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ABSTRACT Approximate computing has emerged as an efficient solution for energy saving at the expense
of calculation accuracy, especially for floating-point operation intensive applications, which have urgent
demands for some uniform design frameworks for floating-point approximate computing combining the
approximate computing techniques with the metrics of applications. In this paper, a simple approximate
method with a zero-mean noise for the mantissa was introduced firstly, called PAM. Secondly, based on the
proposed approximate method, the corresponding noise propagation models for floating-point operations
were built, including floating-point addition, subtraction, and multiplication. Thirdly, a uniform design
framework, which is only related to the operational-level topology of applications, was presented. The
presented design framework can be used to evaluate the quality of data produced by applications before
the circuit design is completed, and the efficient bit width of the mantissa can be obtained under specific
requirements, which is also suitable for truncation. Finally, we studied the feasibility of the proposed design
framework through two typical applications of image processing, edge detection and Gaussian filtering. The
experimental results of edge detection have shown that our proposed design framework could effectively
predict efficient bit width under the specific peak signal-to-noise ratio, with a difference of 1-2 bits in extreme
situations. The Gaussian filtering experiment has demonstrated that the proposed design framework could
apply to applications with complex calculations and structures.

INDEX TERMS Approximate computing, efficient bit width, noise propagation models, floating-point,
mantissa, truncation.

I. INTRODUCTION
With the ever-increasing quest for performance and high
integration, power consumption has become a crucial issue.
Approximate computing (AC) has emerged as an efficient
solution to save energy and improve performance by relax-
ing the requirement of accuracy and making the full advan-
tage of the accepted error tolerance [1], [2]. This technique
can be used in a wide range of power-hungry applications
with inherent error resilience, including multimedia, data
mining, pattern recognition, machine learning, and artificial
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intelligence [3]. To exploiting the corresponding margin
through AC, energy efficiency can be improved aggres-
sively [2].

Previous works have developed various approximate tech-
niques to make the full advantage of inherent error resilience.
Voltage over scaling (VOS)-centered methods employ low
voltage supply to achieve high energy efficiency at the cost
of computing accuracy, including algorithmic noise toler-
ance (ANT) [4], significance-driven computation (SDC) [5],
and nonuniform voltage over scaling [6]. Several methods
based on logic complexity reduction were proposed, covering
algorithms [7], [8], logic [9], [10], gate [11], and transistor
levels [12]. The majority of these works focus on fixed-point
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computing. Actually, floating-point (FP) computing has been
applied to a lot of power-hungry applications for its large
dynamic range. The documentary [13] demonstrates that
the fixed-point design would be almost 5 times larger and
40% slower than the corresponding FP unit with the same
dynamic range maintained. Up to now, FP computing is used
in many applications, ranging from climate modeling, elec-
tromagnetic scattering theory, image and signal processing,
and the internet of things (IoT) [14], [15], especially those
IoT applications that severely limited in their energy budget.
Generally, with the corresponding complex processes taken
into account, FP arithmetic units are very power-hungry.
Therefore, it is significant to develop FP AP techniques.

Truncation has become a prevalent FP AP technique due
to its simplicity and effectiveness. In the past, some new
FP AP techniques were derived on the basis of truncation.
Although some approximate approaches for FP adders and
FP multipliers were proposed [16]- [19], it still lacks some
design frameworks for FP AC to guide our design and help
us to estimate the quality of data during the design phase,
especially those uniform design frameworks that can combine
the AC techniques with the metrics of applications. Such a
framework is crucial for designers in project planning, and
the framework that can be applied to truncation is more
critical. If a framework applies to truncation, likely, it is
also applicable to other FP AP techniques that are related to
truncation.

Based on the tuning technique, Imani et.al [19] presented
a framework for CFPU, which relies on real test cases.
The fundamental significance of this paper is to establish a
uniform framework that independent of data through a new
FP AC technology. The contributions of this paper can be
summarized as follows:

1) We proposed a simple approximate method like trun-
cation, which enables voltage scaling. We called
this approximate method ‘‘Preapproximation’’ (PAM),
which can induce a zero-mean noise with a uniform
distribution. It is convenient to build noise propaga-
tion models for approximate calculation units, which
is of great significance to the establishment of the
framework.

2) Based on the proposed approximate method and
the occurrence probability, the corresponding noise
propagation models (NPMs) for FP operations were
derived. They are mantissa-independent and exponent-
independent.

3) According to the derived NPMs for FP operations,
we defined the noise propagation model of applications
ANPM) and metrics to estimate the quality of appli-
cations. Integrating the proposed approximate method
and the derivedmodels with themetrics of applications,
the design framework could be established. According
to the operation-level topology, the requirement of
an application can determine the needed efficient bit
width of mantissa and vice versa. The proposed design
framework is also suitable for truncation.

4) We studied the feasibility of the proposed design
framework through two typical applications of image
processing, edge detection and Gaussian filtering. The
experimental results demonstrated that our proposed
design framework can effectively predict efficient bit
width under the specific peak signal-to-noise ratio, with
a difference of 1-2 bits in extreme situations.

II. RELATED WORK
A. FP APPROXIMATE APPROACHES
Truncation is an energy-efficient and straightforward tech-
nique, which is often used in FP units design and approx-
imate FP estimation, especially for bit-width optimization
[20]–[23]. Yan et al. [24] proposed a configurable floating-
point multiplier based on the K-nearest neighbor algorithm,
called kNN-CAM, which lost 4.86% accuracy in exchange
for 66.875% area-saving and 19.134% acceleration. Their
method was carried out based on truncation, which could
predict the efficient bit width needed by the new data to
reduce the consumption and area at the largest range. Unfor-
tunately, the circuit design is depended on the input data,
and only the approximate multiplier was designed. Thus it
is difficult to predict the efficient bit width needed by appli-
cations containing other operations. Mitchell’s algorithm was
used in [25] to design a configurable floating-point multiplier
which achievedmore than 25X power reduction by truncating
19 bits in the mantissa. In [26], the Mitchell algorithm was
combined with truncation to propose an approximate log
multiplier to save energy for the convolutional neural network
(CNNs).

Almurib et al. [27] designed inaccurate adders by reduc-
ing the number of transistors. Camus et al. [17] com-
bined two approximate circuit design techniques, namely
gate-level pruning and inexact speculative adder, and
completed three approximate 32-bit floating-point units
(FPU). Test results demonstrated up to 27% power,
36% area and 53% power-area product saving, compared
with the IEEE-754 single-precision FPU using 65nm process
technology.

[19] proposed a configurable floating-point multi-
plier (CFPU) by introducing a tuning technique and declared
that the CFPU could achieve 2.4X energy-delay product
improvement compared with other approximate multipliers,
with maintaining the same accuracy. The CFPU in [28]
avoided the multiplication by finding and discarding one
mantissa and directly using the other one. A fixed-point
adder called reconfigurable approximate carry look-ahead
adder (RAP-CLA) was used in [29] to design an approximate
floating-point adder. Compared with the existing advanced
floating-point adder, its power consumption and delay are
increased by 7% and 21% respectively.

Although many approximate computing methods were
proposed, truncation is still the most widely used method
because it is simple and easy to implement and extend, espe-
cially for bit-width optimization. However, truncation cannot
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offer a zero-mean error distribution [12] which can simplify
the derivation of noise propagation model. We would make a
detailed study in III-B2.

B. FP METRICS OF ARITHMETIC UNIT
In [30], the authors presented some metrics for fixed-point
approximate adders, including error distance (ED), and mean
error distance (MED). ED was defined as ED(a, b) =
|a− b|, where a and b were the erroneous and correct results,
respectively. MED was defined as the average value of EDs,
MED = E(ED). [30] normalized the error distance to the
maximum value of error produced by an approximate adder.

[16] studied inexact FP adder design. Liu et al. [16] con-
sidered the inexact operations on bothmantissa and exponent,
extended the metrics in [30] and proposed a relative error
distance (RED) to analyze the relationship between errors of
inexact mantissa adder and inexact exponent adder. RED was
defined as RED = log2(ED).

In [17], the authors took the relative error as metrics, which
was defined as |(a− b)/b|, where a and b were the erroneous
and correct results, respectively.

These metrics were proposed to analyze the errors of a
single operation unit. However, it is limited to deal with the
operation-level noise propagation and to analyze the errors of
applications.

C. FP OPERATION-LEVEL NOISE PROPAGATION MODELS
Despite some works [31]- [33] focused on operation-level
noise propagation, they just focused on fixed-point AC. The
noise propagation of FP operations is different from that of
fixed-point operations. The possible shift would cause lots
of issues for analyzing the noise propagation of FP oper-
ations. To the best of our knowledge, no work addressing
operation-level noise propagation of FPACwas found. In this
paper, based on the occurrence probability, we proposed an
estimation method.

In this paper, a floating-point approximation method sim-
ilar to truncation would be proposed in section III, called
‘‘Preapproximation’’, which could facilitate us to build NPMs
for multiplier, adder, and subtractor. Then the models and the
overall design framework will be introduced. The feasibil-
ity of the whole framework would be proved in section IV
through two experiments which are edge detection and
Gaussian filtering.

III. NOISE PROPAGATION MODELS FOR FP OPERATIONS
A. NEW METRICS AND MODELS FOR FP OPERATIONS
In this paper, the metrics were defined in a different way to
address the NPMs. ED was defined as

ED(a, b) = a-b (1)

which is the relative error, whereas ED in [30] is the absolute
value. Similar to [30], a and b in (1) are the erroneous and
correct results, respectively. Instead of using ED directly,
we treated ED as a variable and used its distribution in this
paper.

Herein, we normalized three times of the standard variance
of the final error distance distribution to the minimum man-
tissa value of the final results of the corresponding application
instead of each ED to the maximum value of error in [30].
Thus, we combined all the noises with the requirement of
the corresponding application. For some approximate appli-
cations, [34] presented the corresponding average error rates,
which range from 3% to 10%.

B. APPROXIMATE SCHEMES AND THE INTRODUCED
NOISES
1) PREAPPROXIMATION FOR THE INPUT OPERANDS
Herein, we introduced a new approximate approach to deal
with the input operands. We assumed that the input operands
are in floating-point number format, which consists of three
parts: the sign bit, the exponent bits and the mantissa bits.
Since the mantissa operation takes most of the energy of the
corresponding operation, especially FP multiplication [18],
our process is just on the mantissa. As full precision is not
indispensable to approximate computation, the computation
based on the more significant bits is sufficient to reach
the requirements. The efficient bit width of the mantissa is
defined as the needed more significant bits for FP operations.
Herein, w denotes the efficient bit width of mantissa.

Once the efficient bit width of themantissa is given, the less
significant bits should be taken care. Without loss of gen-
erality, let us take single-precision as an example. H .M[22:0]
denotes the mantissa of single-precision, where H is the hid-
den bit. In the analysis of this paper, the hidden bit was always
taken as 1′b1. PAM can be done like this: RetainM[22:22−w+2]
bits, assign M[22−w+1] to be 1 and delete M[22−w:0], and this
process as shown in Fig. 1. Thus, we have

H .M[22:22−w+2]#1 = H .M[22:0] + U (µ, σ 2) (2)

where # is used for concatenating bits. U (µ, σ 2) is a discrete
uniform distribution with µ = 0 and σ 2

= 1/(3 ∗ 22w).
The corresponding explanation of (2) is given next. Without
loss of generality, M[n:0] is in a discrete uniform distribution
from 0 to 2n+1 − 1. Assigning M[n] = 1 means moving the
mean value of this discrete uniform distribution from (2n+1−
1)/2 to close to 0. Thus, an approximate discrete uniform
distribution with µ = 0 is introduced. When H .M[22:0] =

H .M[22:22−w+2]#0#0 · · · 0, the introduced noise is the largest

FIGURE 1. The process of PAM for the input operand, which is to set
M[22−w+1] to 1 and delete M[22−w :0]. This process is equivalent to
introducing a zero-mean noise with a uniform distribution.
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FIGURE 2. The noise distribution induced by truncation or PAM. Blue is correlated with truncation, and orange is associated with PAM. (a)The left part is
the noise distributions induced by truncation, where the negative operand means that the positive noise distribution was induced. The right part is the
possible noise distributions after approximate calculations. (b)The noise distribution induced by PAM. No matter what kind of operation, the mean of
noise is zero. (c) The noise distributions of PAM with w + 1 efficient bits and truncation with w efficient bits.

positive value, that is ED = 1/2w. When H .M[22:0] =

H .M[22:22−w+2]#1#1 · · · 1, the introduced noise is the largest
negative value, that is ED = −(223−w − 1)/223, which is
almost close to −1/2w. Accordingly, PAM not only com-
pletes the approximate process, but also introduced a noise of
U (0, 1/(3 ∗ 22w)). H .M[22:22−w+2]#1 is used in approximate
computation.

2) COMPARISON OF TRUNCATION AND PAM
It is well known that truncation is the widely used
energy-efficient technique with enabling voltage scaling [12].
And it can offer the most energy-efficiency compared with
other approximate techniques. But truncation has a non-zero
mean noise, which will influence the final noises on the
results.

Compared with PAM, truncation process is to delete
M[22−w:0], andH .M[22:23−w] is used in approximate computa-
tion. The noise distributions induced by truncation need to be
divided into two cases. When the operand is positive, the neg-
ative noise distribution is induced, and vice versa. In both
cases, the mean of noise, µ, is non-zero. µ will participate
in the calculations and then affect the final noise distribution.
Therefore, operations such as addition, subtraction, and mul-
tiplication will make the noise distribution more complicated.
Part of the noise distributions were plotted in Fig. 2 (a).
The possible noise distributions generated by applications are
shown in the figure. Therefore, it is challenging to establish
the noise propagation model for truncation due to the com-
plexity of the noise distribution.

To address this issue, we proposed the PAM to derive the
noise propagation model. The most significant of PAM is that
it could induce zero-mean noise. Therefore, the value of µ
is always zero after any calculation, which can simplify the
derivation of noise propagation model. It is only necessary to
pay attention to the range of the final noise distribution. The
noise distribution induced by PAM and the noise distribution
after calculation can be represented in Fig. 2 (b). It should

be noted that although PAM could induce zero-mean noise,
the range of noise induced by PAM is twice of truncation
under the same efficient bit width. As shown in the left
graph of both Fig. 2 (a) and Fig. 2 (b). When the effi-
cient bit width is w, the range of noise induced by PAM is
[−1/2w, 1/2w], and the range of noise induced by truncation
is [−1/2w, 0] or [0, 1/2w]. However, when the efficient bit
width of PAM is w + 1, the noise distribution is like the left
graph in Fig. 2 (c). The range of noise distribution could be
reduced to [−1/2w+1, 1/2w+1], which is better than the noise
caused by truncation withw efficient bits. Therefore, the rela-
tionship between truncation and PAM can be established by
the Sandwich Theorem, which was represented by (3).

APAM .w < AT .w < APAM .w+1 (3)

whereAPAM .w andAT .w respectively represent the accuracy of
PAM and truncation. In general, to achieve higher accuracy,
PAM is required 1 bit more than truncation. However, the sig-
nificant purpose of PAM is to establish the noise propagation
model, which is of significant importance for approximate
computing. The problem, which is challenging to establish
the noise propagation model suitable for truncation, could be
solved through PAM. Thus, PAM was proposed in this paper.
The above analysis has shown that it is feasible to use PAM to
indirectly establish the noise propagation model suitable for
truncation.

This section presented how to deal with the input operands.
In the next section, the approximate scheme used in the
arithmetic units based on similar thinking would be provided.

3) THE APPROXIMATE SCHEME USED IN THE ARITHMETIC
UNITS
As is well known, in FPU, integer adders are often employed
to produce the final result, such as FP multiplication
and FP subtraction. Herein, we presented an approximate
scheme to deal with the approximation in FP multiplication,
FP addition, and FP subtraction.
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For addition, Y[n:0] = A[n−1:0]+B[n−1:0]. For approximate
computation, Y can be computed as Y[n:f ] = A[n−1:f ] +
B[n−1:f ] + 2f . Thus, some noise in a triangular distribution is
introduced by replacing A[f−1:0] + B[f−1:0] with 2f . For sim-
plifying our models, a discrete uniform distribution is used
instead of this triangular distribution by assuming Z[f :0] =
A[f−1:0] + B[f−1:0] is independent.
For FP multiplication, given the efficient bit width of the

mantissa of w, based on our assumption, this approximation
on the final adder will introduce a noise of U (0, 1/(3 ∗ 22w)).
For FP addition and FP subtraction, there are some expo-

nent differences. We fixed the position of the mantissa with
the larger exponent and then aligned the position of the man-
tissa with the less exponent. When the exponent difference is
less than and equals to 23, the total effect of approximation
equals to introducing a noise of U (0, 1/(3 ∗ 22w)). When
the exponent difference is larger than 23, the operation will
converge to PAM.Without loss of generality, sweeping all the
possible exponent differences, the total effect of approxima-
tion can be seen as a noise of U (0, 1/(3 ∗ 22w)).

C. FLOATING-POINT OPERATION NOISE PROPAGATION
MODELS
Before establishing NPMs for FP operations, some assump-
tions should be made:

1) All the noises are independent.
2) The above proposed approximate schemes were

employed.
3) We assumed that the final noisemainly comes from two

parts, the input noise (IO) and the approximate noise
(AO). IO refers to the PAM noise or the noise from the
former stage. AO refers to the introduced noise by an
approximate process in the corresponding operation.

4) We assumed the final noise of an application was with
a normal distribution, according to the central limit
theorem [44].

1) FP MULTIPLICATION
For FP multipliers, we assumed two operands, HA.MA[22:0]
and HB.MB[22:0]. After PAM, they become{

HA.MA[22:24−w]#1 = HA.MA[22:0] + U (µ, σ 2)
HB.MB[22:24−w]#1 = HB.MB[22:0] + U (µ, σ 2)

(4)

Combined with (4), FP multiplication can be written as:

PI[1:0].PF[2w−1:0]
= (HA.MA[22:24−w]#1) ∗ (HB.MB[22:24−w]#1)

= (HA.MA[22:0]) ∗ (HB.MB[22:0])

+ (HA.MA[22:0] + HB.MB[22:0]) ∗ U (µ, σ 2)

+U (µ, σ 2) ∗ U (µ, σ 2)

≈ (HA.MA[22:0]) ∗ (HB.MB[22:0])

+ (HA.MA[22:0] + HB.MB[22:0]) ∗ U (µ, σ 2) (5)

where PI denotes the integer part of the product, and PF
denotes the fraction part. It is well known that multipliers

always use an adder to obtain the final results [35] and [36].
PI[1:0].PF[2w−1:0] will produce more bits than what the
approximate multiplier needs. Another approximation is
needed. From the above analysis, this approximation will
introduce another noise, U (µ, σ 2), which is AO. After
approximation, we have

PI[1:0].PF[w−1:0]
≈ (HA.MA[22:0]) ∗ (HB.MB[22:0])

+ (HA.MA[22:0] + HB.MB[22:0] + 1) ∗ U (µ, σ 2) (6)

Now we focus on the discussion about noise, which is
(HA.MA[22:0] + HB.MB[22:0] + 1) ∗ U (µ, σ 2), and denote it
as Nmul . There are two cases:
1) PI[1:0] = 2′b01

When one of HA.MA[22:0] and HB.MB[22:0] is 1.1 · · · 1
and the other one is 1.0 · · · 0, Nmul gets the largest
value. For simplicity,HA.MA[22:0]+HB.MB[22:0]+1 = 4
is chosen, therefore,

Nmul ≤ 4 ∗ U (µ, σ 2) (7)

2) PI[1] = 1′b1
For this case, one more right shift is needed for normal-
ization, which equals to being divided by two. During
the process of right shift, the noise is reduced as well.
When HA.MA[22:0] and HB.MB[22:0] both are 1.1 · · · 1,
Nmul gets the largest value.

Nmul ≤ (4/2+ 1) ∗ U (µ, σ 2) = 3 ∗ U (µ, σ 2) (8)

For FP multipliers, without loss of the generality,
we assumed two operands, HA.MA[22:0] and HB.MB[22:0] with
different noises, α∗U (µ, σ 2) and β ∗U (µ, σ 2), respectively.
Based on the above derivation process, the noise on the final
result should be

CN(mult,α,β) =



(HA.MA[22:0] ∗ α

+HB.MB[22:0] ∗ β

+1) ∗ U (µ, σ 2), PI[1:0] = 2′b01
(HA.MA[22:0] ∗ α/2
+HB.MB[22:0] ∗ β/2
+1) ∗ U (µ, σ 2), PI [1] = 1′b1

(9)

where CN(mult,α,β) is the cumulative noise. The first param-
eter in CN(mult,α,β) denotes the operation name or applica-
tion name. The second denotes the noise factor of the first
operand. The last is the noise factor of the second operand.
By sweeping {MA[22:21],MB[22:21]}, the probability of

PI[1] = 1′b1 is 3/8 and PI[1:0] = 2′b01 is 5/8. Thus,
the corresponding CN(mult,α,β) can be given as

CN(mult,α,β),PI[1:0]=2′b01

= HA.MA[22:0] ∗ α + HB.MB[22:0] ∗ β + 1

≈ (1+
3
10
∗ 0.5+

4
10
∗ 0.25+ 0.5 ∗ 0.25) ∗ α

+ (1+
3
10
∗ 0.5+

4
10
∗ 0.25+ 0.5 ∗ 0.25) ∗ β + 1

= 1.375(α + β)+ 1 (10)
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FIGURE 3. Noise propagation model of floating-point multiplier. They are mantissa independent and exponent independent. The left side of the
figure is a schematic diagram of the multiplication. It can be equivalent to the right part of the figure, that is, the exact plus IO and AO, and finally
evolved into a mantissa independent and exponential independent model according to the probability of occurrence, the upper right part.

and

CN(mult,α,β),PI[1]=1′b1

= HA.MA[22:0] ∗ α/2+ HB.MB[22:0] ∗ β/2+ 1

≈ (1+
5
6
∗ 0.5+

4
6
∗ 0.25+ 0.5 ∗ 0.25)/2 ∗ α

+ (1+
5
6
∗ 0.5+

4
6
∗ 0.25+ 0.5 ∗ 0.25)/2 ∗ β + 1

≈ 0.85 ∗ (α + β)+ 1 (11)

Thus,

CN (mult, α, β) = CN(mult,α,β),PI[1:0]=2′b01 ∗ P(PI[1:0]=2′b01)
+CN(mult,α,β),PI[1]=1′b1 ∗ P(PI[1]=1′b1)

= (1.375 ∗ (α + β)+ 1) ∗ 5/8

+ (0.85 ∗ (α + β)+ 1) ∗ 3/8

≈ (1.18 ∗ (α + β)+ 1) (12)

Thus, a general model for FP multipliers is built, which is
mantissa-independent and only care about the input noises,
as shown in Fig. 3.

2) FP ADDITION
We also assume two operands, HA.MA[22:0] and HB.MB[22:0]
with different noises, α ∗U (µ, σ 2) and β ∗U (µ, σ 2), respec-
tively. There are three cases according to the exponents.

1) EA > EB.
After alignment, the addition of mantissa can be
expressed as

PI[1:0].PF[w:0]
= HA.MA[22:0] + α ∗ U (µ, σ 2)

+ (HB.MB[22:0] + β ∗ U (µ, σ 2))/2p (13)

where p is the exponent difference, p = EA − EB.
From all possible FP additions in the used final adder,
the total effect of approximation can be seen as a noise
of U (µ, σ 2). Therefore, we have

CN(add,α,β) = (α +
β

2p
+ 1) ∗ U (µ, σ 2) (14)

Herein, for this case, possibly there is a carry-out. But
we ignore this situation since the noises will be reduced
by a 1-bit right-left. Moreover, this situation takes place
in a low probability.

2) EA = EB
Regarding this case, the addition of mantises can be
written as

PI[1:0].PF[w:0] = (HA.MA[22:0] + HB.MB[22:0])

+ (α + β) ∗ U (µ, σ 2) (15)

A 1-bit right shift is needed for this case since there
is a carry-out. A 1-bit right shift for noises means that
they are divided by 2. Considering the total effect of
approximation, U (µ, σ 2), we have

CN(add,α,β) = (
α + β

2
+ 1) ∗ U (µ, σ 2) (16)

3) EA < EB
This case is similar to case 1). Therefore,

CN(add,α,β) = (
α

2p
+ β + 1) ∗ U (µ, σ 2) (17)

In total,

CN(add,α,β)=


(α +

β

2p
+ 1) ∗ U (µ, σ 2), EA > EB

(
α + β

2
+ 1) ∗ U (µ, σ 2), EA = EB

(
α

2p
+ β + 1) ∗ U (µ, σ 2), EA < EB

(18)

which is exponent-dependent. Based on the occurrence
probability, the final model can be obtained as

CN(add,α,β) = CN(add,α,β),EA>EB ∗ P(EA>EB)
+CN(add,α,β),EA=EB ∗ P(EA=EB)
+CN(add,α,β),EA<EB ∗ P(EA<EB)

<
α

2
+

β

254
+
α + β

508
+

α

254
+
β

2
+ 1

≈
α + β

2
+ 1 (19)

which is exponent-independent, as shown in Fig. 4.

71044 VOLUME 9, 2021



Y. Xiang et al.: Metrics, Noise Propagation Models, and Design Framework for Floating-Point Approximate Computing

FIGURE 4. The noise propagation model of the floating-point adder,
which is the same as the subtraction.

3) FP SUBTRACTION
We still used the same assumptions in FP addition. The
model of FP subtraction is more complicated than that of FP
addition. There are three cases.

1) EA > EB.
After alignment, the subtraction of mantissa can be
expressed as

PI[1:0].PF[w:0]
= HA.MA[22:0] + α ∗ U (µ, σ 2)

− (HB.MB[22:0] + β ∗ U (µ, σ 2))/2p

= HA.MA[22:0] + α ∗ U (µ, σ 2)

+ (HB.MB[22:0] + 1+ β ∗ U (µ, σ 2))/2p (20)

where HB.MB[22:0] represents the inverse code of
HB.MB[22:0], Same to FP addition, the approximation
will introduce another noise of U (µ, σ 2). Therefore,
we have

CN(sub,α,β) = (α +
β

2p
+ 1) ∗ U (µ, σ 2) (21)

When 1-bit left shift is needed,

CN(sub,α,β) = (2α +
β

2p−1
+ 1) ∗ U (µ, σ 2) (22)

2) EA = EB
For this case, the operation can be written as

PI[1:0].PF[w:0]
= HA.MA[22:0] + α ∗ U (µ, σ 2)

+ (HB.MB[22:0] + 1+ β ∗ U (µ, σ 2)) (23)

For this case, several bits of left shift is needed.
We denoted it as t-bits left shift. In our implemen-
tations, the maximum value of t is restricted by the
requirements of applications, 1/2t < requirement .
After t-bits left shift,

CN(sub,α,β) = (2t ∗ (α + β)+ 1) ∗ U (µ, σ 2) (24)

3) EA < EB
This case is similar to the case 1). Therefore,

CN(sub,α,β) = (
α

2p
+ β + 1) ∗ U (µ, σ 2) (25)

Based on the occurrence probability, the model can be further
written as

CN(sub,α,β) = CN(sub,α,β),EA>EB ∗ P(EA>EB)
+CN(sub,α,β),EA=EB ∗ P(EA=EB)
+CN(sub,α,β),EA<EB ∗ P(EA<EB)

≈
α + β

2
+ 1 (26)

Same to FP addition, the model of FP subtraction is
exponent-independent as well, as shown in Fig. 4.

D. NOISE PROPAGATION MODEL OF APPLICATIONS AND
DESIGN FRAMEWORK
As mentioned above, we presented three NPMs for FP mul-
tiplication, FP addition, and FP subtraction. Based on these
NPMs, the ANPM could be obtained. According to the cen-
tral limit theorem [44], the final noise would converge to a
normal distribution. To characterize the error of an applica-
tion, the critical path for an application was introduced. The
critical path for an application was defined as the path to get
the largest noise on the final result. Thus, we could achieve
the final error distance distribution of the final result by

α0 = 1,

β0 = 1

· · ·

αi = CN(opei,αLeft,i−1,βLeft,i−1),

βi = CN(opei,αRight,i−1,βRight,i−1)

· · ·

CN(app) = CN(open,αn−1,βn−1) (27)

where n is the number of operations on the critical path. Left
and Right just are used to differentiate the operations of the
former stage. From the derived process of (27), it can be
obtained that CN(app) is only dependent of the operation-level
topology. Only the operation-level topology is given, CN(app)
is fixed. Thus, we could get the final noise distribution.

N (0,CN(app) ∗ σ
2) = N (0,CN(app)/(3 ∗ 22w)) (28)

where N (0,CN(app) ∗ σ
2) is a normal distribution. It can

be used to estimate the quality of the final results. Without
loss of generality, we defined our metrics by normalizing
three times of the standard variance of the final error distance
distribution to theminimummantissa value of the final results
of the corresponding application. Herein, we take 1.0 · · · 0
as the minimum mantissa value of the final results of the
corresponding application. Thus, we have

3 ∗ sqrt(CN(app)/(3 ∗ 22w)) <= requirement (29)

SinceCN(app) only depends on operation-level topology, once
the topology is fixed, the requirement can determine the
needed efficient bit width directly. The confidence interval
of the model is 99.7% in theory, but there may be some
difference in actual applications.
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FIGURE 5. The design framework. The left part of the figure is mainly an operating-level topology which obtains the application noise propagation
models. The upper orange square is used to generate the efficient bit width that meet the specific requirement and then to guide circuit designers, and
the lower one provides a measure to evaluate the quality of the data.

After preparing the above NPMs, ANPM, and metrics,
the design framework can be obtained. The circuit topology
is the organization of the node hardware executing units, such
as approximate FP adder and FP multiplier. The proposed
approximate schemes are included in each node hardware
executing unit. Operation-level topology is how to realize all
needed operations, using the corresponding hardware based
on a given circuit topology. The correspondingCN(app) can be
obtained through (27). Combining the requirement and the
CN(app) with the metrics defined in (29), the corresponding
efficient bit width of mantissa, w, can be achieved. Thus,
three key factors(approximation schemes, circuit topology
and the efficient bit width of mantissa) of circuit design have
been obtained, as shown in Fig. 5. Once CN(app) is obtained,
combined with the efficient bit width of mantissa, the noise
distribution will be easily got. Further, the quality of data can
be estimated through (29) or other metrics, Q in Fig. 5.

It is important to note that our framework was obtained
based on PAM, and our purpose is to use it for truncation. The
accuracy of both PAM and truncation under different efficient
bit width could be expressed by (3). When the efficient bit
width is the same, the accuracy of truncation would be higher
than PAM, which means that the quality of the data generated
by truncation is better than that predicted by the framework
and the efficient bit width required for truncation is less than
that the predicted results. Thus, our proposed framework is
equally applicable to truncation. Many approximate calcula-
tion methods have derived from truncation which is represen-
tative. Thus, our followingworkwould focus on analyzing the
relationship between the design framework and truncation.

A commonly used field of approximate computing is
image processing, and we would use it to explain the design
framework proposed above detailedly. Approximate com-
puting is inseparable from accuracy. When the user gives a
specific requirement, it is necessary to consider the operations
needed by the application and how to achieve the require-
ments. And then the efficient bit width should be determined
by requirements, which is very troublesome, especially for
floating point operations. In this paper, a general framework

was proposed to address this problem. The designer can get
the noises of the application according to the operation-level
topology structure by (27), which is CN(app). And then
based on the metrics shown in the upper orange box of
Fig. 5, the efficient bit width, w, can be obtained. Thus,
the proposed framework provides designers a method for
approximate computing by combing applications with spe-
cific accuracy requirements. In addition, combined CN(app)
with w, as shown in the other orange box of Fig. 5, the noise
distribution of the application can be evaluated, Q.

IV. EXPERIMENTAL RESULTS
In section III, we had studied noises generated by the approx-
imate adder, subtractor, and multiplier with the probabil-
ity method. Finally, NPMs and ANPM were established to
achieve the framework. Through the framework, we can
quickly evaluate the quality of data generated by applications.
More importantly, the efficient bit widths of the mantissa
under the specific requirements can be obtained. In this
section, we experimented with two typical applications of
the image, edge detection and Gaussian filtering, to verify
the proposed framework. The data with a zero-mean error
is defined as general data. Peak signal-to-noise ratio (PSNR)
would be used in this paper to evaluate the image quality.

A. EDGE DETECTION
Like the general image edge detection experiment, we used
operation units designed in section III to implement approx-
imate edge detection computing. The process of the exper-
iments was the same as Fig. 5. After the multiplier, adder,
and subtractor with configurable efficient bit width were
designed, the hardware circuit of the edge detection exper-
iment could be obtained. By analyzing the operation-level
topology of edge detection algorithm and combining it
with (27), the CN(app) could be obtained. According to (28),
the quality of the data generated by the application could be
evaluated. The specific efficient bit width could be obtained
by combining users’ requirements with (29).
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FIGURE 6. Results of edge detection experiments. (a) Accurate result of image edge detection. The result of edge detection after approximate
computing of different efficient bit width by PAM (b) and truncation (c). (d) Noise caused by application under different efficient bit width, blue
sphere. Each sphere represents the noise distribution. The blue shading in the upper right corner magnifies the error distribution under part of the
efficient bit width. (e) SSIM and PSNR corresponding to PAM and truncation. A. and T. are the abbreviation for PAM and truncation respectively.

Following the steps above, three different sets of edge
detection experiments for one specific image were carried
out: accurate calculation, truncation, and the PAM. Firstly,
the experiment was performed with accurate units, and the
experimental result was used as a standard reference for
the other two inaccurate consequences. The accurate exper-
imental result was shown in Fig. 6 (a). Then the others two

approximate computing experiments, PAM and truncation,
were performed, and the corresponding results were obtained
when the efficient bit width changed from 1 bit to 22 bits.
In the Fig. 6 (b) and (c), the images above the gray gradient
arrow are the experimental results corresponding to the dif-
ferent efficient bit width. The following information can be
obtained from these two sets of diagrams:

VOLUME 9, 2021 71047



Y. Xiang et al.: Metrics, Noise Propagation Models, and Design Framework for Floating-Point Approximate Computing

1) With the increase of efficient bit width, the difference
between two approximate results and the standard ref-
erence could no longer be distinguished by human eyes.
This phenomenon appeared in many previous literature
pieces, which also explains why some applications suit-
able for approximate calculation.

2) When the efficient bit width is the same, PAM would
produce larger noise than truncation. It is consistent
with (3). In actual applications, each of these two
approaches has its advantages due to different input
data. For example, in an extreme case, when all the
mantissas are 23′b111 . . . 111, the noise induced by
PAM would be much smaller than truncation. But the
more important significance of PAM is that it pro-
vides convenience for us to build noise propagation
models.

By analyzing the operation-level topology of the appli-
cation and combining (28), the error distributions gener-
ated by the application consisting of approximate units were
obtained. The value of each distribution at three times the
standard deviation was plotted as the blue sphere in Fig. 6 (d).
As we expected, it shows that the higher bit of the mantissa
is, the more significant impact will be.

Structural similarity (SSIM) and PSNR are often used to
evaluate image quality. Fig. 6 (e) shows the SSIM and PSNR
obtained after processing the current image with two approx-
imate methods under different efficient bit widths. PAM and
truncation are represented sphere and square, respectively,
and they are abbreviated as A. and T.. For example, A.SSIM
represents the SSIM obtained by PAM processing. The fol-
lowing conclusions could be drawn from Fig. 6 (e):
1) The higher the values of SSIM and PSNR, the more

accurate the result is. When the efficient bit width is
the same, all the squares are above the corresponding
color spheres, which means that the noise induced by
PAM is larger than that induced by truncation. And it
is similar to the results reflected by the Fig. 6 (b) and
Fig.6 (c). The reason for the phenomenon is thatmost of
the mantissa bits of the current image data are 0. PAM
sets the lowest bit of the valid bits to 1 is equivalent
to induced other noise into the current data. And thus
the noise induced by truncation would be smaller for
the current image. For different data, two methods
may have their own advantages. For example, when
the mantissas are 23’b111. . . 111, the noise induced by
PAM will be smaller than that induced by truncation.

2) With the same efficient bit width, PSNR is only about
40 dB when SSIM approaches the limit. When the effi-
cient bit width is 7, the SSIM is 0.99 and 0.98, respec-
tively. At this time, the corresponding PSNR is only
about 40 dB, which means a PSNR of about 40 dB may
become a common requirement of the image quality.
Generally, if the PSNR of two images exceeds 37dB,
the difference between them may not be distinguished
by human eyes [45]. Therefore, the range of PSNR
studied in this paper focused on 20-50 dB.

FIGURE 7. The corresponding PSNR of the image after truncation in two
extreme situations. The orange and pink curves represent the best and
worst situations, respectively. The blue curve with stars indicates the
predicted result, represented by P.PSNR. The orange shading represents
the range that the framework can successfully predict. The blue shading
represents the area that the framework may not cover. 20-50 dB is the
focus range of our research.

3) When the efficient bit width used by PAM is one bit
more than truncation, PAM is not necessarily more
accurate than truncation. For example, when the effi-
cient bit width of truncation is 7, the experimental result
is 45.70 dB. However, all of the experimental results
are lower than 45.70 dB when the efficient bit widths
of PAM are 8, 9, or even 10. This seems to be different
from (3). It should be noted that (3) is suitable for the
general situation and it might be slight deviations from
the specific data. The noise induced by truncation to the
current image is smaller, and thus a smaller efficient bit
width can achieve a larger PSNR.

4) It is reasonable that the efficient bit width predicted
by the framework will have a difference of 1-2 bits
compared with the actual need. When a PSNR require-
ment of 30-40 dB was required, the result of our
framework prediction was 7 bits. However, for the
current image, only 5 bits were needed for truncation
and 6 bits for PAM. The prediction was successful
with a difference of 1-2 bits. The proposed framework
is independent of the input data, and it is a uniform
framework suitable for all data. Therefore, to cover all
the data and situations, it is reasonable to have a differ-
ence of 1-2 bits for specific data. The current image is
processed with truncation will produce relatively small
noise. Therefore, fewer bits are required than general
data. Similarly, after the image was processed by the
PAM, it would produce larger noise than truncation.
Thus, PAM would take more bits to achieve the same
PSNR than truncation.
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FIGURE 8. The corresponding PSNR of three classes of images after truncation in two extreme situations. (a)Three groups of images were produced after
edge detection under different efficient bit widths. Three data graphs from left to right in (b) correspond to three experiments from top to bottom in (a).

In the above work, only one image was analyzed. The
feature of this image is that the noise generated by truncation
is relatively small. The results show that our framework could
successfully predict the efficient bit width.

Our proposed framework is unified for all data. To verify
whether the framework applies to other data, we need to
verify the worst situation and the best situation. The worst
situation is the image that would produce the largest noise
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after truncation. In other words, all mantissas of pixels in the
image are 23′b111 · · · 11. In the best situation, all mantissas
are 0, which means each mantissa is 23′b000 · · · 00. Each
efficient bit width could achieve the higher requirements in
the best situation. In this paper, we took the previous experi-
mental results as the best situation. And then, we prepared the
worst image for a similar experiment according to the previ-
ous operation-level topology. Fig. 7 shows the experimental
results. In the figure, the best situation and the worst situation
were represented by the orange curve and the pink curve.
These two curves represent two extreme situations, and thus
all data were included in the area between them (orange and
blue shading). In other words, the orange and blue shading
contains all the innumerable images with the same exponent
and arbitrary mantissa. Therefore, Fig. 7 represents results
of a class of images, and their exponents are the same as
the image in Fig. 6, and the mantissa is any number from
23′b000 . . . 000 to 23′b111 . . . 111. If the predicted PSNR
(blue curve) is lower than the actual PSNR (orange or pink
curve), it can be considered as a successful prediction. The
blue shading represents some extreme situations in which a
small part of these images could not be successfully covered.
In order to further verify that our framework is independent
of the data, we conducted edge detection experiments on the
other three classes of images, and the experimental results are
shown in Fig. 8. The following points can be obtained from
the figure:

1) The blue shadings in Fig. 7 and Fig. 8 (b) are very small
when the range of PSNR is 20-50 dB, which mean
that most of the results predicted by the framework are
proper.

2) For some part of blue shadings, the prediction results
of the framework are 1 bit less than the actual needed.
The first reason is that the proposed framework is
derived based on the occurrence probability and data-
independent, while the real image is specific. Secondly,
the used metric normalizes three times of the stan-
dard variance of the final error distance distribution
to the minimum mantissa value of the final results of
the corresponding application. Thus it is acceptable
considering the models are based on the occurrence
probability. Actually, these extreme cases fluctuate in
a small range around the predicted curve.

3) Although these four class of input data are different,
it could be seen from Fig. 7 and Fig. 8 (b) that their
respective trends are roughly the same. It is shows that
the framework is independent of data and only related
to the application of operation-level topology.

B. GAUSS FLITTER
It could be concluded that our framework can be successfully
used for edge detection. The previous experiments were only
carried out on an application, although it applies to various
types of data. We also need to test the performance of the
framework in other applications. In this section, we used

FIGURE 9. The corresponding PSNR of the image after being truncated in
the Gaussian filtering experiment.

approximate units to implement the Gaussian filtering algo-
rithm. It should be noted that the Gaussian filtering algo-
rithm in this paper is not the general one, and it adds extra
steps based on ordinary circuits. This is to verify whether
our framework can be successfully applied to more complex
applications.

Similar to the previous experimental process, we obtained
these two extreme results of data processing with truncation
under the new circuit topology and also used PSNR as the
quality evaluation indicator. Finally, we compared the effi-
cient bit width of different PSNR in two extreme situations
with those predicted by the framework, as shown in Fig. 9.
It can be seen from the figure that some parts of the blue
curve were slightly higher than the pink curve, which means
that there may be some differences in the prediction results.
But the differences may not exist in reality. For example,
the predicted efficient bit width was 10.9 bits, and the actual
required was 11 bits, but both of them were 11 bits actually.
Therefore, in extreme situations, the framework prediction
experiments were utterly consistent with the actual when the
range of PSNR is 20-50 dB. The following two conclusions
could be drawn from the figure:

1) The results of the framework prediction are proper in
most situations, and a few extreme cases with some
differences. This is similar to the experimental results
of edge detection.

2) The framework is also applicable to complex
applications.

Combining the above two experiments, it can be concluded
that the proposed framework could be successfully used to
evaluate data quality, and more importantly, can successfully
predict the efficient bit width needed by applications under
specific requirement. It is a uniform framework that does
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not depend on data, but only related to the operation-level
topology of the application.

V. CONCLUSION
An approximate computing method of floating-point, simi-
lar to truncation, called PAM, was proposed in this paper.
We introduced a noise distribution with zero-mean into the
method, through which noise propagation models for mul-
tiplier, adder, and subtracter were established. Under such
conditions, a new metric 3 ∗ sqrt(CN(app)/(3 ∗ 22w)) was
proposed to put forward a design framework, which can be
applied to truncation. Edge detection and Gaussian filtering
experiments were conducted to test the results when the effi-
cient bit width stepping from one to fifteen bits. We focused
on the analysis of the experimental results when the range
of PSNR is 20-50 dB. Edge detection experiments show that
the framework can successfully used for most images. In the
extreme situation, there might be a difference of 1-2 bits.
Considering that the corresponding models were derived
based on the occurrence probability, it is rational and can be
accepted. As for Gaussian filtering experiments, the predicted
results of the framework remained entirely proper for all
situations.

The proposed framework in this paper can be used for
transprecision design [46]. Configurable transprecision units
are designed and employed for CPU. During the program
compilation phase, the compiler can be used to define the
used efficient bit width based on the defined metrics in this
paper. Further, the corresponding instructions are employed
to set the efficient bit width. Thus, an energy-efficient design
can be built for specific approximate computing applications.
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