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ABSTRACT Chile is one of the major producers of copper in the world, and as such is responsible for
1.7 million tons of tailings per day. While the most commonly used deposit to store this type of mining waste
is historically tailings sand dams, the mining industry has over the last two decades been inclined toward
thickened tailings dams (TTD) because of their advantages in water resource recovery, lower environmental
impact, and better physical and chemical stability over conventional deposits. Within the geotechnical area,
one key requirement of TDD, is the need to monitor moisture content (w%) during operation, which is
today mostly performed in situ — via conventional geotechnical or simple visual means by TTD operators
— or off site, via remote sensing. In this work, an intelligent system is proposed that allows estimation of
different classes of in-situ states and w% in TTD using Machine learning algorithms based on Artificial
Neural Networks (ANN), Support Vector Machine (SVM) and Random Forest (RF). The results show an
accuracy of between 94% and 97% in the classification task of the Dry, Semisolid, Plastic and Saturated
classes, and between 0.356 and 0.378 of the MAE metric in the regression task, which is sufficient to estimate
the w% with ML methods.

INDEX TERMS Thickened Tailings Dams, Physical Stability, Artificial Neural Networks, Remote Sensing

I. INTRODUCTION

While the Chilean mining industry produced 5600 MT of
copper in 2019 — one of the major sources worldwide
[1] — it is expected to reach 7.04 million tons of copper by
2030, peaking in 2027 at 7.33 million tons [2]. However, this
increase in copper production implies a peak of 1.7 million
tons of tailings per day which will need to be stored in
surface deposits, indeed, 90% of which are predicted to need
to remain active nationwide through the end of the period to
meet this need.

The latest cadastre of mining operations carried out in
Chile identified a total of 757 tailings deposits, with 14.7%
active; 22.9%, abandoned; 61.7%, inactive; and 0.7%, in con-
struction [3]. Historically, the most widely used tailings stor-
age technology has been tailings dams [3]. However, these
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may suffer physical instability, especially in countries with
significant seismic activity like Chile [4].

The high risks of great environmental and economic
losses resulting from catastrophic failures of tailings
deposits [4] — not to mention the imperative for greater water
recovery, decreased environmental impact, and improved
physical stability — have encouraged the mining industry to
seek other solutions. The trend has been toward thickened
tailings dams (TTD) technology, with clear advantages and
benefits as a high-solid disposal and material desaturation
process [S]-[7].

Nevertheless, the implementation of TTDs in Chile
requires accounting for certain conditions not present else-
where, such as scaling to much greater storage volumes,
the lack of appropriately flat topography or necessary sur-
face area, the high seismicity, and extreme meteorological
events — not to mention the expected gaps in the design and
operation for these types of deposits [8].
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These factors clearly necessitate that operational control
for TTDs be adequate, permanent, and high-standard. Indeed,
for proper physical and chemical stability, the ideal would
be affordable, continuous, geotechnical, geometric and water
controls during both operational and post-closure phases.
It is here that permanent operational geotechnical measure-
ments, along with supervision and periodic inspections, play
a fundamental role in the physical stability of a TTD.

One of the most important geotechnical variables to be
monitored during TTD operational phases is in-situ w%.
There is a practical empirical standard of tailings engineers
that each deposited layer of thickened tailings should be
allowed to dry until in-situ w% is equal to or less than its
Shrinkage Limit (SL). This, among other benefits - such as
increased density of tailings deposited on the surface by nat-
ural desiccation and the associated contraction of the tailings
mass — reduces the risk of liquefaction and/or significant
deformation of the TTD during seismic events [9], and is
a practical criterion in planning tailings disposal sequences
(discharge zones). However, like other geotechnical vari-
ables, in-situ w% exhibits great spatial and temporal vari-
ability [10], making continuous monitoring a necessity for
modern mining operations.

Within this context, one of the most widely adopted mon-
itoring strategies has become remote sensing. The advan-
tages of this technology over conventional on-site monitoring
techniques (on-site surveys, sampling, and testing) include
more frequent data gathering for larger areas (100 to 1000 ha
approximately) and those with difficult access. Furthermore,
satellite image analysis is increasingly becoming a technol-
ogy at scale in the follow-up and monitoring of tailings
deposits, particularly for the control of growth, deformations,
and movement of the clear water lagoon.

To this end, in reporting on combinations of remote sens-
ing methodology, [5]-[7] evaluated the use of satellite and
hyperspectral images (captured by unmanned aerial vehicle
UAV) in correlating the reflection of light on the surface
of a TTD and its surface w% as determined from field and
laboratory tests. The results obtained in terms of the intensity
of reflection normalized to dry soil was shown to have high
correlation, suggesting a precise and cost-efficient technol-
ogy for monitoring surface moisture in TTDs [6]. However,
such approaches have yet to be extensively implemented in
monitoring tailings water content. Indeed, that same study
discusses how this technology may be significant in safe
disposal and storage of thickened tailings, with the caveat,
however, that procedures must be developed to continuously
cover larger areas. A promising alternative toward building
on the proposal, then, is the use of Machine Learning (ML)
algorithms. Greatly advanced in recent years, ML techniques
— which have been employed in solving various civil engi-
neering problems [11] for at least 30 years — are an empir-
ical approach for computer programs to learn from a large
data set and capture functional relationships among variables,
even if the fundamental relationships are unknown or their
physical meaning is difficult to explain [12]. As such, ML is
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ideal for modeling the complex behavior of most geotech-
nical parameters — which by their nature are spatially and
temporally variable — especially as applied to remote and
continuous monitoring of w% over time in TTDs. The great
modeling capacity and ability to learn from experience has
catapulted ML techniques over classical approaches (e.g., sta-
tistical methods, geostatistics, among others); moreover, their
application does not require hypotheses or criteria selection
in addressing a particular problem [13].

The contribution of our work is twofold: Firstly, we pro-
pose a novel approach used to estimate in situ w% in TTD
using Remote Sensing images. The approach, to the best
of our knowledge, has never been applied to this type of
task in TTDs. Secondly, we estimate an in situ variable
from remote sensing images using Artificial Neural Net-
works (ANN), Support Vector Machine (SVM) and Random
Forest (RF). Although this has been previously addressed,
we demonstrate a thorough experimentation to estimate both
classification and regression labels for this problem. This
methodology benefits operations with continuous data mon-
itoring, better defined TTD storage zones and growth, which
will better ensure physical stability under static and dynamic
conditions.

Thus the present article explores the use of the ML in
monitoring w% in TTD as described above. This document
is structured as follows: Section 2 presents the state of the
art in the operation of TTDs and ML applied to the estima-
tion of geotechnical variables from remote sensing images;
Section 3 presents the proposed model and dataset used
for the estimation of in situ w% based on satellite images;
Section 4 shows the results; and the last section presents the
conclusions and delineates future work.

Il. STATE OF THE ART

A. OPERATION OF TTDS

To ensure physical and chemical stability — not only during
operation, but also in the long term, i.e. post closure — TTDs
require geotechnical, geometric, and water-related variable
monitoring. These measurements identify deviations from
project as designed, and, as such, potential risks related to
the environment and communities located downstream.

In relation to physical stability, the control of geotechnical
variables is meant to avoid scenarios that could lead to the var-
ious failure modes, e.g., seismically induced liquefaction or
overtopping the retaining wall perimeter [14]. Geotechnical
measurements must include: i) geometry of the deposit (area,
height, and slope of earth structures); ii) physical and in situ
state characteristics of the deposited tailings (percentage of
solids by total weight, particle size distribution, unit weight
and w%); iii) water table; and iv) specific variables carried
out in the reservoir or the ground (accelerographs, settlement
cells, inclinometers, among others).

Additionally, different deposition stages in TTDs require
other permanent aspects for monitoring, e.g., layer thickness,
plasticity of the tailings fine fraction, and drying time. As pre-
viously mentioned, surface moisture is usually considered
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FIGURE 1. Thickened tailings deposit (TTD) in drying process.

upon disposal. This is commonly determined by visual
inspection and depends on the experience of TTD operators,
when the material reaches a w% equivalent to SL. Before
continuing with the deposition process, the fresh tailings must
lose moisture until cracks appear on the surface (Figure 1).
The widths of these cracks vary from a few millimeters to
50 mm, depending on the size and mineralogy of the tailings
particles [15].

Very large surface areas (from 1 to 3 ha) may be mon-
itored with discrete surface and depth samples using bore-
holes. However laborious and limited to accessibility, in situ
densities and tests have mostly trended toward the portable
PANDA penetrometer (Pénétrometre Autonome Numérique
Dynamique) in Chile [16]. This test determines tip resis-
tance (qd) that, in the case of thickened tailings, correlate w%,
the liquidity index (LI), and the field saturation condition as
a function of depth [8].

Given the importance of drying time and physical stabil-
ity in operating TTDs, the surface w% must be regularly
monitored. Compared to the methodologies used at present,
satellite images are an attractive prospecting technique for
TTD monitoring.

B. MONITORING MOISTURE CONTENT BY LIGHT
REFLECTION

The techniques for estimating soil moisture based on light
reflection were initially developed by [17] for the control of
w% in agricultural soil. That study, which carried out several
tests with a spectrometer to determine the light reflection
levels of a set of ten soils — composed of different proportions
of clay, silt, sand, organic material, CaCO3, and Fe over a
wide range of w% (from dry to saturated) — obtained a series
of reflection curves as a function of w% using 12 wave-
lengths in the solar domain range (400 - 2500nm). After
normalizing results to the reflection from dry soil condition,
the obtained curves showed a parabolic relationship between
light reflection and w%. Similarly, and also in the field of
agricultural engineering, light reflection has been used to
assess the state of crops [18]. To this end, the Normalized
Difference Vegetation Index (NDVI) (1) [19] — a reflection
index of combined spectral bands correlated with w% — was
shown to relate light reflection with material saturation states,
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and thus, can be used as a valid indicator of crop health.

NIR — Red
NDV] = — (1)
NIR + Red

Another soil reflection study [20] in the context of hydrol-
ogy used a standardized reflection index and found a high
correlation between the Short-Wave Infrared (SWIR) spectral
light range (1000 - 2500nm) and surface w%. [21] expanded
that index to an algorithm for use with optical satellite images
and obtained a good fit in estimating surface humidity for
soils, regardless of the resolution of the images.

In the context of extractive industries, [22] carried out a
series of tests on oil sand tailings and found similar rela-
tionships between soil water content and light reflection as
those found by [17] for soils. Furthermore, an investigation
into soil w% using series of spectral images in laboratory
and field conditions at light wavelengths in the solar domain
(400 and 2,500nm) using a conventional Visible (VIS) camera
and a Near-infrared (NIR) camera [5], [6] [7] found a high
correlation between surface water content (w%) for tailings
material and active illumination at 980nm, the advantages of
which (lighting at a narrow spectral band) includes the ability
to illuminate areas unreachable by ambient light (e.g., among
the cracks generated by shrinking tailings).

The advances made in this cost-efficient, attractive
methodology to estimate surface w% from light reflec-
tion have shown that spectra of in situ TTD surface mois-
ture depends on the properties of the tailings themselves
(e.g., color, particle size distribution, specific gravity of the
solid phase). Thus, while experimental data from the field
may still required for laboratory calibrations, techniques to
extrapolate w% from at times difficult, costly, or untimely
to obtain soil specimens — as well as beyond a limited,
single-band spectral data, are needed. Therefore, this work
presents ML techniques as a potential multidimensional
image analysis alternative to more efficiently discern surface
soil moisture calibrated to the needs of the current and future
Chilean mining industry.

C. ARTIFICIAL INTELLIGENCE IN GEOTECHNICAL
ENGINEERING
The application of Artificial Intelligence (Al) to geotechnical
engineering has progressed since the 90s, and has explored
techniques such as ANN, Linear Regression (LR) Analysis,
Support Vector Machine (SVM), Random Forest (RF) and
M5 model trees (M5P) [13], [23]-[25]. Among these Al tech-
niques, the ANN (e.g., Multi-Layer Perceptron, MLP) have
provided the best results in solving geotechnical engineering
problems like modeling spatial variability of soils, estimating
the overconsolidation ratio (OCR) in cohesive soils, estimat-
ing pile support capacity, estimating settlements in surface
foundations, evaluating sand liquefaction susceptibility, ana-
lyzing slope stability, and predicting compaction parameters
in cohesive soils, among others [24], [26].

Recent research has studied the application of Al in tailings
deposits, such as: i) development of pre-alarm systems for
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tailings deposits, based on real-time monitoring and numeri-
cal simulation using IoT (Internet of things) and cloud com-
puting [27]; ii) detection of tailings deposits and mining
pits from satellite images, using deep learning techniques
(Deep Learning, DL) [28], [29]; iii) identification of tailings
deposits using convolutional neural networks (CNNs) from
satellite images and data from the registry of deposits in
Brazil [30]; iv) and in identifying and monitoring surface
erosion in tailings deposits using UAV images and ML [31].

In [32], the performances of ANN in retrieving soil w%
and surface roughness were tested for several inversion cases
(both with and without a priori knowledge of soil parameters
for training). That study then validated the inversion approach
using polarimetric RADARSAT-2 images. The introduction
of expert knowledge was shown to improve estimates of soil
w% (dry to wet soils, or very wet soils), whereas the precision
on the surface roughness estimation remained unchanged.
Moreover, polarimetric parameters and anisotropy improved
soil parameter estimates.

There are some research works that deal with the estima-
tion of w% using remote sensing imagery and ML methods.
For example, in [33], the authors propose a novel Satel-
lite Image Collaborated Reconstruction algorithm (SICR) in
conjunction with an in situ sensor which uses an ANN to
project soil w% from complex and highly variable relation-
ships. With historical data for training, feedforward neural
networks (FNNs) were shown to project in situ w% from
remote sensing at better performances than conventional
models. Consequently, regional moisture soil observations
can be reconstructed under full cloud cover or under a total
absence of sensors placed on-site. In [34] the authors pro-
posed a machine-learning-based method to enhance spatial
accuracy and improve the availability of w% data. Four
ML algorithms, including classification and regression trees
(CART), K-nearest neighbors (KNN), Bayesian (BAYE),
and Random Forests (RF), were implemented. During the
regression, the land surface temperature (including daytime
temperature, nighttime temperature, and diurnal fluctuation
temperature), NDVI, surface reflections (red, blue, NIR, and
MIR bands), and digital elevation models were taken as
explanatory variables to produce fine spatial resolution w%.
The reconstructed w% datasets were validated against in situ
measurements, and shown to downscale the monthly Euro-
pean Space Agency Climate Change Initiative (ESA CCI)
w% product from 25-km to 1-km spatial resolution.

lIl. EXPERIMENTAL TTD AND IMAGE PROCESSING

A. GENERAL CHARACTERISTICS OF EXPERIMENTAL TTD
Located in Chile, the TTD used as an experimental field in
this study corresponds to a facility that will store several
millions of tons of copper tailings. The facility is located in a
sector with a flat topography (3% slope on average) and char-
acterized by a stratigraphic profile with adequate geotech-
nical characteristics (founded on coarse grained soils). The
construction of this TTD was carried out in three depo-
sition stages, forming “‘cones” of 5 to 10m in maximum
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FIGURE 2. Spectral bands for the experimental TTD. October 21, 2018.

height at the final operation stage. Tailings are discharged
as a “slurry”, forming beach slopes ranging from 2 to 7%.
After tailings disposal, sedimentation, and consolidation,
the drying process begins which dictates the disposal strat-
egy, i.e. once the tailings have reached the SL, a new layer
is accreted, increasing the effective overburden stress and
increasing saturation of the previously disposed layer. Some
design parameters of the experimental TTD are as follows:
Tailing materials: sandy silts; specific gravity of the solid
phase (G): 2.9; SL: 22 - 33%; targeted solid concentration
at discharge of 80 to 85%; and dry unit weight at SL: 17 to
18 kN/m?.

B. IMAGE PROCESSING
Image processing estimation of in situ surface w% at the
experimental TTD was based on images captured over dif-
ferent ranges of the electromagnetic spectrum. To obtain the
w%, TTD analysis used information from the visible range
and the infrared spectrum to generate visible and NIR images.

Satellite images were accessed from the Sentinel 2 mission
— two twin satellites (S2A and S2B) which have operated
since June 23, 2015, traveling through each orbit at the same
time, but out of phase by 180° — whose multispectral sen-
sors (MSI) divides light into different bands (VNIR, SWIR).
The data provides 13 spectral bands with resolutions from
10 m to 60 m. Figure 2 shows 12 of the spectral bands for
the experimental TTD, corresponding to October 21, 2018
(calibration week). Spectral bands are defined as:
Band 1: Aerosols (0.43 - 0,454m), Band 2: Blue (0.45 -
0,52um), Band 3: Green (0.54 - 0.57um), Band 4: Red (0.65
-0.68um), Band 5: Red edge 1 (0.69 - 0.71um), Band 6: Red
edge 2 (0.73 - 0.74um), Band 7: Red edge 3 (0.77 - 0.79um),
Band 8: NIR (0.78 - 0.904m), Band 8A: NIR (0.85-0.87um),
Band 9: Water vapor (0.93 - 0.95m), Band 10: Cirrus (1.36
- 1.39um), Band 11: SWIR 1 (1.56 - 1.65m) and Band 12:
SWIR 2 (2.10 - 2.28 um).

Combining bands 2 (blue), 3 (green), and 4 (red) recon-
structs a visible image (RGB) of the TTD, in which we
have highlighted different areas based on w% of the material,
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FIGURE 3. a) Light reflection in the satellite NIR band - b) Correlation between NIR band and in-situ w% obtained in the field.

SEMISOLID

from dry areas (white) to areas of fresh tailings (Dark).
Bands (2, 3, and 4) represent the RGB bands that will be used
with band 8 (NIR).

At the experimental TTD site, prospecting points were
located based on deposition age, dry sectors, fresh tailings
and discharge at the time of the fieldwork campaign. Fol-
lowing the same methodology presented in article [5], [6]
[7], we obtain the correlations between the images (RGB and
NIR) and the in-situ w% of the experimental TTD using the
normalized reflection intensity with respect to the dry soil
corrected by the spectral power. To exemplify the above, Fig-
ure 3a shows an image of light reflection in the satellite NIR
band, which includes the 70 surface samples obtained from
the experimental TTD and their corresponding normalized
reflection curve (Figure 3b), which were used to map values
of in-situ w%.
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FIGURE 4. a) RGB satellite image captured by Sentinel 2 b) Representation of w% ranges obtained of using methodology [5], [6] [7].

TABLE 1. Field saturation conditions categories and w% rating ranges.

Saturated
>25.4 %

Plastic
17.8% —25.4%

Semisolid
12.8% — 17.8%

Dry
0% — 12.8%

Once the TTD target outputs are obtained, it is possible
to use ML algorithms to perform TTD predictions. Figure 4
shows the RGB image of the TTD and its correspondence
to the w% ranges and field saturation conditions categories
(Table 1) obtained [8].

IV. METHODOLOGY

The development of our intelligent system we will use ANN,
SVM and RF to perform two tasks: i) classify the RBG
and RGBN image pixels from the experimental TTD into
4 states or categories for thickened tailings (dry, semisolid,
plastic, and saturated); ii) to estimate (infer) the value of in
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situ w% in images of TTD. The methodology to carry out our
system is represented in Figure 5. The ML algorithms will be
implemented in Keras [36].

A. ARTIFICIAL NEURAL NETWORKS (ANN)

ANN represents a class of models belonging to Deep Learn-
ing (subfield of ML) inspired by the behavior of human
neurons, and allows systems to learn different tasks, such as
prediction and classification of data, detection of objects, nat-
ural language processing, among others. Therefore, they are
ideal for solving the classification and regression problems
analyzed in this document.

The model of a neuron, called the Perceptron, takes inputs
x;, of bias 6;, with synaptic weights w;;, which represent the
learning parameters of the network (see equation 3). The
weights are multiplied by their corresponding input, defining
the relative importance of each input. The output of the
neuron is given by the weighted sum of its inputs, and the
following activation function gives flexibility for the ANN
to estimate non-linear relationships in the data. Networks
with multiple Perceptrons (see Figure 6) — called multilayer
networks (MLP) — are used to solve complex problems.
ANNSs use a backpropagation [35] algorithm to adjust the
synaptic weights of the network and thus generate learning.
The algorithm operates by obtaining the loss (error) in the
output, which is propagated back to the network. In this way,
the synaptic weights are updated to minimize the resulting
error for each neuron.

B. SUPPORT VECTOR MACHINE (SVM)
The Support Vector Machines (SVM), have presented
excellent results when applied in classification with
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FIGURE 6. Typical representation of an MLP used to generate our system.

traditional techniques. In general, the SVM algorithm seeks
to create a hyperplane of separation between two classes.

In the case of SVM, the problem is focused on determining
these hyperplanes and establishing the minimum separation
margins between classes [37].

One of the most important parameters of the SVMs,
is focused on the definition of the kernel, this parameter
allows to define the optimization of the definition of separa-
tion hyperplanes, especially in the cases of non-linear spaces,
within the most known correspond to linear, poly, RBF and
sigmoid [38].

As explained in the previous point, the kernel definition
plays a fundamental role in the definition of a SVM, there
are multiple descriptions for the definition of kernels which
allows linear and non-linear searches, the kernel is defined as
the representation of the point product, between a pair of data
points, in a d-dimensional model the points are represented by
@ (X), where the kernel function K (X;, X;) as defined in the
equation 2.

K (X;, Xj) = @ (X;) o @ (X)) 2

Although the formula previously described in, refers to the
generic description for the linear kernel, there are different
ways of modeling the similarity between the points, some
common choices of the kernel function are shown in Table 2.

Note that SVM for regression purposes is called Support
Vector Regression (SVR).

C. RANDOM FOREST (RF)

They are a combination of tree predictors so that each tree
depends on the values of an independent random vector with
the same distribution for all trees in the forest. The general-
ization error for forests converges asymptotically to a limit
as the forest number becomes large. The generalization error
of a forest of tree classifiers depends on the forest’s trees’
strength and the correlation between them.

Using a random selection of features to split each node
yields error rates that compare favorably to Adaboost but
are more robust concerning noise. Internal estimates mon-
itor error, strength, and correlation, and these are used to
show the response to increasing the number of features used
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TABLE 2. Common choice of the kernel functions.

Function

Form

Gaussian radial basis kernel (RBF)

X -1
20

K (X.X)

Polynomial kernel

K(E@;(Eomc)” |

Sigmoid kern

K (X..X,) = tanh (<X, o X, 5) |

in the splitting. Internal assessments are also used to mea-
sure variable importance. These ideas are also applicable to

regression [39].
N
vi=f (Z wij - Xi + 9j) 3)
i=1

V. EXPERIMENTS

The ML algorithms have has two tasks to perform: classifi-
cation of pixels at different levels into states or categories;
and an estimation of w%. Two experiments were performed
in order to evaluate the performance of the methods applied
to problems of classification of w% ranges and in situ surface
states of TTDs.

A. EXPERIMENT 1: CLASSIFICATION OF FIELD
SATURATION CONDITIONS FROM W% RANGES

The first experiment aims to classify 4 states or categories
of w% of a TTD, representing the following field saturation
conditions: dry, semisolid, plastic, and saturated (Table 1).

For our ANN, rectifier type activation functions (ReLU)
[40] were used in the hidden layers, with softmax [41] in the
output layer. We use a Categorical Cross Entropy loss func-
tion [42] and the ADAM optimizer to perform the backprop-
agation learning. Various configurations and optimizers such
as AutoKeras [43] were tested to obtain the parameters of
neural networks. The parameters were established 200 epochs
atabatch size of 500 and a hidden layer of 160 neurons, which
stored only the values of the weights that gave the best results.
To avoid overfitting, the Early Stop regularization method
[44] was used.

The hyperparameters for SVM and RF was selected using
GridSearch, obtaining the best configuration for SVM using
C equals to 10, gamma of 0.01 and kernel RBF. For RF
we used bootstrap, the depth of each tree in the forest of 4,
the number of trees in the forest as 200, the minimum number
of samples in a leaf node as 4 for the RGB model and 1 for
RGBN model, the minimum number of samples required to
split an internal node as 10 for the RGB model and 1 for
RGBN model, and we set in auto the number of features to
consider when looking for the best split.

i) Training: to train the models, eight images of the exper-
imental TTD at different times (temporal variability) were
used. These images totaled 77,536 pixels and each pixel has
its respective class. 70% of total available pixels were used,
corresponding to the total sum of pixels of the eight selected
images.

ii) Validation: the remaining 30% of the original data was
used to perform the system validation. This set adjusted
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model hyperparameters and reviewed existing errors in the
model’s, such as overfitting the data, and selected the best
times and best weights of the neural network model. In this
way, a fine adjustment is made to then check the system with
test data.

iii) Test: a different set of pixels was used than the ones
used in the previous phases. The set has a total of 48,460 pix-
els from a new set of five images of the TTD obtained over
five different dates. This set compares the performance of the
model’s with data never seen by the classifier.

B. EXPERIMENT 2: ESTIMATION OF IN SITU W%

The second experiment aims to perform the estimation of
in situ w% of experimental TTD. Since this is a regression
problem, the labels no longer have discrete values (classes).
The target value is continuous and represents a specific w%
value for one pixel (expressed as a percentage of w%).

The ML models uses the intensity of the pixels of the image
of the TTD (RGB or RGBN) as input. For ANN, we use
only one neuron, with no activation function, so that the
network can generate a number corresponding to the predic-
tion of w%. The training was done through backpropagation.
To find the hyperparameters of the network, GridSearch from
Sklearn was used. GridSearch evaluated various network
models using different combinations of parameters (number
of neurons, epochs, optimizers, etc.).

We perform also GridSearch to find the optimal hyperpa-
rameter for SVR and RF. Note that exhaustive searching using
GridSearch has a high computational cost and significant
computation time. The best parameters obtained for SVR are:
C equal to 1000, gamma of 0.001 and RBF kernel. In the
case of RF we use: number of trees in the forest as 1000 and
the minimum number of samples in a leaf node as 3 for the
RGB and RGBN model. Once the hyperparameters had been
found, a fine-tuning of the model was carried out, looking
for the best model performance using the Mean Absolute
Error (MAE) metric [45].

i) Training: All images were converted to pixels (RGB and
RGBN) with their corresponding labels (w%) to feed the neu-
ral network. 70% were selected to perform the training. The
ANN uses 125 epochs, with batch size equal to 1 (Stochastic
Gradient Descent [46]) and 15 neurons in the hidden layer
to perform the training, using parameters obtained from the
Gridsearch application.

ii) Validation: The remaining 30% of pixels were used for
the validation of the model. We perform an adjustment of the
hyperparameters to avoid possible errors and overfitting.

iii) Test: the set had a total of 48,460 pixels from a new
set of five images of the TTD obtained over different dates.
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TABLE 3. Classification: Comparison of the classification performed by the two models for the same image of TTD in the ML algorithm test.

Model Class Precision Recall F1-score Accuracy

Dry 0.98 0.96 0.97
Semisolid 0.86 0.80 0.83

RGB Plastic 0.82 0.96 0.89 0.93
Saturated 0.92 0.80 0.85
ANN Dry 0.97 0.99 0.98
Semisolid 0.92 0.88 0.90

RGBN Plastic 0.92 0.92 0.92 0.95
Saturated 0.99 0.75 0.86
Dry 0.98 0.97 0.97
Semisolid 0.88 0.86 0.87

RGB Plastic 0.90 0.93 0.91 0.94
Saturated 0.87 0.85 0.86
SVM Dry 0.99 0.99 0.99
Semisolid 0.95 0.95 0.95

RGBN Plastic 0.96 0.97 0.96 0.97
Saturated 0.94 0.92 0.93
Dry 0.95 0.95 0.95
Semisolid 0.79 0.77 0.78

RGB Plastic 0.82 091 0.86 0.89
RF Saturated 0.88 0.51 0.65
Dry 0.97 0.99 0.98
Semisolid 0.90 0.88 0.89

RGBN Plastic 0.90 0.92 0.91 0.94
Saturated 0.91 0.60 0.72

This stage generalized the neural network model adjusted in
the training stage and yielded a w% of the tailings dams as
unseen data.

VI. RESULTS

A. EXPERIMENTAL RESULTS OF EXPERIMENT 1:
CLASSIFICATION OF FIELD SATURATION CONDITIONS
FROM W% RANGES

The system was evaluated using the accuracy metric, as is
common in ML. In addition, a confusion matrix was used to
review the performance obtained in the experiments. These
yielded an F1 score and recall [47] to compare results through
in-depth analyses. Cross-validation was performed using
K-Fold, a robust estimation of the performance of a model
with unseen data. For the experiments, K = 10 folds were
used.

The results obtained from the ML methods for classifica-
tion for the test data are shown in Table 3. From the table,
it is possible to observe that for ANN, the accuracy obtained
is 0.95 for the case of the RGBN model and 0.93 for the
model RGB. In both cases, the classification can be carried
out correctly, and observing the Fl-score metric and recall,
the ANN has problems when classifying the saturated class.
For SVM, there is a significant increase in accuracy, reaching
0.97 accuracy for the RGBN model and 0.94 for the RGB
model. This shows the correct performance of SVM to per-
form the classification of the 4 classes, due to the use of the
RBF kernel that allows searching for non-linear combinations
between the data to perform the classification. In addition,
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this high performance allows each class to be adequately
separated from what is observed with the precision values
obtained. Regarding RF, the performance shown is the lowest
of the 3 ML algorithms, reaching 0.94 for the RGBN model
and 0.89 for the RGB model. Note that when using the RGB
model, the performances for the ML algorithms are lower
than when using the RGBN model, that is, when adding the
characteristic of the NIR band, there is a considerable perfor-
mance increase in the classifiers, reaching a value 0.97 for the
SVM case, being our best classification result.

B. EXPERIMENTAL RESULTS OF EXPERIMENT 2:
ESTIMATION OF IN SITU W%

In a regression problem, the ML algorithms estimate a numer-
ical value (output) from a series of inputs using the back-
propagation algorithm. The distance metrics between the
predicted value and the real value are used to analyze the
performance of these models. These metrics include the Mean
Absolute Error (MAE), the Mean Square Error (MSE) [48],
the square root of the Root Mean Square Error (RMSE) and
the Mean Absolute Percentage Error (MAPE) [49], which
will be used in this experiment. In addition, a 4-Fold was used
for this experiment.

The results of the regression experiment for the ML algo-
rithms are presented in Table 4. It is observed that the ANN
obtains a good performance for the RGBN model, reaching
lower values in all the metrics compared to the RGB model.
This effect also occurs in the case of SVR and RF, which
indicates that the use of the RGBN model obtains better
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TABLE 4. Regression: Comparison of the estimation made by the two models for the same Thickened Tailing Dams image in test for ML algorithms.
Model | MAE MSE | RMSE | MAPE | STD p
RGB |0.67491 | 1.03931 | 1.01947 | 0.05577 | 0.88820 | 0.98439
RGBN | 0.37823 | 0.27215 | 0.52168 | 0.03020 | 0.33072 | 0.99772
RGB |0.63926 | 1.17752 | 1.07384 | 0.05309 | 1.08374 | 0.98323
RGBN | 0.36166 | 0.28317 | 0.50483 | 0.02943 | 0.45656 | 0.99776
RGB |0.70853 | 1.14711 | 1.05846 | 0.05861 | 1.05986 | 0.98246
RGBN | 0.35632 | 0.24559 | 0.47058 | 0.02973 | 0.41775 | 0.99770

ANN

SVR

RF

Predicted values with ML algorithms (RGB)

N
o

-
%

Moisture content value [%]

0 60 80 100
Sample number

FIGURE 7. Estimation of moisture content for pixels of a TTD using RGB
model.

results than the RGB model, with the NIR characteristic,
allowing a better inference of the data. SVR obtains a good
performance with MAE values of 0.36 and MAPE of 0.029,
which indicates that the model can be used correctly to make
predictions of w%. Regarding all the models, the one that
achieves the best results according to the metrics used is RF,
obtaining an MAE of 0.35, an MSE of 0.24 and an RMSE
of 0.47, this implies that this model is the one that should be
used to perform the w% forecast.

In relation to the Pearson Correlation Coefficient (p) for
the RGB and RGBN models, the correlation between the
real labels and the predicted labels is clear where, again,
the RGBN model shows a higher result than the RGB model,
showing a clear contribution from the infrared channel (NIR).

Again, the use of an extra feature greatly improves the
results for the test set. The results of the metrics are clearly
reflected in the graphs of the predictions shown below
(Table 4). Figure 7 shows the predictions of the w% values
when using the RGB model. It is observed that for w% below
15%, the estimation error of the network is low, approaching
real values. However, there is a significant increase in error
when estimating higher w% values. The situation improves
when incorporating the infrared channel, since for the RGBN
model (Figure 8), the estimation error decreases drastically,
having reliable estimates, even for w% values close to the
saturation zone (W% > 25.4%).

In the case of the ANN, there is an increment in the error
when estimating high w%, however, in the case of SVR and
RF, the error is low, adapting better to the high changes in
w%. Note the good performance of RF, adjusting the forecast
correctly.
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Predicted values with ML algorithms (RGBN)
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FIGURE 8. Estimation of moisture content for pixels of a TTD using RGBN
model.

VII. DISCUSSION

Experiment 1 showed that the RGBN model obtained slightly
improved performance in terms of accuracy in comparison to
the RGB model. Tables 3 and 4 show that the RGBN model
outperforms the RGB model across every metric. We can
conclude from this that the NIR band introduces new infor-
mation to the model, thus obtaining better performance. Also,
if we compare the results across the 4 classes, we observe
that field saturation conditions categories (Dry, Semisolid
and Plastic) obtained obtained high recall, with the exception
of the Saturated class, with slightly worse results. However,
one may infer that this is the most difficult class to classify
correctly due to the low number of examples available for
training this class.

Experiment 2 showed similar model outcomes for the
addition of the NIR band. The results of the RGBN
model outperform those of the RGB model in every per-
formance measure: comparing Figures 7 and 8 shows that
the inclusion of the NIR band allows the model to make
better predictions in the peaks of the curve, especially for
RF case.

VIil. CONCLUSION

This work has demonstrated an approach for accurately mod-
elling field saturation condition categories (Dry, Semisolid,
Plastic and Saturated) using ML algorithms based on remote
sensing images.

The proposed methodology constitutes a tool for periodi-
cally monitoring surface w% of thickened tailings layers over
time, and is much more practical and precise than current
on-site visual inspection operators.
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This is a key contribution to ensuring geotechnical con-
trol variables for the operation and physical stability of
TTDs, particularly in countries with high seismic activity
and projected tailings productions, such as in Chile. Indeed,
this research directly addresses the national tailings policy,
established in the 2015-2035 Technological Roadmap, whose
strategic priority is the development of a technological pro-
gram for monitoring tailings deposits, specifically: generat-
ing models that can be updated online to establish a stability
index; developing online instrumentation for monitoring;
providing physicochemical measurements of the infiltrations
produced since the operation of the tailings dams; and
developing networks, protocols, and systems to share the
information with communities.

Future work will continue to expand upon new deep learn-
ing techniques to better estimate labels. The application of
ML to TTD management constitutes an interesting alternative
for integrating data across operational monitoring, and thus
improve resolution on the understanding of physical stability,
both in the short, operational term, and the long, closure term.
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