-
formed into [11]

min
pe, γ

γ

s.t. γ I − σ 2I − AHV (pe)A � 0,

0 ≤ pe ≤ 1. (34)

In the (34), the objective function γ and the constraint
0 ≤ pe ≤ 1 are linear. So we should analyze the convexity of
the first constraints. Then we will consider the convexity of
the function V (pe).
To analysis the convexity of the constraints, we firstly

provide the expression of V . According to (16), the V is the
expectation written as

V : = E[v(t)vH (t)]

= E[p(t) ◦ α1(p(t) ◦ α1)H ]E[r(t)r∗(t)]

= E[(p(t) ◦ α1)(p(t) ◦ α1)H ]Rrr (t) (35)

We firstly give the expression of p(t)◦α1 and (p(t)◦α1)(p(t)◦
α1)H as following

p(t) ◦ α1

=



p1(t)α11

...

pN (t)α1N


,

(p(t) ◦ α1)(p(t) ◦ α1)H

=



p21(t)α11α
∗

11 . . . p1(t)pN (t)α11α∗1N

...
. . .

...

p1(t)pN (t)α1Nα∗11 . . . p2N (t)α1Nα
∗

1N


.

(36)

By the assumption that E[p2n(t)] = Pn, E[pn(t)pm(t)] = PnPm
and α1nα∗1n = 1, we can get the expression of E[(p(t) ◦

VOLUME 9, 2021 29053



X. Wang et al.: Resource Allocation for Random Selection of Distributed Jammer Towards MSRS

α1)(p(t) ◦ α1)H ] as

E[(p(t) ◦ α1)(p(t) ◦ α1)H ]

=



P1 . . . P1PNα11α∗1N

...
. . .

...

P1PNα1Nα∗11 . . . PN


= (pe ◦ α1)(pe ◦ α1)

H
+ diag[pe ◦ (1− pe)]. (37)

Then the V (pe) is expressed as

V = {(pe ◦ α1)(pe ◦ α1)
H
+ diag[pe ◦ (1− pe)]}Rrr (t).

(38)

Let P ∈ CN×N
:= diag(pe), the V can be written as

V (P) = [Pα1αH1 P + P(I − P)]Rrr (t). (39)

Here we definite 8 := α1α
H
1 . Then V (P) =

[P8P + P(I − P)]Rrr (t).
We use the following definition to analyze the convexity of

V (P) [11]: A function is convex (or quasiconvex) if and only
if it is convex (or quasiconvex) on any line which intersects
the domain of the function.

Then we consider an arbitrary line located in the domain of
V (P), i.e V (P+y1P). Let g(y) = V (P+y1P)/Rrr (t). Then
we use the first order and second order derivatives of g(y) to
judge the convexity of g(y). The expression of derivatives of
g(y) is written as

g(y)= (P+y1P)8(P+y1P)+(P+y1P)[I−(P+y1P)].

(40)

Then we calculate the first order and second order deriva-
tives of g(y), written as follows:

∂g
∂y
= 1P + 21P(8− I)(P + y1P), (41)

∂2g
∂y2
= 21P(8− I)1P. (42)

We firstly analysis the second order derivative. In (42),
the 1P are non-negative diagonal matrix, the 8 = α1α

H
1

is a rank-1 matrix. Thus the 8 − I has one non-negative
eigenvalue and K −1 negative eigenvalues. The second order
derivative is not positive definite or negative definite. So the
g(y) is not convex or concave.

Next, wewill proof that the g(y) is a quasiconcave function.
We present the proof by a necessary and sufficient condition
of quasiconcave function [11], i.e. ∂g

∂y = 0 H⇒ ∂2 g
∂y2
≤ 0.

We consider the y0 such that ∂g
∂y = 0.

1P + 21P(8− I)(P + y01P) = 0 (43)

By some simple matrix operation, we have

2(8− I) = −(P + y01P)−1. (44)

In (44), the P+y1P is positive semi-definite diagonal matri-
ces, thus the (8− I)−1 and 8− I are negative semi-definite
diagonal matrices when ∂g

∂y = 0. In this case, the (42) is
negative semi-definite. So we can get

∂g
∂y
= 0 H⇒

∂2g
∂y2
= 21P(8− I)1P � 0 (45)

Thus the g(y) = V (pe + y1pe)/Rrr (t) is quasiconcave
function with respect to y and V (pe) is quasiconcave function
with pe. Then, the constraint γ I − σ 2I − AHV (pe)A � 0
is quasiconvex. From [11], the quasiconvex constraint can
be transformed into convex constraints. Thus, the (20) is
equivalent with a convex problem.

APPENDIX C
PROOF OF PROPOSITION 2
In this appendix, we provide the proof of Proposition 2.
Firstly, we update the AHV (pe)A when P1 = ... = PN . Then
we analyze the first order derivative of AHV (pe)A to show
that the P1 = ... = PN = 0.5 is the optimal solution.

When P1 = ... = PN , we have diag(pe) = PnI . Then the
AHV (pe)A can be written as

AHV (Pn)A = AH [PnI(8− I)PnI + PnI]ARrr (t)

= AH [P2n(8− I)+ PnI]ARrr (t). (46)

The derivative ∂AHV (pe)A
∂Pn

is written as

∂AHV (pe)A
∂Pn

= AH [2Pn(8− I)+ I]ARrr (t)

= AH [2Pn(8− I +
1

2Pn
I)]ARrr (t). (47)

When Pn = 0.5, the 8 − I + 1
2Pn

I = 8 is positive
semi-definite matrix. When Pn < 0.5, the 8− I + 1

2Pn
I has

negative eigenvalues. When Pn > 0.5, the 8 − I + 1
2Pn

I is
positive definite matrix. The Pn = 0.5 is a minimum point of
AHV (pe)A. Then, when Pn = 0.5, the AHV (pe)A achieves
its minimum λmax.
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