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ABSTRACT In recent years, exploration and exploitation of renewable energies are turning a new chapter
toward the development of energy policy, technology and business ecosystem in all the countries. Distributed
energy resources (DERs) are being largely interconnected to electrical power grids. This dispersed and
intermittent generational mixes bring technical and economic challenges to the power systems in terms
of operations, stability, reliability, interoperability and the policy making. In additional, DERs cause the
significant impacts to the operation of traditional centralized generation power plants and the dispatch control
centers. Under such circumstances, the accuracy of DERs power forecasting is one of the critical problems
for TSO and DSO such as unit commitment, smooth fluctuations, peak load shifting, demand response, etc.
In this paper, a simplified LSTM algorithm built over the architecture of Machine Learning methodology to
forecast one day-ahead solar power generation is introduced. Through the machine learning processes of data
processing, model fitting, cross validation, metrics evaluation and hyperparameters tuning, the result shows
that the proposed simplified LSTM model outperform the MLP model. Moreover, the forecast of LSTM
model can successfully capture intra-hour ramping on different weather scenarios. The average RMSE is
0.512 which is quite promising to inspire that the proposed methodology and architecture can best fit the

short-term solar power forecasting applications.

INDEX TERMS Artificial neural networks, DER, LSTM, machine learning, solar power forecasting.

I. INTRODUCTION
The growing penetration of DERs implementation brings
a significant impact on grid stability and operation. The
accurate forecasting of DERs generation can help TSO and
DSO to optimize the unit commitment and regulate the
power quality as well as the activity of demand response.
Today, the study of PV forecasting becomes one of the
mainstreams in terms of the prediction research territory.
Many algorithms are used in Solar Power Forecasting such
as Numerical Weather Prediction (NWP), Cloud Imagery and
Satellite-Based Models, Statistical Time Series Models, and
Artificial Neural Networks (ANN), which are one of the most
popular algorithms for such study. In this work, the author
will focus on the discussion of the different ANNs models.
ANNs have become popular among researchers
since 1980. They have been applied in various prediction
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applications as the most effective methods and more specifi-
cally to the forecasting of PV power generation where deliver
a higher level of accuracy. ANNs are widely introduced in
forecasting the PV power generation in most researches due
to its non-linearity in meteorological data. It is more suitable
compared with the statistical methods when a non-linear
and complicated bonding exists between the data without
any prior assumption [1]. In most studies, a single-layer
ANN is used to solve the problem. However, a significant
number of complex problems are caused by the unsolvable
data pattern using a single layer ANN. Complex input and
output relationships exist among different variables. To over-
come these problems, ANNs have been modified into several
types that follow different architectures and input-output
mapping procedures. Among these research works, the most
commonly used ANNs are Multilayer Perceptron (MLP),
Feed Forward Neural Network (FFNN), Radial Basis Neural
Network (RBNN), Recurrent Neural Network (RNN), Back
Propagation Neural Network (BPNN), General Regression
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Neural Network (GRNN), and Adaptive Neuro-Fuzzy Inter-
face Systems (ANFIS).

MLP is a supervised feed-forward ANN [2], [3] that
consists of one or more layers between the input and out-
put layers of the network. These layers, called hidden lay-
ers can be adjusted to suit the complexity of a problem.
A previous study demonstrated that more than two hidden
layers are rarely required when performing complex map-
ping [4]. FFNN is a relatively less complex ANN architecture.
In FFNN, the information only moves in a forward direc-
tion from the input layer to the output layer. To process the
information doesn’t require a feedback loop or cycle. These
neural networks have been adopted in several forecasting and
pattern-recognition applications [5]-[8]. RBNN is considered
a two-layer ANN. The learning process can be separated into
two different stages based on synaptic weights [9]. Man-
dal et al. reported that RBNN achieves good performances
and involves less computation time for learning [10]. When
applied to PV power forecasting, RBNN is preferred for
its universal approximation property and structural simplic-
ity [11]. RBNNS are used for the daily global solar radiation
prediction, using meteorological data such as air temperature,
humidity, and sunshine duration [12]. RNN performs well in
learning different and computational structures and complex
relationships. Therefore, it is considered a good method for
time-series data forecasting. Yona et al. reported that com-
pared with FFNN, errors in forecasting results are signifi-
cantly minimized with RNN [13]. BPNN is the most powerful
supervised learning algorithm [14], [15]. However, this algo-
rithm tends to have a slow convergence rate, a training prone
to oscillations, and easily falls into the local minimum [16].
To address these limitations, the researchers introduced a
modified BP network [17]. Among other ANN-related meth-
ods, BPNN has been widely used because of its excellent
non-linear mapping function, which is suitable for solving
complex regression problems [18]-[22]. The first study of
LSTM in day-ahead solar energy forecasting, the empirical
results show that LSTM outperform a large number of alter-
native methods [23]. A correction approach using discrete
grey model (GDM) with LSTM for non-ideal weather profile
is discussed [24]. Two LSTM neural networks are employed
working on temperature and power outputs forecasting and
show excellent performances compared with ARIMAX and
MLP [25]. An LSTM model with a clearness-index approach
and classify the type of weather by k-means is introduced
to improve the prediction accuracy on cloudy days [26].
Moreover, recently, a partial daily pattern prediction (PDPP)
framework is proposed to improve the TCM (time correction
modification) on LSTM-RNN model [27]. However, the main
drawbacks of ANNSs are overfitting and the large number of
data required during the training process [28], [29], which
increases the complexity of the implementation and the cost
in the real practice

In this study, a simplified approach of the time series
forecasting using LSTM model based on machine learning
architecture for one day-ahead solar power forecasting is
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proposed, using the limited train data to obtain the good
forecasting result without the sacrifice of accuracy. The
train data matrix with the moving window technique, also
introduced in [30], is well presented and the methodologies
of machine learning processes are detailed discussed. The
architecture of this paper is arranged as follows: Section I
introduces the mainstream research of ANNs. Section II dis-
cusses the methodologies of Machine learning, LSTM block,
data preparation, and preprocessing. Section III introduces
the experiment architecture and test results. Section IV for
discussion and Section V for the conclusion and future work.

Il. METHOLOGY

A. INTRODUCTION TO LSTM NEURAL NETWORK

Like other recurrent neural networks, LSTM is a neural net-
work of units that are interconnected as shown in Fig. 1. Each
unit contains information about the previous state.
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FIGURE 1. Overview of LSTM interactive layers.

LSTM networks are comprised of various gates that con-
tain information about the previous state. This information
is either written, stored or read from a cell that is acting
like a memory. The cell decides on whether to the store
the incoming information, when it reads, writes and erase
via the gates opening and closure. They act based on the
signals received and block or pass on information based on
its strength and import by filtering with their own sets of
weights. These weights are similar to those that modulate
input and hidden states by adjusting through the network’s
training process. The model proposed in this paper is a Long
Short-Term Memory (LSTM) network that consists of an
input layer, a hidden layer, and an output layer. Fig. 2 shows
the LSTM model featuring of input gate, i;, output gate, oy,
forget gate, f; and cell state, C',.

The forget gate f; shown in Fig. 3 must decide what infor-
mation to be kept and what information to be discarded from
the cell state C;. The decision is made by the logistic function
which outputs a value between 0 to 1. A value means to
keep the totality of the information and 1 means to forget its
totality. Function is described in (1).

Jo = oWrlhi—1, x] + by) ey

where
o : Activation function
Wy Weight of forget gate
by: Bias of forget gate
x;: Input at time ¢
h;—1: Hidden layer output at time 7—1
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FIGURE 3. Flow of the Forget gate f;.

The input gate i; shown in Fig. 4 decides the input values
to be updated by the LSTM blocks. The calculation for i
is determined by (2) and the calculation of C; is determined

by (3).

ir = o(Wilhi—1, X1 + b;) 2)
Cr = tanh(Welh—1, x:] + be) A3)

where:

o : Activation function

Wy : Weight of forget gate

b;: Bias of input gate

x;: Input at time ¢

h;—1: Hidden layer output at time r—/

We: Weight of cell

b.: Bias of cell

The final state would be the output state shown in Fig. 5.
A tanh is included in the output gate o, to decide which part
of the cell state is chosen to output. For the hidden gate #;,
the output gate o, is multiplied with another logistic function
to scale values between O and 1. The calculation for o, is
determined by (4) and the calculation of %; is determined

by (5).

0 = 0(Wolhe_1, x¢] + bo) @
ot + tanh(Cy) (5)

&
Il
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FIGURE 4. Flow of the Input gate i;.

AN : .

h,

X,

FIGURE 5. Flow of the output gate o;.

where:
o : Activation function
W,: Weight of output gate
B,: Bias of output gate

1) DATA MATRIX INPUTS
The input data matrix to feed LSTM model is three-
dimensional array as shown in Fig. 6.

Samples
—_— y

Time Steps

/!

X Features
FIGURE 6. LSTM input three-dimensional array.
The first dimension represents the number of samples
trained in the network. The second dimension represents the

time-steps, and the third dimension represents the number of
features in one input sequence.
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LSTM input layer is defined by the input shape argument of
the first layer. The input shape argument takes a tuple of two
values that define the number of time steps and features. The
number of samples is assumed to be one in our case but can be
more in case of multiple inputs. The three inputs components
are given with a 3-dimensional array input.

Considering our test where we have one sequence of mul-
tiple time steps which and one feature, we have a following
time series of one single data signal. This one-dimensional
array will be reshaped into a three-dimensional array with one
sample, the number of timesteps to predict one day, and one
feature at each time step. The reshape process must evenly
reorganize the data in the array. Based on past observations
(from x to xt-n), a new value of Power is predicted (Next Step)
at each step. The input data matrix is illustrated in Table 1.

TABLE 1. Input data matrix.

Step Next Step
#1 .. Xp.3 X2 Xr.1 X,
#2 X4 X3 Xp2 X1
#3 Xr-5 X4 Xr3 Xp-2
#4 X6 X5 X4 Xr-3
#5 X7 X6 Xr-5 X4
#6 X8 Xr.7 Xr.6 X5
#7 Xr.0 Xr-8 Xr.7 Xi-6

The behavior of the LSTM network is shown in Fig. 7. The
LSTM network will read the past observations from r—/ to
t—n (the number of past observations defined by the Input
Vector(t)) to feed the input vector at the first timestep. As a
result, a value target (¢) is found at timestep (t+7). Then
at the second timestep, the Input Vector increases of one
timestep (r4/) and the same process is repeated to find the
value at target (t+1) which is at the timestep (#+2).

Target(t)

Input_vector(t) ,
,
/! ¥

Xisize - ff" 5 | - | Xt | Xy Lprg X2
izat £3 -
oo 1
1
—» Window moving : Target(t+1) :
Lo m oo
1-size i-size+1 f-size+2 -1 t f+1 t+2 Time step

FIGURE 7. Input matrix mechanism.

In the Fig. 8 one can see the two outputs 4; and o; of the
LSTM Neural Network at each step. An input value x; feeds
the LSTM Neural Network that produces a hidden input A,
and an output value o, to feed the LSTM at each new step.

The architecture of Machine Learning can be shown
in Fig. 9. Raw data are collected from both weather data
acquisition and photovoltaic energy production equipment
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FIGURE 8. LSTM input and outputs.

such as PV inverter, energy meter and data logger and pre-
processed. Pre-processing requires different steps that will be
described later in chapter II.C. After data are pre-processed,
they are sampled and split into two datasets for training and
validation. These datasets will need to be preprocessed in
order to select and scale their features before to reduce their
dimensions to fit LSTM input requirements.

LSTM is trained with the training dataset and during the
process, hyperparameters and optimization will be applied to
the learning algorithm training. After training feature scaling
and dimensionality reduction are inversed to revert changes
to the initial dataset and the model is saved to generate
predictions that compared with actual data for evaluation.

The first step of data preprocessing is the feature selection.
In one dataset that features several signals, the feature selec-
tion is the process to select the best signal to feed the LSTM
Neural Network. The method to select the best candidate
signal is to check the correlation between signals.

The second step is the feature scaling. It involves two
different data preprocessing which are normalization and
standardization.

2) DATA NORMALIZATION

Normalization is the process of rescaling data from the origi-
nal range so that all values are within the range of 0 and 1.
Normalization requires to know or to accurately estimate
the minimum and maximum observable values, which can
be estimated from available recorded data. In case of solar
activity, minimum and maximum values can be found easily
since the solar pulse repeats daily. Data normalization is
based on (6).

@)
i X
-xn(tl))rm B (6)

Xmax — Xmin

where:
x: Particular sample
x,(,lgrm: New value of x
Xmax: Largest value in a feature column

Xmin: Smallest value in a feature column
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FIGURE 9. Architecture of machine learning.

As a result, each signal is normalized by a value between
0 and 1, which correspond with the minimum and maximum
values they reached among the entire dataset.

3) DATA STANDARDIZATION
The principle of standardizing a dataset involves rescaling the
distribution of values so that the mean of observed values
is 0 and the standard deviation is 1. It can be obtained by
subtracting the mean value or centering the data with (7).
0y,
= ™

where:

xD: Particular sample

) New value of x)

uy: Sample mean of particular feature column

oy: Corresponding standard deviation

Standardization can be useful and can be required in some
machine learning algorithms when data have input values
with differing scales. However, standardization assumes that
observations fit a Gaussian distribution (bell curve) with
a well-behaved mean and a standard deviation. Moreover,
standardization requires to know or accurately estimate the
mean and standard deviation of observable values. In case of
solar power data, this estimation is possible from the training
dataset.

4) NDIMENSIONALITY REDUCTION
Since LSTM only accept a three-dimensional array, train-
ing dataset needs to be reshaped accordingly to the input
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data matrix described previously. Time series index is
dropped, and time series is reshaped to host past observation
data.

5) TRAIN, VALIDATION, TEST DATASETS

The training dataset is a dataset of examples used for learning
the neural network dataset. A validation dataset is a dataset
of examples used to tune the hyperparameters. A test dataset
is a dataset that is independent of the training dataset, but
that follows the same probability distribution as the training
and validation datasets. For the purpose of the test, training
dataset will represent 80% of the entire available data, while
the validation dataset will occupy the last 20%. The test
validation is one day of recorded data and not included in the
training dataset or the test dataset. One can see an example
of dataset division in Fig. 10 for KHH. The latest day of the
original dataset is set as the test dataset while the rest of the
dataset is split in 2 datasets: in blue the training dataset and
in orange the validation dataset.

6) HYPERPARAMETERS

Hyperparameters allow to tailor the behavior of the LSTM
training algorithm and for specific datasets. They are dif-
ferent from parameters, which are the internal coefficients
or weights for a model found by the learning algorithm.
Since it is challenging to tune LSTM model with the
best hyperparameters, values have been set first to con-
duct the first series of tests. The number of neurons
is set to 100 neurons and the activation function is set
to “Relu.”
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FIGURE 10. Dataset dividing.

B. DATA ACQUISITION

Raw data are collected from PV systems via photovoltaic
equipment such as inverters, power meters, and weather sta-
tion sensors and recorded. Data are centralized to an edge
computing gateway where they were modeled and forwarded
to a server for data analysis. The integration of data at
the server is combined with data from weather forecasting
third-party server and retried by APL. The data collection
diagram is shown in Fig. 11.

Machine Learning Platform

Training and Test

Weather Dataset
Station
7y
PV Inverter -
% Edge Gateway Integration
Energy //’/ //
Meter /
/
S/
/
/
/
/ Weather
Controller 4 forecasting
API

FIGURE 11. Data collection.

C. DATA PREPROCESSING

1) MISSING DATA

LSTM models can possibly handle missing values, but the
quality in predicting data would still be affected if the datasets
that provide data to train the LSTM network shows poor
quality.

PV data are recorded periodically over the time by data log-
gers and series can be resampled to save storage or transport.
Resampling data can prevent missing values when missing
values don’t exceed the new resampling time resolution. Also
resampling data can solve the problem of variable time step
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in a dataset, for example when data logger has been reconfig-
ured or reset unintentionality.

However, due to other technical reasons such as system
failures, large chunk of data can be corrupted or missing in
the time series and cannot be recovered by data resampling.
In case of PV data where solar activity is a cycle of 24 hour,
it is possible to improve the quality of the dataset by removing
entire days without affecting the integrity of the dataset.

2) FEATURE EXTRACTION

In order to extract the best features from the original dataset,
the heating map will be used to reveal correlation between
signals. The heating map can confirm the high correlation
between the signal to forecast with other significant signals
from the system. Fig. 12 is an illustration of a heating map
generated from a dataset.
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FIGURE 12. Heating map.

3) DATA CLEANING

PV data observation is usually a daily basis pulse of pho-
tovoltaic power, starting from zero watts just before sun-
rise and returning to zero watts just after sunset. A peak is
observed somewhere around the middle of day. The pulse
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FIGURE 13. Architecture of experiment platform.

is usually corrupted by different factors, such weather per-
turbation (clouds, rain, snow) and data is measured at reg-
ular intervals (such as every minute or every five minutes).
Recorded data should be an accurate reflection of what the
system records from the environment factors and recording
conditions. However real datasets often deviate from these
expectations. Several disturbance factors affect the quality
of the datasets: missing data (due to hardware or software
resilience and performance, changing or irregular measure-
ment intervals (expected or unexpected), or changes in local
clock time (time shifts).

The reasons can be diverse: Data acquisition system may
go offline for a period of time or fail to acquire data while the
system is producing power. Also, it is common for some data
acquisition systems to simply stop collecting data when the
sun goes down.

Likewise, several causes can cause irregular measurement
intervals. For example, data loggers can be commissioned to
record data at 5 minutes interval and later changed to record
at 1-minute interval. Also, timestamps be can be skipped or
delayed (skipped scans).

Recorded time can appear to shift suddenly relative to
the underlying physical processes for some of reasons.
A common reason is the mishandling of daylight sav-
ings time shifts that occur in some countries. It is also
common to observe devices not synchronized or hav-
ing its internal clock changed for some reasons (power
cut, etc.).

Abnormal data coming from a missing sensor reading or
incorrect readings from logging devices can also result in
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negative data and radiation data that are bigger than the
theoretical data limits.

Fundamentally, if a data set is too corrupted by the types of
errors described above, it will not be possible to extract useful
information from that data set. But for moderately corrupted
data sets, we want to clean up these types of errors so that
we can then analyze the data, such as to estimate overall
system degradation or look for loss factors. It is particularly
interesting in methods that automate this process.

If a dataset is corrupted by several reasons described ear-
lier, it will not be possible to extract useful information from
it. However, for dataset corrupted moderately, it is possible to
clean up data so data can be later extracted for analysis.

A first step would be to estimate the overall degradation of
data by these factors. Methods have been developed to clean
data in an automated process.

Ill. EXPERIMENT AND TEST RESULT

This section will present experiment and test results of test
that comply with the methodology presented in the second
chapter.

A. ARCHITECTURE OF EXPERIMENT PLATFORM

The architecture of the experiment platform is shown
in Fig. 13. The first test phase will compare LSTM with
MLP neural networks with different sources and different
lengths of datasets. After Evaluating metrics, best model and
best dataset source and length will be selected and tuned in
the second phase of the test. The number of neurons and
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the activation function will be determined to find the best
hyperparameters values and hence finalize the model.

1) MFU AND KHH PV SITES

Raw data inputs selected were the time series of two geo-
graphically separated PV systems from two different coun-
tries (Chiang Rai, Thailand, and Kaohsiung, Taiwan), which
have the same tropical climate. Fig. 14. Illustrates the geo-
graphic location of the two PV systems.

Kaohsiung, Taiwan Chiang Rai, Thailand

5

- 4 == 4
Y g i "

FIGURE 14. Location of PV systems.

The meteorological data from Chiang Rai and Kaohsiung
were collected respectively from the Mae Fah Luang Univer-
sity and Kaohsiung City Government.

2) DATA COLLECTION

The two PV systems will be designated as MFU (Chiang
Rai) and KHH (Kaohsiung) in order to differentiate them.
Table 2 shows the site information of these PV systems.

TABLE 2. PV systems characteristics.

PV Sites MFU KHH
Country Thailand Taiwan
City Chiang Rai Kaohsiung
Coordinates 19°54'34"N 99°49'39"E ~ 22°38'N 120°16'E
Altitude 390 M IM
Average Temperature 24.2°C 24.4°C
Average RH 75% 76%
Daily Sunshine Hours 6.13 7

Raw data collected from the two PV systems have been
collected from photovoltaic equipment such as inverters,
power meters, and weather station sensors and recorded every
5 minutes and during different time frame. Fig. 15 illustrates
a photovoltaic site system architecture with its equipment.
Data are collected at MFU are recorded daily from 00:00 to
23:55 while data collected at KHH are recorded from 05:00 to
19:30. Also, both time series have missing and/or outliers’
observations. By calculating minimum and maximum for
each signal in the time series, we can notice consistent range
values, except some outliers’ values in the inverter tempera-
ture range.
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FIGURE 15. PV site system architecture.

The dataset collected from KHH features 20 data signals
while 9 were collected at MFU. Table 3 and Table 4 show the
data collected at KHH and MFU, respectively. Times series
contains all signals recorded from photovoltaic equipment.

TABLE 3. KHH signal characteristics.

Data Range
Generation (kW) 151989.0 - 262240.5
Global Radiance (W/m?) 0.0-3.6
Irradiance (W/m?) -1-1283
Observed Time (H) 5h-19h
Power (kW) 0.0 - 101.757
Precipitation / Hour (mm) 0.0-1.0
Precipitation (mm) 0.0 -43.5
PV Power (kW) 0.0-105.1
Relative Humidity (%) 26 - 100
Sea Pressure (Pa) 980.2 - 1025.7
Standard Pressure (Pa) 979.9 - 1025.3
Sunshine 0.0-1.0
Dew Point 4.6-28.2
Temperature 1 (°C) 14.0-34.4
Temperature 2 (°C) -1-63
UV Index 0-12
Wind Direction (°) 0-360
Wind Direction Gust 10 - 350
Wind Speed (m/s) 0.0-15.9
Wind Speed Gust 1.3-31.0

3) DATA INSPECTION

When observing data over one month, we can distinctly see
signal variations over each day. Fig. 16 and Fig. 17 show the
variations of recorded signals for a period of one month for
KHH and MFU respectively.

Variations are cyclic with one day period. When observing
signal variations over one day, we can notice the correlation
with the sun activity in Fig. 18.

4) HEATMAP

Correlation between signals can be overserved with a
heatmap when applied to data in Fig. 19 and Fig. 20 for KHH
and MFU, respectively.
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TABLE 4. MFU signal characteristics.
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FIGURE 17. MFU 30 Days dataset.

High correlation can be observed between signals, in the
KHH dataset for example, Power is high correlated with
Irradiance, Global Irradiance and UV Index as Photovoltaic
power is directly linked by these factors. However, other
signals have low correlation with power, such as Standard
Pressure or Wind.

A second data inspection has been carried to show corre-
lation between signals and assess the quality of output active
power data that is our first concern.

Fig. 21 shows correlation between power and other signals
in KHH Dataset. Unsurprisingly, it can be observed that
Power is highly correlated with UV Index, Irradiance and
Global Irradiance it can be also noticed that power is likely
to be high as the temperature increases. However, wind speed
and wind gust have low correlation with Power.
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FIGURE 18. Signal variations over one day (KHH).

Fig. 22 shows the correlation between Power and other
signals in MFU dataset. It can be observed that the tempera-
ture variables are moderately positively correlated with active
power, while the humidity variable is highly negatively corre-
lated with active power. The correlation results show that the
active power is likely to be high as the increased temperature
and the decreased humidity. Wind speed have low correlation
values while irradiance and photovoltaic power have very
high correlation values with active power.

Box plot of power daily variations per hour in Fig. 23 for
KHH and Fig. 24 for MFU show maximum values at noon
and best performances between 9:00 And 14:00 as sun rises
higher above the horizon.

5) POWER MATRIX
We can visualize the dataset by extracting its data to a power
matrix that shows the measured power for each recorded day.
The power matrix can reveal information such as night shifts,
missing data or inconstancies in timestamps.

In Fig. 25, a function applied to the dataset reveal night
shifts and missing data in MFU dataset.
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FIGURE 20. Heatmap (MFU).

Missing data can be filled, and night shifts can be ignored
to reduce training time. Fig. 26 shows missing data filled in
MFU dataset.

6) DATA PREPARATION

Clean datasets are first normalized and subdivided in 3 dis-
tinct datasets without overlapped data between them. For
example, MFU 30 days dataset is split in 24 days for training
data, 5 days for validation test and 1 day for test dataset. The
three datasets are visualized in Fig. 27.

KHH time series is the longest with 278 recorded day while
MFU only has 51 recorded days. For the purpose of our tests,
we will use different lengths of dataset for KHH and MFU.
Datasets lengths are defined in Table 5.

B. SCENARIOS OF INITIAL TESTS

The purpose of our first test is to evaluate the perfor-
mance of different neural networks and to demonstrate the
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FIGURE 21. Correlation between Power and other signals in KHH dataset.
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FIGURE 22. Correlation between Power and other signals in MFU dataset.

Box plot of Signals per hour for one day (KHH)
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FIGURE 23. Box plot of Power signal per Hour for one Day in KHH dataset.

benefits of the Long Short-Term Memory recurrent neural
network (LSTM) over Multilayer Perceptron (MLP).
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Box plot of Signals per hour for one day (MFU)
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FIGURE 24. Box plot of power signal per Hour for one Day in KHH
Dataset.

Measured Power

Time of day

(sunset)

30 40

20
Day Number

FIGURE 25. Night shifts and missing spotted data in MFU Dataset.
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FIGURE 26. Dataset fixed in MFU Dataset.

Different parameters have been set for the two dif-
ferent models as they feature their proper characteristics.
Table 6 summarizes the parameters used for the two models.

The multilayer perceptron is created with a first layer
of 100 neurons to receive the input dimensions correspond-
ing to number of points we defined for the past observa-
tions. An output layer is added to return the prediction. The
non-linear function ‘Relu’ is set for activation. The model
is compiled with ‘Adam’ optimizer and root mean squared
error (RMSE) for loss calculation.

The long-short-term memory model is first created by
calling a sequential constructor, then the LSTM layer is added
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TABLE 5. Lengths of training validation and test datasets used during
tests.

Dataset MFU KHH
Length 51 days 278 days
Training 30,50 days 1,3,6,9 Months
Validation 20% of Training Datasets
Test 1 Day

TABLE 6. Hyperparameters applied for each model MLP and LSTM.

Hyperparameter MLP LSTM
Model Sequential Sequential
Activation Relu Relu
Input Input Array Input Array
First Layer 100 neurons 100 neurons
Hidden Layer - - (Dropout)
Output Output Array Output Array
Loss Calculation RMSE RMSE
Optimizer Adam Adam

with a number of neurons equal to 100. A dropout layer is
then added to prevent overfitting (regularization) and finally
an output layer is created to receive outputs. The model is then
compiled with RMSE as loss calculation method and ‘adam’
is chosen as optimizer.

The evaluation of these 2 models intends to compare and
understand the level of accuracy of forecasts according to the
indicators that have been presented in the ‘“Hyperparameters:
Inputs, Layers, Hidden Layers” section. Thus, one can com-
pare different architectures and adjust the parameters in order
to obtain the best possible prediction.

The two models MLP and LSTM will be evaluated by
comparing the two different datasets KHH and MFU with
different lengths (1 month, 3 months, 6 months, 9 months).
Table 7 lists the 12 cases conducted during the tests.

1) RESULTS
The two learning machines have been trained, evaluated and
then test consecutively with these multiple dataset lengths to
predict one day forecast.

Fig. 28 to Fig. 39 show one day forecast compared with
actual data predicted by the two models MLP and LSTM
when trained with different dataset lengths.

2) EVALUATION METRICS
Loss, Validation Loss and RMSE are the most important eval-
uators for the assessment of the quality of the network. There-
fore, though these evaluators are not comparable between
them, they might exhibit the same behavior when comparing
different simulations and datasets. Table 8 shows the results
for the 12 first cases.

LSTM shows better accuracy compared with MLP when
the model is trained with KHH dataset as illustrated
in Fig 40.
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FIGURE 27. Training Dataset (Blue), Validation (Orange) and Test Dataset (Green) in MFU Dataset.
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FIGURE 28. Test Case #1 LSTM with 1 Month Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 29. Test Case #2 MLP with 1 Month Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 30. Test Case #3 LSTM with 3 Months Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 31. Test Case #4 MLP with 3 Months Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 32. Test Case #5 LSTM with 6 Months Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 33. Test Case #6 MLP with 6 Months Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 34. Test Case #7 LSTM with 9 Months Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 35. Test Case #8 MLP with 9 Months Dataset (KHH) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 36. Test Case #9 LSTM with 30 Days Dataset (MFU) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 37. Test Case #10 MLP with 30 Days Dataset (MFU) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 38. Test Case #11 LSTM with 50 Days Dataset (MFU) (a) Accuracy (b) Actual vs Prediction.
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FIGURE 39. Test Case #12 MLP with 50 Days Dataset (MFU) (a) Accuracy (b) Actual vs Prediction.

TABLE 7. Dataset lenghts for test cases #1 to #12.

Case Model Dataset Length
#1 LST™M KHH 1 Month
#2 MLP KHH 1 Month
#3 LSTM KHH 3 Months
#4 MLP KHH 3 Months
#5 LSTM KHH 6 Months
#6 MLP KHH 6 Months
#7 LST™M KHH 9 Months
#8 MLP KHH 9 Months
#9 LST™M MFU 30 Days
#10 MLP MFU 30 Days
#11 LST™M MFU 50 Days
#12 MLP MFU 50 Days
TABLE 8. Results of tests case #1 to #12.
#  Model Dataset Day  Loss Va;is(i)astsion RTI;ZsStE
#1 LSTM KHH 30 31.635 33.258 11.343
#2 MLP KHH 30  48.735 227.77 18.912
#3 LSTM KHH 90  62.802 96.434 10.009
#4 MLP KHH 90  99.459 285.00 15.666
#5 LSTM KHH 180  88.560 61.480 9.469
#6 MLP KHH 180  150.44 202.17 13.014
#7 LSTM KHH 270 79.318 25.761 10.534
#8 MLP KHH 270 341.30 229.18 18.648
#9 LSTM MFU 30 0.747 0.828 0.828
#10  MLP MFU 30 0.937 9.591 1.653
#11 LSTM MFU 50 0.924 0.596 1.630
#12  MLP MFU 50 1.131 2.655 4.787

MFU dataset shows better quality compared with KHH.
The difference is huge and is probably caused by the quality
of data between the two datasets Fig. 41.

When both models are trained with MFU datasets, they
produce better metrics and predictions that when trained on
KHH datasets. Moreover, an also conclude a difference in
term of accuracy between both models MLP and LSTM,
regardless which dataset is trained. For the purpose of our
tests, we will keep working with LSTM trained on MFU
datasets since the combination produced the best results.
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FIGURE 40. Accuracy between LSTM and MLP for KHH.

C. SCENARIOS BASED ON WEATHER PROFILES
Following the conclusion of the first evaluation, the LSTM
Model will be trained with MFU dataset during the second
evaluation and will be tested with different weather profiles,
as scenarios for one day weather forecast. Several weather
profiles have been observed and selected from MFU dataset
and preprocessed before to produce the predictions.

Based on visual observation for each single day in MFU
dataset, different scenarios based on different weather condi-
tions have been selected: Sunny, Cloudy, Rainy, Low Light,
Half Rainy/Half Sunny, Half Sunny/Half Cloudy.

A sunny weather is characterized by no presence of clouds
in the sky, resulting by a smooth irradiance trend from sunrise
to sunset. A cloudy weather is characterized by the entire sky
covered with cloud, resulting of sudden drops of sunlight over
the day. A rainy weather is characterized by the presence of
rain, resulting of more noise on the power trend compared
with a cloudy weather. A low-light weather is characterized
by a very low irradiance line over the day, which can because
by a lower elevation and azimuth as illustrated in Fig. 42.
The different datasets for each weather profile are shown
in Fig. 43.

Finally, two other mixed type of weather were selected,
when half of the day is sunny while the other half is either
cloudy or rainy. While observing the power signal over one
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FIGURE 42. Sun Elevation and Azimuth over the year.

TABLE 9. Dataset for test cases #13~#18.

Dataset MFU
Training 30 days
Validation 20% of Training Datasets

Test 1 Day

day period, we selected one day for each weather profile and
listed them in Fig. 43.

LSTM will be trained with one-month dataset from MFU
Dataset as presented in Table 9.

Considering the high number of networks configurations
possible to configure the LSTM, the following tables, fig-
ures and charts display the results and predictions as an exam-
ple of the expected output values using the model described
in the previous chapter.

1) RESULTS
Table 10 presents loss, validation loss and validation RMSE
values. Chart visualization for the loss and validation loss for
each iteration is shown in Fig. 44.

‘When making a prediction for each case and observing the
RMSE value, we notice best results for Sunny and Low Light
weather profiles. These two weather profiles have smoother
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TABLE 10. Loss, validation loss and RMSE result.

MFU Dataset Metrics
Loss 0.348
Validation Loss 0.380
Validation RMSE 0.444
TABLE 11. Test RMSE for each case.

Case Weather Scenario RMSE

#13 Sunny 0.230

#14 Cloudy 0.724

#15 Rainy 0.646

#16 Low Light 0.160

#17 Half Rainy, Half Sunny 0.604

#18 Half Sunny, Half Cloudy 0.655

TABLE 12. Table metrics for model tuning.
Test Case Activation Nodes

#19 Sigmoid 50
#20 Sigmoid 100
#21 Sigmoid 150
#22 Sigmoid 200
#23 Relu 50
#24 Relu 100
#25 Relu 150
#26 Relu 200
#27 Tanh 50
#28 Tanh 100
#29 Tanh 150
#30 Tanh 200

lines and therefore less difficulty to be predicted when com-
pared with other profiles which feature unpredictable patterns
such as sudden drops.

2) EVALUATION METRICS

We can observe model predicted forecasts depending on the
different weather scenarios for the trained model with 30 days
for MFU in Fig. 45 to Fig. 50. One can verify in detail the
prediction for every scenario. When the model is trained with
MFU dataset, the network forecasting results can success-
fully approximate to the expected outputs and the intra-hour
ramping is well captured. Forecast accuracy decays in the
middle variations of the day but current model already shows
good results, despite the fact the model is not tuned and using
default parameters for activation function.

A prediction has been made with each dataset for each
weather profile. Table 11 shows the results for each weather
profile. We can observe best values for Sunny and Low light
weather profiles, which confirm earlier observations.

D. TUNING OF HYPERPARAMETERS

The next evaluation is to determine the best hyperparameters
to tune the model. To conduct the test, two parameters will
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FIGURE 43. Different possible scenario for 1 day forecast weather conditions.
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FIGURE 44. Loss and Validation Loss for the trained model with 30 days.

be modified for each test case: the activation function and the
number of nodes.

In the previous evaluation, we kept the activation function
by default to Relu and set the number of nodes to 100.
In order to observe variations in term of accuracy in the
metrics and determine what would be the best settings for
these two parameters, we defined 12 test cases as described
in Table 12.

When running the 12 test cases and producing loss and
validation loss charts during each test, we noticed
different  patterns for each different activation
function.
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When model is trained with Sigmoid activation function,
charts show underfitting as training loss is larger than vali-
dation loss. This phenomenon can be observed for 50, 100,
150 and 200 nodes in Fig. 51 to Fig. 54.

When model is trained with Relu activation function,
we can notice underfitting with 50 nodes and overfitting
for 150 and 200 nodes. However, a satisfying pattern is
noticeable with 100 nodes as training and validation loss
are close and final values identical. Results can be observed
in Fig. 55 to Fig. 58.

When model is trained with activation function Tanh,
we can observe overfitting as validation loss values are higher
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FIGURE 46. Case #14 - Cloudy.
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FIGURE 47. Case #15 - Rainy.
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FIGURE 48. Case #16 - Low Light.

than training loss with 100, 150 and 200 nodes. A good
pattern is noticeable when the number of nodes is equal to
50 nodes. Results can be observed in Fig. 59 to Fig. 62.
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FIGURE 49. Case #17 - Half Rainy / Half Sunny.
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FIGURE 50. Case #18 - Half Sunny, Half Cloudy.
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FIGURE 51. Case #19: Sigmoid Activation Function with 50 Nodes.

From the loss and validation loss charts, we can deduct
that best results would be found when the number of
nodes is set to 100 nodes with Relu as activation func-
tion or with 50 nodes and the activation function set to
Tanh. Further checking with RMSE are necessary to confirm
these results and to determine which of the two show best
performances.

1) RESULTS

Table 13 shows all results by activation functions and
Table 14 shows all results by number of nodes.

2) COMPARISON OF METRICS

By synthesizing the results from the two tables best average
test RMSE are obtained in Table 15.

LSTM with 50 to 200 nodes and Tanh activation function
delivers best RMSE among all tested cases.
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TABLE 13. Comparison of metrics by activation function.

Activation Function Sigmoid Relu Tanh

Test Cases #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30

Nodes 50 100 150 200 50 100 150 200 50 100 150 200

Loss 1.842 1227 0945 0778 | 0.565 0430 0338  0.281 0364 0319 0.268  0.289

Validation Loss 0.953  0.801 0.722  0.641 0.400 0.411 0375 0363 | 0.388 0409 0376  0.426

Validation RMSE 0.672  0.675 0.663  0.610 | 0472 0450 0433 0420 | 0411 0.462 0431 0.000

Weather Scenario Test RMSE Test RMSE Test RMSE

Sunny 1247 0996 0860 0.761 0319  0.341 0.237 0.240 | 0364 0264 0263 0.263

Cloudy 0772 0.827 0.829 0.814 | 0.752 0.729  0.737  0.726 | 0.726  0.743  0.737  0.754

Rainy 0712 0.754  0.765  0.733 | 0.631 0.642  0.636  0.626 | 0.627 0.624  0.644  0.646

Low Light 0312 0342 0314 0282 | 0221 0236 0.168 0.137 | 0.147 0.176  0.139  0.206

Half Rainy, Half Sunny 0.692 0.714 0.730 0.695 | 0.632 0.626 0.608  0.616 | 0.619 0.628 0.615 0.640

Half Sunny, Half Cloudy 1226 1.058 0966 0.896 | 0.679 0.670 0.664  0.637 | 0.686  0.655 0.653  0.670

Average 0.827 0.782  0.744  0.697 | 0.539  0.540 0.508 0.497 | 0.528 0.515 0.508  0.530

TABLE 14. Comparison of metrics by number of nodes.
Nodes 50 100 150 200
Activation Function Sigmoid  Relu Tanh | Sigmoid Relu Tanh | Sigmoid Relu Tanh | Sigmoid  Relu Tanh

Loss 1.842 0.565 0.364 1.227 0.430 0.319 0.945 0.338 0.268 0.778 0.281 0.289
Validation Loss 0.953 0.400 0.388 0.801 0411 0.409 0.722 0.375 0.376 0.641 0.363 0.426
Validation RMSE 0.672 0.472 0.411 0.675 0.450 0.462 0.663 0.433 0.431 0.610 0.420 0.000

‘Weather Scenario Test RMSE Test RMSE Test RMSE Test RMSE
Sunny 1.247 0.319 0.364 0.996 0.341 0.264 0.860 0.237 0.263 0.761 0.240 0.263
Cloudy 0.772 0.752 0.726 0.827 0.729 0.743 0.829 0.737 0.737 0.814 0.726 0.754
Rainy 0.712 0.631 0.627 0.754 0.642 0.624 0.765 0.636 0.644 0.733 0.626 0.646
Low Light 0.312 0.221 0.147 0.342 0.236 0.176 0.314 0.168 0.139 0.282 0.137 0.206
Half Rainy, Half Sunny 0.692 0.632 0.619 0.714 0.626 0.628 0.730 0.608 0.615 0.695 0.616 0.640
Half Sunny, Half Cloudy 1.226 0.679 0.686 1.058 0.670 0.655 0.966 0.664 0.653 0.896 0.637 0.670
Average 0.827 0.539 0.528 0.782 0.540 0.515 0.744 0.508 0.508 0.697 0.497 0.530

LSTM - Accuracy while training LSTM - Accuracy while training
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FIGURE 52. Case #20: Sigmoid Activation Function with 100 Nodes.
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FIGURE 53. Case #21: Sigmoid Activation Function with 150 Nodes.

TABLE 15. Best average test RMSE.

This paper presents a single LSTM model to com-
pare with MLP neural network and for performances.
Others LSTM models could be compared for instance,
with multivariate inputs or different number of past

observations.

The results presented in this paper are based on a single
run to train the neural networks and to produce predictions.
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50 Nodes 100 Nodes 150 Nodes 200 Nodes
Tanh Tanh Tanh Relu
0.528 0.515 0.508 0.497

Multiple runs to produce results by average would be needed
to consolidate the results presented in this paper.
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FIGURE 54. Case #22: Sigmoid Activation Function with 200 Nodes.
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FIGURE 55. Case #23: Relu Activation Function with 50 Nodes.
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FIGURE 56. Case #24: Relu Activation Function with 100 Nodes.
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FIGURE 57. Case #25: Relu Activation Function with 150 Nodes.

During the experiments, MFU and KHH datasets showed
differences in term of performance. LSTM when trained with
MFU datasets showed better RMSE than when trained with
KHH. A further data analysis could be done to compare both
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FIGURE 58. Case #26: Relu Activation Function with 200 Nodes.
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FIGURE 59. Case #27: Tanh Activation Function with 50 Nodes.
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FIGURE 60. Case #28: Tanh Activation Function with 100 Nodes.
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FIGURE 61. Case #29: Tanh Activation Function with 150 Nodes.

datasets KHH and MFU, including the calculation of data
degradation by comparing power with clear sky model for
example. Also, the experiments only tuned the number of
neurons and the activation function. Other hyperparameters
could be also tuned to reach better performances.
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FIGURE 62. Case #30: Tanh Activation Function with 200 Nodes.

V. CONCLUSION
The author proposes an architecture of machine learning
methodologies based on LSTM and MLP with various size of
train datasets from two PV sites located in KHH (Kaohsiung)
and MFU (Thailand) respectively. The initial test shows that
RMSEs of evaluation metrics for 12 cases have no significant
difference in term of the size of train dataset. However, it is
clear to mention that LSTM is superior to MLP for the
forecasting under this test platform. Moreover, it is worth
highlighting that the RMSEs of the same LSTM model based
on 1-month train dataset of KHH and MFU are 1.653 and
0.828 respectively. After the observation of raw data between
KHH and MFU, we can assume that the data quality is
likely the major cause to lead to the different test result.
Nevertheless, LSTM does perform the promising result for
one day ahead solar power forecasting. After the initial test,
the further test is focused on LSTM with the cases of weather
conditions based on MFU train dataset. The weather condi-
tions available in the train dataset can be categorized into
Sunny, Cloudy, Rainy, Low Light, Sunny-Cloudy and Rainy-
Sunny. The result shows that the low RMSEs of 0.230, 0.724,
0.646, 0.160, 0.604, 0.655 respectively. When the model is
trained with MFU dataset, the network forecasting results
can successfully approximate to the expected outputs and
the intra-hour ramping is well captured. Forecast accuracy
decays in the middle variations of the day but current model
already shows good results, despite the fact the model is not
tuned and using default parameters for activation function
that will be the last test and described. The last evaluation
is to tune the model and determine the best hyperparameters
for activation functions and number of hidden nodes. The
result shows that the best average RMSE is 0.497 under the
conditions of 200 hidden nodes and activation function Tanh.
The further study of LSTM for multi-variate time series
forecasting has not been tested and developed. This approach
will require the weather information from weather station at
PV site or the third-party weather websites.
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