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ABSTRACT We propose a novel online algorithm for efficient nonlinear estimation. Target nonlinear
functions are approximated with ‘‘unfixed’’ Gaussians of which the parameters are regarded as (a part
of) variables. The Gaussian parameters (scales and centers), as well as the coefficients, are updated to
suppress the instantaneous squared errors regularized by the `1 norm of the coefficients to enhance the
model efficiency. Another point for enhancing the model efficiency is the multiscale screening method,
which is a hierarchical dictionary growing scheme to initialize Gaussian scales with multiple choices. To
reduce the computational complexity, a certain selection strategy is presented for growing the dictionary
and updating the Gaussian parameters. Computer experiments show that the proposed algorithm enjoys high
adaptation-capability and produces efficient estimates.

INDEX TERMS Nonlinear estimation, online learning, model parameter tuning, Gaussian function, sparse
regularization.

I. INTRODUCTION
Many problems in signal processing and machine learning
can be cast as online estimation of unknown ‘‘nonlinear’’
functions to which the simple linear model hardly fits. Find-
ing an appropriate nonlinear model well-fitting the target
unknown function has been a long-standing challenge of
statistical inference. The primal goal of this article is to devise
an online algorithm that finds an efficient model (and the
coefficients simultaneously) being able to express the non-
linear function accurately with reasonably short expansion
length. The efficient model would yield a number of practical
benefits such as avoidance of over-fitting, reduction of com-
putational complexity, saving of memory storage, improve-
ments of convergence behavior, as well as disclosure of the
latent dimension (interpretability of the resultant estimate).

As studied in the long history of online nonlinear estima-
tion, there are many possible choices of nonlinear models
and its learning algorithms. Extended and unscented Kalman
filters [2], [3] are dominant choices when the target sys-
tem has a state-space formulation, and parameter estimations
for the state-space models have been studied in a variety
of industrial applications, including the control of motor
activity [4], [5], state estimation of power systems [6], [7],
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state-of-charge estimation for lithium-ion batteries [8], and
control and estimation in vehicle systems [9], [10]. Volterra
filter [11] is applicable to nonlinear functions, and it has
widely been used in acoustics applications. The order of the
Volterra series expansion is, however, limited typically to two
(or three at most) due to the increase of computational loads,
which means that the Volterra filter has limited capabilities
to capture the nonlinearity of the target. The Gaussian model
has widely been adopted such as in Gaussian process [12],
radial basis function (RBF) network [13], spline interpola-
tion [14], support vector regression [15], and kernel adaptive
filtering [16]. Although the Gaussian model enjoys desirable
properties for nonlinear estimation such as universal approx-
imation property and smoothness [17], its performance heav-
ily depends on the choice of the model parameters (the scales
and centers of Gaussian functions). Specifically, undesirably
small and large Gaussian scales cause the problems of over-
fitting and underfitting, respectively, which result in serious
performance degradations for estimation process.

In the batch setting, a number of approaches to select
the model parameters have been proposed in the contexts
of kernel density estimation and kernel regression [18]–[23].
One may consider to apply those batch methods to online
applications by selecting the model parameters with some
training data. However, this approach is inefficient in real
world applications as the following situations often happen:
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(i) the training data have different statistical properties from
the test data (such as the case of covariate shift and/or colored
signals), and (ii) the target function (and also its frequency
components) changes over time. It is therefore of great impor-
tance to develop an online learning algorithm that adapts the
model parameters as well as the coefficients so that the model
becomes more efficient (i.e., the redundancy decreases) and,
at the same time, the errors diminish as time goes by.

In the field of kernel adaptive filtering [24]–[35] and RBF
network [36]–[38], a commonly used idea is selecting the
centers of Gaussians from the input un. During the last
decade, online selecting and learning methods for Gaussian
parameters have been studied. Center-selection schemes have
been discussed in terms of novelty criteria to pick up only
the necessary data from the input samples [25], [38]–[40].
An adaptive dictionary-refinement technique based on the
proximity operator of a weighted (block) `1 norm has been
proposed in [31], [41], [42]. The multikernel adaptive filter-
ing [30]–[35], [43] has been proposed as a convex analytic
approachwithmultiple different scales. The concept of online
model selection and learning has been presented in [44], [45]
based on the multikernel adaptive filtering framework, select-
ing appropriate scales from a hundred of possible scales by
shrinking the coefficient vector for each scale while learn-
ing those parameters as well as for reducing the estimation
errors simultaneously. Although those selection schemes for
the Gaussian parameters yield reasonably good results, there
is still sufficient room for improvements in the sense of
‘‘efficiency’’ of the estimate. In the kernel adaptive filtering
context, moreover, some methods have been proposed to
adapt the kernel scales [46]–[48] and centers [49], [50] in the
dictionary. Themethod proposed in [47] uses a common scale
parameter for all kernel functions. The method in [48], [51]
updates both scales and centers individually, as in the way of
the proposed approach.

In this paper, we propose an efficient adaptive method
updating the Gaussian parameters (scales and centers) and the
coefficients alternately to reduce the instantaneous squared
errors. To enhance the model efficiency, we apply the `1 norm
regularization to the cost function, which is applied in a vari-
ety of fields [52]–[55]. Specifically, the instantaneous cost is
penalized by the weighted `1 norm of the coefficient vector,
which leads to dictionary sparsification. The key difference
between the proposed algorithm and themethods in [46]–[50]
is a novel online dictionary growing technique, which builds
a dictionary with multiple initial scales selected by a hier-
archical selection strategy. The proposed dictionary growing
technique is motivated by the fact that the performance of the
aforementioned alternating update approach depends highly
on the initial scales [56]. Specifically, the initial Gaussian
scales affect the efficiency and the accuracy of the estimate
significantly when the selected scale was far from the actual
ones of the target function due to the ‘‘gradient vanishment’’
(see Section III-A).

The major properties of the proposed algorithm are sum-
marized below.

• Multiple initial values for the Gaussian scales are
employed to alleviate the sensitivity to the initial condi-
tions. It is expected here that at least some of the initial
scales are relevant to the estimation task. The use of
multiple initial values, however, may cause undesirable
growths of the dictionary size. To avoid it, we present an
efficient dictionary growing strategy named multiscale
screening method, which conducts an error test followed
by multiple levels of novelty test for each input vector
with coarse to fine ‘screens’ which correspond to large-
to small- scale Gaussians.

• The computational complexity tends to be reasonably
low thanks to a certain selection strategy for dictionary
growing and scale/center updating.

• As revealed by computer experiments, the proposed
algorithm enjoys high adaptation-capability while main-
taining a small dictionary size compared with the single
initialization case. The experiments are carried out in
the context of online time-series data prediction with
synthetic/real dataset. The proposed algorithm is com-
pared with the state-of-the-art algorithms developed for
(i) kernel adaptive filtering and (ii) online time-series
prediction based on long short-term memory (LSTM)
neural networks.

The rest of this paper is organized as follows. In Section II,
the problem settings, model, and cost function are presented.
In Section III, the proposed algorithm is presented, con-
sisting of the dictionary growing step (Section III-A) and
the parameter updating step (Section III-B). In Section IV,
some discussions about the proposed algorithm are pre-
sented: the monotone decreasing property of the cost func-
tion, design schemes for parameters, a selection scheme for
the initial Gaussian scales, and computational complexities.
In Section V, computer experiments show the efficacy of the
proposed algorithm, followed by conclusion in Section VI.

II. PROBLEM SETTING, NONLINEAR MODEL, AND COST
FUNCTION
Let R, R++, and N be the sets of real numbers, strictly posi-
tive real numbers, and nonnegative integers, respectively. We
denote by U ⊂ RL the input space in which the input vectors
un arise, where n ∈ N is the time index. The online nonlinear
estimation problem considered in the present study is the fol-
lowing: estimate an unknown nonlinear function ψ : U → R
by means of sequentially arriving input un ∈ U and its output
dn := ψ(un)+νn ∈ R contaminated by additive noise νn ∈ R.
No prior knowledge is assumed available about the structure
of ψ and the input signals; i.e., none of the adequate number
of Gaussians, the range of Gaussian centers/scales, and the
input range is known prior to estimation.
Define the Gaussian function

g(u; ξ, c) := exp

(
−
‖u− c‖2

2ξ

)
(1)

with the scale (variance) parameter ξ > 0 and the cen-
ter (mean) vector c ∈ RL , where, ‖·‖ denotes the Euclidean
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FIGURE 1. A flow chart of the proposed algorithm. At each time instant n, the proposed algorithm updates the estimate in two steps.

norm. Our time-varying model is then given as

ϕn(u) :=
rn∑
j=1

h(j)n g(u; ξ
(j)
n , c

(j)
n ), u ∈ U , (2)

with the height h(j)n ∈ R, scale ξ (j)n > 0, and center
c(j)n ∈ RL of the jth Gaussian. In this study, the scale ξ (j)n
and the center c(j)n of each Gaussian (atom) in the dictionary
{g(·; ξ (j)n , c

(j)
n )}rnj=1, n ∈ N, are regarded as variables. Namely,

those parameters are updated iteratively so that our estimate
ϕn becomes an efficient approximation of the target nonlinear
function ψ .

At time instant n, the variables (heights, scales, and centers
of rn Gaussians) can be expressed respectively as h :=
[h(1), h(2), · · · , h(rn)]T ∈ Rrn , ξ := [ξ (1), ξ (2), · · · , ξ (rn)]T ∈
Rrn
++, and C := [c(1) c(2) · · · c(rn)] ∈ RL×rn . Here,

the superscript []T stands for transpose of vector/matrix. The
instantaneous cost function is then given by

Jn (h, ξ ,C) := Fn (h, ξ ,C)+ λ�n (h, ξ ,C) , (3)

where λ > 0 is the regularization parameter, and

Fn (h, ξ ,C) :=
1
2
(dn − ϕn(un))2 (4)

�n (h, ξ ,C) :=
rn∑
j=1

ω(j)
n

∣∣∣h(j)∣∣∣ , (5)

for some positive weights ω(j)
n > 0. Here, |·| denotes the

absolute value of a real number. A simple weight design is
given by the weight ω(j)

n :=
1∣∣∣h(j)n ∣∣∣+β for some small constant

β > 0 which has been shown to promote sparsity of the coef-
ficient vector without causing serious performance degrada-
tions [42], [57]; see also Section V for the efficiency of this
weight design. The weighted `1 norm serves to discard those

redundant/obsolete Gaussians that make no contribution to
the estimation, yielding parsimonious estimates without caus-
ing serious performance degradations [27], [31], [41], [42],
[58], [59]. Indeed, it has shown in [41] that obsolete Gaus-
sians remaining in the dictionary may give negative impacts
on the performance, and the weighted-`1 regularization mit-
igates such negative impacts. See [27], [31], [41], [42] for
more details about the dictionary refinement techniques.

III. PROPOSED ALGORITHM
The proposed algorithm consists of two steps: (i) the dic-
tionary growing step and (ii) the parameter updating step,
where the latter includes the dictionary pruning process. The
flowchart is given in Figure 1. In the first step, the dictionary
is initialized to an empty set (r0 := 0), and it grows under a
hierarchical selection strategy using the sequentially coming
data. In the second step, the variables hn, ξn, and Cn are
updated in sequence. Each step will be detailed below.

A. DICTIONARY GROWING STRATEGY UNDER
MULTISCALE SCREENING
We pay our attention to the following fact: Fn (h, ξ ,C) is
nonconvex as a function of each scale parameter ξ (j), and
it has shallow slopes at those points which are far from
the optimal point (see [56]). This means that the gradient
vanishes if the initial scale is undesirably large or smaller
compared to the optimal one. In such a case, the learning
speeds of the poorly-initialized ξ (j) become unacceptably
slow, and this may cause a serious deterioration of the whole
estimation process. In our preliminary experiments, the use of
ξ
(1)
init which is hundred times larger/smaller than an adequate
scale caused slow convergence. We thus employ multiple
initial values for the Gaussian scales so that at least some of
the initial scales are suitable for the data. To avoid undesirable
growths of the dictionary size due to the use of multiple
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initial scales, each input vector is tested from coarse to fine
‘screens’ corresponding to large- to small- scale Gaussians.
This efficient dictionary growing strategy is namedmultiscale
screening method. The multiscale screening method consists
of the following two sub-steps: (i) the error test and (ii) the
novelty test.

The error test is rather simple. When the estimation error
is sufficiently small, the current estimate is good enough
already for the current input un and therefore there is no need
to add the newGaussian (centered at the current input un) into
the dictionary, as there remains little space for improvements
in estimation accuracy and such a redundant Gaussian func-
tion may even give negative impacts on the performance as
mentioned in the previous section. The error condition is thus
given as follows:

Fn
(
hn, ξn,Cn

)
> ε, (6)

where ε ≥ 0 is the threshold. Here, hn :=

[h(1)n , h
(2)
n , · · · , h

(rn)
n ]T, ξn := [ξ (1)n , ξ

(2)
n , · · · , ξ

(rn)
n ]T, and

Cn := [c(1)n c(2)n · · · c
(rn)
n ]. If the error condition is satisfied,

the novelty test is conducted to select a Gaussian function
with an adequate scale parameter; otherwise, the dictionary
does not grow at this time instant.

The novelty test is performed hierarchically based on the
multiscale screening to select an adequate Gaussian scale.
The multiscale screening aims to enhance the model effi-
ciency. The global structures (the low frequency components)
of the nonlinear function ψ can be captured efficiently by
relatively large scale Gaussian functions, while the local
structures (the fine parts) of ψ can be captured efficiently
by Gaussian functions of appropriately small scales. The
central philosophy of the multiscale screening is the follow-
ing: (i) extract the global structures at the initial phase of
estimation and (ii) extract the local structures (the estimation
residual after removing the global structures) gradually once
the dictionary for the global ones is well developed (for more
discussions about the global-to-local order of the multiscale
screening, see Section IV-B).

We now explain how to choose the initial scale at each iter-
ation. A wide range of scales ξ (1)init > ξ

(2)
init > · · · > ξ

(Q)
init > 0

are usually adopted. At time instant n := 0, the dictionary is
empty, and the largest scale ξ (1)init to extract the global structure
is selected automatically without any novelty test, which
means that the function g(·; ξ (1)init ,u0) enters the dictionary.
From the second iteration, the novelty test is conducted. At
time instant n ≥ 2, the similarity between g(·; ξ (1)init ,un) and
(a selected subset of) the current dictionary is evaluated.
(Indeed, the similarity is evaluated only with a subset of the
dictionary selected under some criterion as explained later
on for reducing the computational costs of the novelty test.)
If the similarity is sufficiently low, g(·; ξ (1)init ,un) is regarded
novel and it enters the dictionary. If, and only if, the similarity
is high, it is regarded redundant and the second Gaussian
g(·; ξ (2)init ,un) is tested in the same way. If the similarity is suf-
ficiently low, g(·; ξ (2)init ,un) enters the dictionary, and, if (and
only if) the similarity is high, it is regarded redundant and

the third one is tested. This continues until some Gaussian
is regarded novel; if all the Gaussian functions are regarded
redundant, the dictionary does not grow at that time instant.
Suppose that some g(·; ξ (q)init ,un) enters the dictionary. Then,
the sizes of the variable vectors andmatrix are augmented: the
augmented vectors andmatrices are given by ĥn := [hT

n 0]
T
∈

Rrn+1, ξ̂n := [ξT
n ξ

(q)
init ]

T
∈ Rrn+1, and Ĉn := [Cn un] ∈

RL×(rn+1), respectively. Suppose in contrast that no Gaussian
enters the dictionary. In this case, we let ĥn := hn, ξ̂n := ξn,
and Ĉn := Cn.

Now, we present the selection strategy and the nov-
elty criterion (the similarity measure). For computational
efficiency, our strategy is the following: select a subset
{g(·; ξ (j)n , c

(j)
n )}j∈Jn ⊂ {g(·; ξ (j)n , c

(j)
n )}rnj=1 of the Gaussian

functions in the dictionary that return the largest values
at the current input un (see Figure 2). Here, Jn :=

{j1, · · · , js(NC)n
} with its cardinality |Jn| = s(NC)n denotes the

index set of the selected Gaussians. More specifically, we let
{j1, j2, · · · , jrn} = {1, 2, · · · , rn} such that

g(un; ξ (ji)n , c(ji)n ) ≥ g(un; ξ (jk )n , c(jk )n ), 1≤ i < k≤rn. (7)

This selection strategy is computationally efficient and is
expected to include such a dictionary atom that maximizes
our novelty criterion of L2 coherence (see [40] for the detail
of the coherence criterion)

c(ξ (u),u, ξ (v), v)

:=

∣∣∣∣∣
〈
g(·; ξ (u),u), g(·; ξ (v), v)

〉
L2∥∥g(·; ξ (u),u)∥∥L2 ∥∥g(·; ξ (v), v)∥∥L2

∣∣∣∣∣
=

(
4ξ (u)ξ (v)

(ξ (u)+ξ (v))2

)L/4
exp

(
−
‖u−v‖2

2(ξ (u)+ξ (v))

)
∈ (0, 1], (8)

where 〈·, ·〉L2 and ‖·‖L2 are the inner product and norm of
the L2 space (i.e., the space of square integrable functions).
See Appendix A for the derivation of (8). Under the selection
strategy (7) and the L2-coherence criterion (8), the novelty
test for the Gaussian g(·; ξ (q)init ,un) is given as follows:

max
j∈Jn

∣∣∣c(ξ (j)n , c(j)n , ξ (q)init ,un)
∣∣∣ ≤ σ, (9)

where σ ∈ [0, 1] is the prespecified threshold. If the condition
in (9) is satisfied, the similarity between g(·; ξ (q)init ,un) and
the existing dictionary atoms is sufficiently low and therefore
g(·; ξ (q)init ,un) is regarded to be novel. The complexity issue
will be discussed in Section IV-D.

The error and novelty tests share its underlying philosophy
with Platt’s criteria which checks the estimation error and the
Euclidean distance between the current input vector and its
closest center of Gaussian in the dictionary.

B. UPDATES OF HEIGHTS, SCALES, AND CENTERS OF
GAUSSIAN
The heights hn, scales ξn, and centers Cn of the Gaussians
are updated in a sequence. To reduce the computational costs,
the selection strategy (7) presented in Section III-A is applied
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FIGURE 2. The selection strategy for rn = 3 (three Gaussians) and
s(NC)
n = 2. The numbers 1 and 2 denote the priority. In this illustration,

g(·; ξ (1), c(1)) and g(·; ξ (3), c(3)) are selected. The unselected Gaussian
g(·; ξ (2), c(2)) is not tested for the sake of computational efficiency.

to the updates of the scales and centers. We denote by s(ξ )n
and s(c)n the sizes of the selected subsets for ξn and Cn,
respectively.

1) UPDATE OF THE HEIGHTS WITH DICTIONARY PRUNING
We employ the adaptive proximal forward backward splitting
(APFBS) algorithm [60] for the cost function in (3) which
is a superposition of the smooth fidelity function Fn and
the nonsmooth regularizer λ�n. Although Fn and �n are
defined for the variable vectors and matrix compatible with
the dictionary of size rn, we keep the same notation to denote
the same functions for the resized variables in accordance
with the dictionary growing and pruning.
Step 1 (Height update including dictionary pruning): Let
µh > 0 be the stepsize parameter.

0. Switch hn, ξn, and Cn to the possibly augmented coun-
terparts ĥn ∈ Rr̂n , ξ̂n ∈ Rr̂n

++, and Ĉn ∈ RL×r̂n , where r̂n
is either rn+1 or rn depending on whether the dictionary
grows or not (see Section III-A).

1. Update the Gaussian coefficients by

hn+1 := Td

proxµhλ�n
ĥn−µh ∂Fn

(
ĥn, ξ̂n, Ĉn

)
∂ĥ


∈ Rrn+1 , (10)

where
• proxµhλ�n (h) := argminx

(
λ�n(x)+ 1

2µh
‖h−x‖2

)
is the proximity operator of which the jth
output can be computed as [proxµhλ�n (h)]j =
max

{∣∣h(j)∣∣− µhλω(j), 0
}
sign(h(j)), and

• Td : Rr̂n → Rrn+1 resizes the argument vector,
say ĥ := [ĥ(1), ĥ(2), · · · , ĥ(r̂n)]T ∈ Rr̂n , to its
support size by discarding the zero components,
i.e., Td (ĥ) := (ĥ(j))j∈supp(ĥ), where supp(ĥ) := {j ∈
{1, 2, · · · , r̂n} | ĥ(j) 6= 0}.

The dictionary is resized accordingly by discarding
those Gaussian functions associated with the zero
components.

The partial differential in (10) is given by

∂Fn
(
ĥn, ξ̂n, Ĉn

)
∂ĥ

= −en
(
ĥn, ξ̂n, Ĉn

)
gn, (11)

where gn := [g(un; ξ̂
(1)
n , ĉ(1)n ), · · · , g(un; ξ̂

(r̂n)
n , ĉ(r̂n)n )]T ∈

Rr̂n and en
(
ĥ, ξ̂ , Ĉ

)
:= dn −

∑r̂n
j=1 ĥ

(j)g(un; ξ̂ (j), ĉ
(j)),

where ĥ(j), ξ̂ (j), and ĉ(j) are the jth components and col-
umn of ĥ, ξ̂ , and Ĉ, respectively. The same notation en
will be used to denote the same instantaneous error func-
tion for the resized variables compatible with the size-rn+1
dictionary.

2) UPDATE OF THE SCALES
To update the scale parameters over the set R++, we derive
the multiplicative gradient update for the cost function in (3).
Step 2 (Scale update): Let µ(j)

ξ > 0 be the stepsize
parameter.
0. Switch ξ̂n and Ĉn again to its resized counterparts ξ̌n ∈

Rrn+1
++ and Čn ∈ RL×rn+1 , respectively, compatible with

the downsized dictionary after pruning.
1. Select the index set {j1, j2, · · · , js(ξ )n } by (7) from the

renewed dictionary {g(·; ξ̌ (j)n , č
(j)
n )}rn+1j=1 .

2. Update the scales of the selected Gaussians in a
pseudo-code style as follows:1

for i = 1 : s(ξ )n

ξ̌ (ji)n ← ξ̌ (ji)n exp

−µ(ji)
ξ ξ̌

(ji)
n

∂Fn
(
hn+1, ξ̌n, Čn

)
∂ξ̌ (ji)


(12)

end
Note that the updated scale ξ̌ (ji)n will be used to evaluate
the partial differential in (12) for updating its subse-
quent scales. The same applies to Step 3 (center update)
in Section III-B3.

3. ξn+1← ξ̌n.
The partial differential in (12) is given by

∂Fn
(
hn+1, ξ̌n, Čn

)
∂ξ̌ (j)

= −

en
(
hn+1, ξ̌n, Čn

)
h(j)n+1

∥∥∥un − č(j)n ∥∥∥2 g(un; ξ̌ (j)n , č(j)n )

2(ξ̌ (j)n )2
.

(13)

The multiplicative update (12) together with (13) is derived
as follows. To ensure the strict positivity of ξ̌ (j), we change
the variable ξ̌ (j) into η̌(j) := log ξ̌ (j) ∈ R which can take
any real number. Then, the gradient update for the corre-
sponding parameter η̌(j)n := log ξ̌ (j)n is given, in a pseudo-code
style, as

1The notation a← b in the pseudo code means ‘‘substitute b to a’’.
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η̌(j)n ← η̌(j)n − µ
(j)
ξ

∂Fn
(
hn+1, ξ̌n, Čn

)
∂η̌(j)

= η̌(j)n − µ
(j)
ξ ξ̌

(j)
n

∂Fn
(
hn+1, ξ̌n, Čn

)
∂ξ̌ (j)

, (14)

where the equality is due to ∂Fn/∂η̌(j) = (∂Fn/∂ξ̌ (j)) ×
(∂ξ̌ (j)/∂η̌(j)) = ξ̌ (j)∂Fn/∂ξ̌ (j). Operating the inverse map
exp(·) of the logarithmic function to the both sides of (14)
yields (12).

3) UPDATE OF Čn

For the Gaussian centers č(j)n , we employ the standard gradient
descent update.
Step 3 (Center update): Let µ(j)

c > 0 be the stepsize
parameter.
1. Select the index {j1, j2, · · · , js(c)n } by (7) from the

renewed dictionary {g(·; ξ (j)n+1, č
(j)
n )}rn+1j=1 .

2. Update the centers of the selected Gaussians as follows:
for i = 1 : s(c)n

č(ji)n ← č(ji)n − µ
(ji)
c

∂Fn
(
hn+1, ξn+1, Čn

)
∂ č(ji)

(15)

end
3. Cn+1← Čn, j = 1, · · · , rn+1.
The partial differential in (15) is given by

∂Fn
(
hn+1, ξn+1, Čn

)
∂ č(j)

= −

en
(
hn+1, ξn+1, Čn

)
h(j)n+1g(un; ξ

(j)
n+1, č

(j)
n )(un − č

(j)
n )

ξ
(j)
n+1

.

(16)
Remark 1: The selective update strategy of the pro-

posed algorithm is related to the set-membership approach
[61], [62], which updates the estimate only when the current
error is sufficiently large for reducing the computational com-
plexity of the parameter update. Some kernel adaptive filter-
ing algorithms based on the set-membership approach have
been proposed [63]–[65]. Although the proposed selection
strategy shares the samemotivation, the criterion for selecting
the Gaussians to be updated differs significantly from that of
the set-membership approach: the proposed selection strat-
egy checks the values of Gaussians at the current input un
(see Figure 2). In the proposed selection strategy, moreover,
the number of the Gaussians to be updated can be designed
by the user.

IV. DISCUSSIONS
A. MONOTONE DECREASING PROPERTY OF COST
FUNCTION
The proposed algorithm alternates the (proximal) gradi-
ent updates for the Gaussian coefficients hn, scales ξn,
and centers Cn. The standard analysis of the proximal gra-
dient algorithm can be applied with (local) Lipschitz conti-
nuity of the function. Here, given a metric space (X , d(·, ·)),

a mapping T : X → X is said to be locally Lipschitz
continuous on a subset C ⊂ X if, for any pair (x, y) ∈ C×C ,
d(Tx,Ty) ≤ γ d(x, y) for some constant γ ≥ 0 [66]. If in
particular C = X , T is Lipschitz continuous.

For simplicity, we introduce the following shorthand nota-
tion to express Fn as a function of a specific entry ξ (j) of ξ :

F (ξ (j))
n (ξ (j)) := Fn(hn+1, ξ , Čn)

∣∣∣
ξ (i) = ξ̌

(i)
n , i 6= j.

(17)

Note here that all the variables excluding ξ (j) are fixed to the
up-to-date values. Likewise, define

F (c(j))
n (c(j)) := Fn(hn+1, ξn+1,C)

∣∣∣
c(i) = č(i)n , i 6= j.

(18)

As Fn is quadratic in h, ∂Fn∂h is clearly Lipschitz continuous
with constant γ (h)

n =
∥∥gn∥∥2. As the multiplicative update of

ξ̌
(ji)
n in (12) is derived from the (additive) gradient update of
η̌
(ji)
n (:= log ξ̌ (ji)n ), we consider the local Lipschitz continuity

of ∂F
(ξ (j))
n
∂η(j)

, η(j) := log ξ (j).2 The (local) Lipschitz continuity of

∂F (ξ (j))
n
∂η(j)

and ∂F (c(j))
n
∂c(j) is given below.

Lemma 1:

1) The partial derivative ∂F (ξ (j))
n
∂η(j)

is locally Lipschitz on
[t,+∞), t ∈ R, with constant

γ
(η)
j,n (t) :=

∣∣∣h(j)n+1∣∣∣ (∣∣∣d̂ (j)n ∣∣∣+ ∣∣∣h(j)n+1∣∣∣)
2

∥∥∥un − č(j)n ∥∥∥2 e−t ,
(19)

where d̂ (j)n := dn −
∑

i 6=j h
(i)
n+1 exp

(
−

∥∥∥un−č(i)n ∥∥∥2
2ξ̌ (i)n

)
.

2) The partial derivative ∂F (c(j))
n
∂c(j) is Lipschitz continuous

with constant

γ
(c)
j,n = δ

∗
j,n

∣∣∣h(j)n+1∣∣∣
ξ
(j)
n+1

(∣∣∣ď (j)n ∣∣∣+ δ∗j,n ∣∣∣h(j)n+1∣∣∣)

≤

∣∣∣h(j)n+1∣∣∣
ξ
(j)
n+1

(∣∣∣ď (j)n ∣∣∣+ ∣∣∣h(j)n+1∣∣∣) , (20)

where δ∗j,n := maxi=1,2,··· ,L δ
(i)
j,n ∈ (0, 1] with δ(i)j,n :=

exp

(
−

∑
k 6=i(u

(k)
n − č

(k)
n )2

2ξ (j)n+1

)
∈ (0, 1] and ď (j)n := dn −

∑
i 6=j h

(i)
n+1 exp

(
−

∥∥∥un−č(i)n ∥∥∥2
2ξ (i)n+1

)
.

Proof: See Appendices B and C. �
Inspecting (19), we can see that the local Lipschitz constant

γ
(η)
j,n (t) decreases monotonically in t , meaning that the step-

size range allowed for updating the scale parameters becomes
narrower as t decreases. This implies that the stepsize bound
must be smaller than 2/γ (η)

j,n (t) when η̌(j)n is updated to a

2 The multiplicative update can also be updated with the mirror descent
update with negative entropy [67], as mentioned in [1].
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smaller value (i.e., when its corresponding gradient is positive
valued). A question of theoretical interest here is the follow-
ing: under the standard stepsize range (0, 2/γ (η)

j,n (t)), what is
the maximal possible t > 0 for which the cost function is
locally Lipschitz with constant γ (η)

j,n (t) at the current estimate

η̌
(j)
n both before and after the update, so that the monotone

decreasing property is ensured. Such a t is clearly the updated
estimate (which is smaller than before the update) when the
gradient is positive. To ensure the local Lipschitz continuity
for all possible stepsizes within the range (0, 2/γ (η)

j,n (t)), we
consider the following equation:

t = η̌(j)n −
2

γ
(η)
j,n (t)

∂F (ξ (j))
n (ξ̌ (j)n )
∂η(j)

. (21)

We can now present the monotone decreasing property.

Theorem 1: Let µh ∈
(
0, 2

γ
(h)
n

)
, µ(j)

ξ ∈

(
0, 2

γ
(η)
j,n (t

(j)
n )

)
, and

µ
(j)
c ∈

(
0, 2

γ
(c)
j,n

)
for3

t (j)n =


η̌
(j)
n ,

∂Fn(ĥn+1, ξ̌n, Čn)
∂η(j)

≤ 0

t̃ (j)n ,
∂Fn(ĥn+1, ξ̌n, Čn)

∂η(j)
> 0,

(22)

where t̃ (j)n is a unique solution of (21). Then, after each
iteration, it holds that

Jn
(
hn, ξn,Cn

)
− Jn

(
hn+1, ξn+1,Cn+1

)
≥ 0. (23)

Proof: The claims for µh and µ
(j)
c are verified directly

by applying the monotone decreasing properties of the (prox-
imal) gradient descent [68], [69] in light of Lemma 1. In the

rest, we verify the stepsize range of µ(j)
ξ . If ∂F

(ξ (j))
n (ξ̌ (j)n )
∂η(j)

≤ 0,

the estimate η̌(j)n increases after the gradient update, and
therefore the (local) Lipschitz constant γ (η)

j,n (η̌
(j)
n ) is valid over

[η̌(j)n ,∞) in which the updated η̌(j)n lies. If, on the other hand,
∂F (ξ (j))

n (ξ̌ (j)n )
∂η(j)

> 0, η̌(j)n decreases after the update in (12), and
therefore the maximal t ensuring the local Lipschitz continu-
ity is characterized by (21). In this case, (21) has a unique

solution since f (t) := t −
(
η̌
(j)
n −

2
γ
(η)
j,n (t)

∂F (ξ (j))
n (ξ̌ (j)n )
∂η(j)

)
is con-

tinuous and monotonically increasing with limt→+∞ f (t) =
+∞ and limt→−∞ f (t) = −∞. �
Equation (21) has no closed form solution, and an iterative

method needs to be used to find the t̃ (j)n . This is unfavorable
in online estimation. We therefore present efficient designs of
the stepsize parameters based on Theorem 1 without solving
(21) explicitly in Section IV-C.

3In (22), η̌(j)n is the parameter before update, as it cannot be used to update
the η̌(j)n itself otherwise.

B. ON GLOBAL-TO-LOCAL ORDER OF MULTISCALE
SCREENING
We discuss the global-to-local (large-to-small scale) order
of the proposed multiscale screening method. To find an
economic way of expressing the unknown function ψ with
our Gaussian model given in (2), the appropriate centers
and scales of Gaussian need to be known. This is certainly
unrealistic in online scenarios in which the amount of avail-
able data is rather limited especially at the early phase of
estimation. The local structures need to be expressed with
delicate adjustments of center points (as well as scale), and
thus small-scale Gaussians aremore sensitive to themismatch
of the center position than large-scale ones. This is one of the
reasons for the global-to-local order.

Another reason comes from the characteristics of the
data-fidelity function Fn (h, ξ ,C) in (4). As pointed out in
Section III-A, the learning speeds of the proposed algorithm
become slow when the initial scales are far from the ones
of the target due to the gradient vanishment. The sole use
of an undesirably-large initial scale tends to yield an under-
fitting estimate, since the corresponding Gaussian does not
fit the nonlinear function ψ . In contrast, the sole use of an
undesirably-small initial scale tends to yield an overfitting
estimate and it also causes an explosion of the dictionary
size, since the learning algorithm seeks to express every detail
of ψ with a peaky Gaussian individually. From the current
perspective of the authors, this is caused mainly by the gra-
dient vanishment issue mentioned above, but nevertheless we
cannot deny the possibility of falling into some local minima.
The goal of the present study is to build an adaptive algorithm
which generates an efficient approximation of ψ , and the use
of small initial scale, especially at the early learning-phrase,
is therefore not recommended from this efficiency aspect.
The proposed global-to-local strategy works quite well in
practice.

C. PARAMETER DESIGN
The parameters σ , ε, and Q control the tradeoff between
the computational complexity and the performance of the
algorithm, and users can design those parameters for each
application. As a rule of thumb, the larger the parameters σ ,
ε, andQ, the larger the maximal dictionary size. Although the
use of the large dictionary tends to yield fast convergence and
low MSEs, this may cause also an explosion of the computa-
tional complexity. See Section IV-D formore details about the
computational complexity. Empirically, setting the selection
parameters s(NC)n , s(ξ )n , s

(c)
n from 3 to 7 gives a reasonably low

computational complexity (see Section V). The parameter β
in the weight of the `1 norm (see (4)) is the regularization
parameter to avoid division by zero, and it is thus set to some
small value such as 10−4.

The stepsize parameters µh, µ
(j)
ξ , and µ(j)

c and the regular-
ization parameter λ affect the accuracy of the final estimate
as well as the convergence speed, and thus it needs to be
carefully designed. In particular, the stepsizes µ(j)

ξ and µ(j)
c

as well as λ govern the dictionary size and thus the efficiency
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of the final estimate. We present efficient designs of µ(j)
ξ and

µ
(j)
c in the following subsections.

1) DESIGN OF µ(j)
c

To ensure the monotone decreasing property in Theorem 1,
an appropriate stepsize depends on the Lipschitz constant
γ
(c)
j,n . Unfortunately, γ

(c)
j,n in (20) is defined with ξ (j)n+1, ďn,

and h(j)n+1, which are unavailable for designing µ(j)
c prior to

adaptation as no prior knowledge is assumed available about
the structure of the target system (see Section II). Fortunately,
the initial scale ξ (q)init could be used as an alternative of ξ (j)n+1,
since the current ξ (j)n+1 is expected to be closer to ξ

(q)
init than (at

least most of) the others ξ (q̃)init , q̃ = 1, · · · , q−1, q+1, · · · ,Q.
Replacing ξ (j)n+1 by ξ

(q)
init , γ

(c)
j,n is inversely proportional to ξ (q)init ,

and an appropriate stepsize is thus proportional to ξ (q)init . Based
on the above discussion, below is a design scheme for the
stepsize µ(j)

c .
Example 1 (Design scheme for µ(j)

c ): Set µc > 0. For the
Gaussians initialized by ξ (1)init , set the stepsize to µ(j)

c = µc.
For the Gaussians initialized by each ξ (q)init , q = 2, · · · ,Q, set

the stepsize to µ(j)
c =

ξ
(q)
init

ξ
(1)
init

µc.

2) DESIGN OF µ(j)
ξ

In contrast to µ(j)
c , one can employ the same value for all µ(j)

ξ

due to the following reason. Since γ (ξ )
j,n (t) is monotonically

increasing in
∥∥∥un − č(j)n ∥∥∥2 with lim∥∥∥un−č(j)n ∥∥∥2→∞ γ (ξ )

j,n (t) = ∞,

we need to set an upper bound for
∥∥∥un − č(j)n ∥∥∥2 to design µ(j)

ξ

based on γ (ξ )
j,n (t). Meanwhile, a large

∥∥∥un − č(j)n ∥∥∥2 implies a

small output of the Gaussian exp

(
−

∥∥∥un−č(j)n ∥∥∥2
2ξ̌ (j)n

)
. This means

that the Gaussian gives a negligible impact on the estimation

in the vicinity of un when
∥∥∥un − č(j)n ∥∥∥2 is sufficiently large.

Due to the above discussions, we now make an upper bound

as
∥∥∥un − č(j)n ∥∥∥2 ≤ −2ξ̌ (j)n log a for some small constant 0 <

a � 1 so that exp

(
−

∥∥∥un−č(j)n ∥∥∥2
2ξ̌ (j)n

)
≥ a. In the same way as

the design scheme for µ(j)
c , we replace ξ̌ (j)n in (19) by the

initial scale ξ (q)init as in the design of µ(j)
c with t := log ξ (q)init

(see also (22)). Substituting
∥∥∥un − č(j)n ∥∥∥2 = −2ξ (q)init log a

to (19), we obtain γ
(ξ )
j,n (η

(q)
init )|∥∥∥un−č(i)n ∥∥∥2=−2ξ (q)init log a

=

− log a
∣∣∣h(j)n+1∣∣∣ (∣∣∣d̂ (j)n ∣∣∣+ ∣∣∣h(j)n+1∣∣∣) which no longer depends on

ξ
(q)
init . It is thus reasonable to use the same stepsizes for all js.

3) DESIGN OF INITIAL GAUSSIAN SCALES
If the components of the target function were known,
one could select the initial Gaussian scales ξ (q)init that are

appropriate for those components. In many applications,
however, the target components are unknown prior to estima-
tion. In such a case, one may want to use a set of Gaussians
with a variety of scales which are regular in a certain sense.
As the set of inflection points of each Gaussian forms a hyper-

sphere of radius
√
ξ
(j)
init , the idea is to place the hyperspheres

in a regular fashion. We present a selection example of the
initial Gaussian scales.
Example 2 (Initial Gaussian scales): The user sets the

largest and smallest scales ξ (1)init and ξ
(Q)
init to some appropriate

values. The other scales are then set to ξ (q)init :=

√
ξ
(1)
init − (q−

1)

√
ξ
(1)
init−

√
ξ
(Q)
init

Q−1 , q = 2, · · · ,Q− 1.
The one-dimensional case is illustrated in Figure 3. Here,
the scales ξ (2)init and ξ

(3)
init are determined so that the inflection

points
√
ξ
(q)
init of all Gaussians g(·; ξ

(q)
init , 0), q = 1, 2, 3, 4, are

equally spaced in the interval
[√
ξ
(4)
init ,

√
ξ
(1)
init

]
. The parameter

design scheme presented in Example 2 works well in practice
as shown in Section V.

FIGURE 3. An example of initial Gaussian scales for Q = 4.

D. COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed algorithm
at each time instant n is generally given in terms of the
dictionary size rn as well as the input dimension L. The
computational complexity of the proposed algorithm depends
also on s(NC), s(ξ ), s(c), and Q which are supposed to be
constant during the adaptation.

Table 1 summarizes the overall complexities (the number
of real multiplications) per iteration of the proposed algo-
rithm and the related algorithms. Here, the kernel normal-
ized least mean square (KNLMS) algorithm [40], which is
a kernelized version of the normalized least mean square
(NLMS) [70] algorithm, is a benchmark algorithm in the ker-
nel adaptive filtering. The quantized kernel least mean square
algorithm with adaptive kernel size (QKLMS-AKS) [46] and
the kernel algorithm with adaptive width (KAW) [71] are
kernel adaptive filtering algorithms which adapt the Gaus-
sian scales. The resource allocating network (RAN) is a
benchmark algorithm in the RBF network. The complexity
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TABLE 1. Computational complexities of the proposed and related
algorithms.

contains all the multiplications required at each time n includ-
ing those for dictionary growing and parameter updating.
For the proposed algorithm, the case of the non-selective
update (i.e., s(NC) = s(ξ ) = s(c) = rn) is also considered
to show the effectiveness of the selective update.

Figure 4 illustrates the complexities as a function of the
dictionary size rn for L = 6 and Q = 3. The figure shows
that the complexity of the proposed algorithm (s(NC) = 3,
s(ξ ) = s(c) = 5) is lower than those of the proposed algorithm
(non-selective update) and RAN. This is due to the selec-
tion strategy for dictionary growing and parameter updating.
Although the proposed algorithm (s(NC) = 3, s(ξ ) = s(c) = 5)
requires the slightly higher complexity than QKLMS-AKS,
it enjoys significant gains in MSE, as shown in the next
section.

FIGURE 4. Computational complexities of the proposed and related
algorithms.

V. SIMULATION RESULTS
We show the efficacy of the proposed algorithm for sys-
tem identification problems with two sets of synthetic
data and time-series prediction problems with two bench-
mark data. For the proposed algorithm, the dictionaries are
constructed by the multiscale screening method presented
in Section III-A. For the weighted `1 norm, ω(j)

n =
1∣∣∣h(j)n ∣∣∣+β

[57] with β = 10−4 is employed. The numbers of
checked/updated Gaussians are set to s(NC)n = s(ξ )n = s(c)n = 5
in Experiment 1 and 2, and s(NC)n = s(ξ )n = s(c)n = 4 in
Experiment 3, for all n ∈ N.

EXPERIMENT 1: EFFECTIVENESS OF THE ADAPTATION OF
GAUSSIAN SCALES AND CENTERS
We consider the following nonlinear function

ψ(u) = exp

(
−
‖u− 0.751‖2

2ξ (1)∗

)
− 3 exp

(
−
‖u− 1.51‖

2ξ (2)∗

2
)

+ 2 exp

(
−
‖u− 2.251‖2

2ξ (3)∗

)
, u ∈ R5, (24)

which is the sum of three Gaussian functions with ξ (1)∗ = 1,
ξ
(2)
∗ = 5, and ξ (3)∗ = 0.25, where 1 = [1, · · · , 1]T ∈ R5. The
observed signal is generated as dn := ψ(un) + vn, n ∈ N,
where un is the input data of which each element is randomly
generated from a uniform distribution over [0, 3]5 and vn ∼
N (0, 1.0× 10−2) is the additive white Gaussian noise.

To show that the proposed algorithm adapts the Gaussian
scale and center efficiently, the performance of the proposed
algorithm is compared with the performance of the proposed
algorithm without the adaptation of the Gaussian scales ξ and
centers c (µ(j)

ξ = µ
(j)
c = 0). For the proposed algorithm,

the initial Gaussian scales are selected according to Exam-
ple 2 with ξ (1)init = 100.5 and ξ (3)init = 10−0.5; the stepsizes
µ
(j)
c for the Gaussian scales are according to Example 1 with
µc = 0.1; and the other stepsizes are set to µh = 0.1
and µ(j)

ξ = 0.1. The regularization parameter λ = 10−3

and the parameters of the multiscale screening method are
chosen so that the dictionary size is close to the number of
Gaussians contained in the target and the MSE becomes as
low as possible at the steady state. To show the effectiveness
of the design scheme for µ(j)

c , we test the performance of
the proposed algorithm with the constant stepsizes µ(j)

c =

0.05, j = 1, · · · , rn+1. For the proposed algorithm (µ(j)
ξ =

µ
(j)
c = 0), ξ (1)init = 2.5, ξ (2)init = 0.75, and ξ (3)init = 0.1 are chosen

so that the algorithm achieves the best performance. We
empirically found that the use of a large number of Gaussians
with small scales yields small errors when adequate Gaussian
parameters are unknown. Even if the scales of the target
function is known, the estimation errors may become large
when the centers are located at inadequate positions. For the
algorithm (µ(j)

ξ = µ
(j)
c = 0), the best parameters are chosen

such that the maximal dictionary size is as close as possible
to that of the proposed algorithm.

Figure 5 depicts (a) the normalized minimum differences
of the Gaussian scales between the target function and the

estimate, i.e., minj=1,··· ,rn

∣∣∣ξ (i)∗ −ξ (j)n ∣∣∣
ξ
(i)
∗

, i = 1, 2, 3, (b) the MSE,
and (c) the dictionary size. All results are averaged over 200
runs.

From Figure 5(a), one can see that the errors of the Gaus-
sian scales are reasonably small. Furthermore, Figures 5(b)
and 5(c) show that the dictionary size of the proposed algo-
rithm at the steady state is nearly identical to the number
of Gaussians of the target function, and also the proposed
algorithm is superior to the algorithm (µ(j)

ξ = µ
(j)
c = 0)

in the sense of MSE. The proposed algorithm achieves the
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FIGURE 5. Results of Experiment 1: (a) the minimum difference of the
Gaussian scales between the target function and the atoms, (b) MSE, and
(c) dictionary size.

considerably small steady-state MSE (−41 [dB]) which is
20 [dB] lower than the algorithm (µ(j)

ξ = µ
(j)
c = 0),

thanks to the adaptations of the Gaussian scales and centers.
The algorithm (const. µ(j)

c ) requires many iterations to reach
the steady-state MSE. The proposed design scheme for µ(j)

c
enables to use adequate stepsizes for each of Gaussians and
consequently the proposed algorithm achieves the fast con-
vergence. These results show that the proposed algorithm
quickly yields the ‘efficient’ estimates by adapting the Gaus-
sian scales and centers with adequate stepsizes µ(j)

c , although
the proposed algorithm has no guarantee to yield perfectly
efficient estimates.

EXPERIMENT 2: EFFECTIVENESS OF THE MULTISCALE
SCREENING
To show the effectiveness of the multiscale screening
method presented in Section III-A, estimation performances
of the proposed algorithm are studied for such func-
tions that consist of extremely large and small Gaussians.
Specifically, we consider the nonlinear function ψ(u) =∑5

i h
(i)
∗ exp

(
−

∥∥u−c(i)∥∥2
2ξ (i)∗

)
, u ∈ R3. Here c(i) ∈ R3 is

generated from a uniform distribution over [0, 1]3, h(1) = 1,

h(i) = 5, i = 2, · · · , 5, and ξ (i)∗ is generated as ξ (i)∗ =

∣∣∣∣ ˜ξ (i)∗ ∣∣∣∣
with

˜
ξ
(i)
∗ ∼

{
N (100, 10.0), i = 1
N (1× 10−2, 5.0× 10−3), i = 2, · · · , 5.

(25)

The observed signal is generated as dn := ψ(un)+vn, n ∈ N,
where un is the input data of which each element is ran-
domly generated from a uniform distribution over [0, 1]3 and
vn ∼ N (0, 1.0× 10−2) is the additive white Gaussian noise.
The proposed algorithm is tested with (i) the multiple initial
scales (Q = 3) and (ii) the single initial scale (Q = 1). The
results are averaged over 500 independent trials.

For the proposed algorithm, the initial Gaussian scales
are selected according to Example 2 with ξ (1)init = 102 and
ξ
(3)
init = 10−2; the stepsizes µ(j)

c for the Gaussian scales are
according to Example 1 with µc = 0.1; and the other step-
sizes are set to µh = 0.1 and µ(j)

ξ = 0.1. The other stepsizes

are set to µh = 0.1 and µ(j)
ξ = 0.1, j = 1, · · · , rn+1. The

regularization parameter and the parameters of the multiscale
screening method are chosen in the same way as in Experi-
ment 1.

For the proposed algorithm (Q = 1), the two settings
for the initial scales are tested: the large initial-scale ξinit =
ξ
(1)
init = 102 and the small initial-scale ξinit = ξ

(3)
init = 10−2.

For the small initial-scale, we consider two cases: (i) small
dictionary for the samemaximal dictionary size, and (ii) large
dictionary for the same steady-state MSE, as the proposed
algorithm. For the large initial-scale ξinit = 102, the parame-
ters are selected so that the lowest MSE is attained.

Figure 6 illustrates the results in terms of (a) the MSEs
and (b) the dictionary sizes. In Figure 6(b), one can see that
the algorithms with Q = 1 yield notably high MSE for
ξinit = 102 and ξinit = 10−2 (small dic.). This is because,
with the extremely large initial Gaussian scale ξinit = 102,
the adaptation of the Gaussian scales tends to stop at large
scales, failing to capture fine fluctuations caused by small
scale Gaussians. In contrast, in the extremely small initial
Gaussian scale ξinit = 10−2, the adaptation tends to stop
at small scales, failing to capture the global structure of the
target. Although the MSEs of ξinit = 10−2 (large dic.) is
reasonably small due to the use of the large number of small
Gaussians in the initial phase of estimation, the maximal
dictionary size is unacceptably large and the redundant Gaus-
sians remain for a while as seen in Figure 6 (b). These results

VOLUME 9, 2021 24035



M.-A. Takizawa, M. Yukawa: Joint Learning of Model Parameters and Coefficients for Online Nonlinear Estimation

FIGURE 6. Results of Experiment 2: (a) the MSEs and (b) the dictionary
sizes.

are due to the gradient vanishment caused by the noncon-
vexity of the cost function as pointed out in Sections. III-A
and IV-B. The proposed algorithm attains the efficient esti-
mates, preventing from the sharp rise of the dictionary size.
This shows the effectiveness the global-to-local order of the
multiscale screening method.

EXPERIMENT 3: APPLICATION TO PREDICTION OF REAL
AND SYNTHETIC TIME-SERIES DATA
We demonstrate the performance of the proposed algorithm
in application to online predictions of (a) the laser data [72]
from SantaFe dataset and (b) the sequence generated by
Mackey-Glass equation [73].4 Each datum dn is predicted
with un := [dn−1, dn−2, · · · , dn−L]T ∈ U ⊂ RL for L = 6.
The proposed algorithm is compared with the following

algorithms: (i) NLMS, (ii) RAN (a benchmark algorithm in
RBF network field), (iii) the state-of-the-art algorithm [74]
for online time-series estimation which is based on LSTM
neural network architecture, and (iv) the state-of-the-art non-
linear estimation algorithms that adapt the Gaussian scales

4The sequence is generated by dxn
dn = −bxn +

axn−t
1+x10n−t

. with b = 0.1,

a = 0.2 and time delay t = 30

FIGURE 7. Learning curves of Experiment 3: (a) laser data from SantaFe
data set and (b) Mackey-Glass equation.

with single initial values: QKLMS-AKS [46] and KAW [71].
In contrast to the proposed algorithm which discards redun-
dant atoms from the dictionary by the `1 norm regularization,
QKLMS-AKS has no structure to discard the atoms, i.e., the
dictionary size of QKLMS-AKS increases monotonically.
Unlike the proposed algorithm and QKLMS-AKS, KAW
fixes the dictionary size at some predefined values. To be
more precise, the dictionary grows at every iteration until the
dictionary size reaches the predefined value. If the dictionary
size exceeds the predefined value, one atom is discarded
from the dictionary. For the proposed algorithm, the initial
Gaussian scales are determined by Example 2 with ξ (1)init = 10
and Q = 3. Figures 7(a) and 7(b) depict the learning
curves for (a) Santa-Fe dataset and (b) Mackey-Glass data.
Here, (a) 500- and (b) 200- point moving averages of
the results are taken, respectively. Table 2 summarizes the
squared errors, computational complexities, and maximal
dictionary sizes averaged over all iterations. The complexities
of the proposed algorithm, RAN, QKLMS-AKS, and KAW
are shown in Table 1 with the dictionary sizes averaged over
iterations. The complexities of NLMS and LSTM are counted
as 2L and N (m2

+ mp), respectively, where N , m, p are the
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TABLE 2. Results of Experiment 3.

numbers of particles, output nodes, and input nodes of the
network, respectively. The dictionary size of QKLMS-AKS is
selected so that the complexity of QKLMS-AKS is approxi-
mately the same as that of the proposed algorithm. The dictio-
nary sizes of KAW and RAN is selected so that the maximal
dictionary sizes of KAW and RAN are approximately the
same as the proposed algorithm. The particle number N of
LSTM is selected so as to attain the same complexity as
KAW, which requires the largest complexity in these algo-
rithms. Note that the dictionary sizes of all algorithms change
dynamically.

Figures 7(a) and 7(b), and Table 2 show that the MSEs of
the proposed algorithm are smaller than those of the others for
both data. Furthermore, it can be seen from Table 2 that the
proposed algorithm requires a lower complexity than KAW,
RAN, and LSTM. The performance of NLMS is limited since
its model is linear and is thus inadequate for the nonlinear
time-series prediction. Again, the performance of KAW is
inferior to the other nonlinear algorithms due to the use of
the same Gaussian scales for all atoms. Note that KAW and
LSTM may achieve lower MSEs, but with high complex-
ity, if a larger-sized dictionary and many particles are used,
respectively.

VI. CONCLUSION
We proposed a learning algorithm which adapts the model
parameters, as well as the coefficients, of a weighted sum
of the Gaussians. The proposed algorithm consisted of two
steps: the dictionary growing step and the parameters updat-
ing step. In the dictionary growing step, a novel multiple
initialization scheme was presented as a remedy for the
gradient vanishing problem without serious increases of the
dictionary size. In the parameter updating step, the Gaussian
parameters were updated as well as the coefficients by the
proximal gradient based algorithm. Due to the use of the
`1 norm regularization, the model efficiency was enhanced.
Thanks to the selection strategy for dictionary growing and
scale/center updating, the complexity of the proposed algo-
rithm was reasonably low. Computer simulations for the toy
examples showed that the proposed algorithm successfully
attains efficient estimates. In application to the time-series
data predictions, the proposed algorithm achieved approxi-
mately 4.7 [dB] lower MSE than the state-of-the-art online
prediction algorithm.
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APPENDIX A
SKETCH OF THE DERIVATION OF (8)
The inner product 〈·, ·〉H between the two normalized Gaus-
sians under the uniform distribution with infinite interval is
given as [75]〈
g̃(·; ξ (u),u), g̃(·; ξ (v), v)

〉
H

=
1(

2π (ξ (u) + ξ (v))
)L/2 exp

(
−
‖u− v‖2

2(ξ (u) + ξ (v))

)
, (A.1)

where g̃(·; ξ, c) :=
1

(2πξ )L/2
exp

(
−
‖·−c‖2
2ξ

)
, c ∈

RL , and ξ > 0. We can also easily verify the following:〈
g(·; ξ (u),u), g(·; ξ (v), v)

〉
H

=

(
2π

ξ (u)ξ (v)

ξ (u) + ξ (v)

)L/2
exp

(
−
‖u− v‖2

2(ξ (u) + ξ (v))

)
(A.2)

and∥∥∥g(·; ξ (u),u)∥∥∥
H

=

√〈
g(·; ξ (u),u), g(·; ξ (u),u)

〉
H=

(
πξ (u)

)L/4
. (A.3)

By using the above inner product and the norm, the coherence
(8) is obtained.

APPENDIX B

LIPSCHITZ CONTINUITY OF ∂F (ξ (j ))
n
∂η(j )

For brevity, we let ρ(j)n :=
∥∥∥un − č(j)n ∥∥∥2 ≥ 0. The function

F (ξ (j))
n of ξ (j) can then be written as

F (ξ (j))
n

(
ξ (j)
)
=

1
2

(
d̂ (j)n − h

(j)
n+1 exp

(
−
ρ
(j)
n

2ξ (j)

))2

. (B.1)

Using the chain rule, the partial derivative of F (ξ (j))
n with

respect to η(j) = log ξ (j) is then given by

∂F (ξ (j))
n

(
ξ (j)
)

∂η(j)

= −
h(j)n+1ρ

(j)
n

2ξ (j)
exp

(
−
ρ
(j)
n

2ξ (j)

)(
d̂ (j)n − h

(j)
n+1 exp

(
−
ρ
(j)
n

2ξ (j)

))
.

(B.2)

For ξ (j), ξ̃ (j) > 0, one can verify by the triangle inequality
that∣∣∣∣∣∂F

(ξ (j))
n (ξ (j))
∂η(j)

−
∂F (ξ (j))

n (ξ̃ (j))
∂η(j)

∣∣∣∣∣
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≤

∣∣∣h(j)n+1∣∣∣
[∣∣∣d̂ (j)n ∣∣∣

∣∣∣∣∣ ρ
(j)
n

2ξ (j)
exp

(
−
ρ
(j)
n

2ξ (j)

)
−
ρ
(j)
n

2ξ̃ (j)
exp

(
−
ρ
(j)
n

2ξ̃ (j)

)∣∣∣∣∣
+

∣∣∣h(j)n+1∣∣∣
∣∣∣∣∣ ρ

(j)
n

2ξ (j)
exp

(
−
ρ
(j)
n

ξ (j)

)
−
ρ
(j)
n

2ξ̃ (j)
exp

(
−
ρ
(j)
n

ξ̃ (j)

)∣∣∣∣∣
]
.

(B.3)

Letting x := ρ
(j)
n

2ξ (j)
and x̃ := ρ

(j)
n

2ξ̃ (j)
> 0 in (B.3) yields∣∣∣∣∣∂F

(ξ (j))
n (ξ (j))
∂η(j)

−
∂F (ξ (j))

n (ξ̃ (j))
∂η(j)

∣∣∣∣∣
≤

∣∣∣h(j)n+1∣∣∣ (∣∣∣d̂ (j)n ∣∣∣ ∣∣∣xe−x − x̃e−x̃ ∣∣∣+ ∣∣∣h(j)n+1∣∣∣ ∣∣∣xe−2x − x̃e−2x̃ ∣∣∣) .
(B.4)

Considering the maximal magnitude of the gradient, the fol-
lowing inequalities are readily verified:∣∣∣xe−ax − x̃e−ax̃ ∣∣∣ ≤ |x − x̃| , a > 0. (B.5)

Combining (B.4) and (B.5), we obtain∣∣∣∣∣∂F
(ξ (j))
n (ξ (j))
∂η(j)

−
∂F (ξ (j))

n (ξ̃ (j))
∂η(j)

∣∣∣∣∣
≤

∣∣∣h(j)n+1∣∣∣ (∣∣∣d̂ (j)n ∣∣∣+ ∣∣∣h(j)n+1∣∣∣) |x − x̃| . (B.6)

On the other hand, by using ξ (j) = eη
(j)
, |x − x̃| is rewritten

as

|x − x̃| =

∣∣∣∣∣ ρ
(j)
n

2ξ (j)
−
ρ
(j)
n

2ξ̃ (j)

∣∣∣∣∣ =
∣∣∣∣∣ρ

(j)
n

2

∣∣∣∣∣ ∣∣∣e−η(j) − e−η̃(j) ∣∣∣ . (B.7)

Here, due to the convexity of e−η, η ∈ R, one can verify that∣∣∣e−η(j) − e−η̃(j) ∣∣∣ ≤ e−t
∣∣η(j) − η̃(j)∣∣ , ∀η(j), η̃(j) ≥ t ∈ R, from

which (B.7) leads to

|x − x̃| ≤

∣∣∣∣∣ρ
(j)
n

2

∣∣∣∣∣ e−t ∣∣∣η(j) − η̃(j)∣∣∣ , ∀η(j), η̃(j) ≥ t. (B.8)

Combining (B.6) and (B.8) yields∣∣∣∣∣∂F
(ξ (j))
n (ξ (j))
∂η(j)

−
∂F (ξ (j))

n (ξ̃ (j))
∂η(j)

∣∣∣∣∣
≤

∣∣∣h(j)n+1ρ(j)n ∣∣∣
2

(∣∣∣d̂ (j)n ∣∣∣+∣∣∣h(j)n+1∣∣∣) e−t ∣∣∣η(j)−η̃(j)∣∣∣ , ∀η(j), η̃(j)≥ t.
APPENDIX C

LIPSCHITZ CONTINUITY OF ∂F (c(j ))
n
∂c(j )

We first prove the following lemma.
Lemma 2: For f (c) := c exp

(
−c2
ξ

)
, c ∈ R, ξ > 0, the

following inequality holds:

|f (c)− f (c̃)| ≤ |c− c̃| . (C.1)

Proof: The first and second derivatives of f are
given by f ′(c) = exp

(
−c2
ξ

)
−

2c2
ξ

exp
(
−c2
ξ

)
and

f ′′(c) = 4c
ξ2

(
−

3
2ξ + c

2
)
exp

(
−c2
ξ

)
, respectively. By solving

f ′′(c) = 0, we obtain the inflection points c = 0 and

c = ±
√

3
2ξ of f , and at those points f ′ has the following

values: f ′(0) = −1 and f ′
(
±

√
3
2ξ

)
= −2e−

3
2 , respectively.

Since
∣∣f ′(0)∣∣ > ∣∣∣∣f ′ (±√ 3

2ξ

)∣∣∣∣ and limc→±∞ f ′(c) = 0,

we obtain (C.1). �
Proof of (20): For brevity, we drop the time index n. We shall
then prove the following inequality:∥∥∥∥∥∂F (c(j))(c)

∂c(j)
−
∂F (c(j))(c̃)
∂c(j)

∥∥∥∥∥
≤ δ∗

∣∣h(j)∣∣
ξ (j)

(∣∣∣ď (j)∣∣∣+ δ∗ ∣∣∣h(j)∣∣∣) ‖c− c̃‖ ,
c, c̃ ∈ RL . (C.2)

(Note that the inequality in (20) can readily be verified by
δ∗ ≤ 1.) The function F (c(j)) of c(j) can be written as

F (c(j))
(
c(j)
)
=

1
2

(
ď (j)−h(j) exp

(
−

∥∥u−c(j)∥∥2
2ξ (j)

))2

, (C.3)

and the ith component its partial derivative is given as[
∂F (c(j))(c)
∂c(j)

]
i

= −
h(j)

ξ (j)
(u(i) − c(i))

(
ď (j) − h(j) exp

(
−
‖u− c‖2

2ξ (j)

))

× exp

(
−
‖u− c‖2

2ξ (j)

)
, (C.4)

where u(i) and c(i) denote the ith components of u
and c, respectively. By (C.4) and exp

(
−
‖u−c‖2

2ξ (j)

)
=

δ(i) exp
(
−

(u(i)−c(i))2

2ξ (j)

)
, we can verify, for c, c̃ ∈ RL , that∣∣∣∣∣

[
∂F (c(j))(c)
∂c(j)

]
i

−

[
∂F (c(j))(c̃)
∂c(j)

]
i

∣∣∣∣∣
≤

∣∣∣h(j)ď (j)δ(i)∣∣∣∣∣ξ (j)∣∣
∣∣∣∣(u(i) − c(i)) exp(− (u(i) − c(i))2

2ξ (j)

)
− (u(i) − c̃(i)) exp

(
−
(u(i) − c̃(i))2

2ξ (j)

)∣∣∣∣
+

∣∣h(j)δ(i)∣∣2∣∣ξ (j)∣∣
∣∣∣∣(u(i) − c(i)) exp(− (u(i) − c(i))2

ξ (j)

)
− (u(i) − c̃(i)) exp

(
−
(u(i) − c̃(i))2

ξ (j)

)∣∣∣∣ . (C.5)

Direct applications of Lemma 2 to the two terms in the right
side of (C.5) for c = (u(i) − c(i)) and c = (u(i)−c(i))

√
2

yields∣∣∣∣∣
[
∂F (c(j))(c)
∂c(j)

]
i

−

[
∂F (c(j))(c̃)
∂c(j)

]
i

∣∣∣∣∣
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≤

∣∣∣h(j)ď (j)δ(i)∣∣∣∣∣ξ (j)∣∣
∣∣∣c(i) − c̃(i)∣∣∣+ ∣∣h(j)δ(i)∣∣2∣∣ξ (j)∣∣

∣∣∣c(i) − c̃(i)∣∣∣
=
δ(i)

∣∣h(j)∣∣
ξ (j)

(∣∣∣ď (j)∣∣∣+ δ(i) ∣∣∣h(j)∣∣∣) ∣∣∣c(i) − c̃(i)∣∣∣ . (C.6)

By (C.6), we finally obtain the following bound:∥∥∥∥∥∂F (c(j))(c)
∂c(j)

−
∂F (c(j))(c̃)
∂c(j)

∥∥∥∥∥
2

=

L∑
i=1

(
δ(i)

∣∣h(j)∣∣
ξ (j)

(∣∣∣ď (j)∣∣∣+ δ(i) ∣∣∣h(j)∣∣∣) ∣∣∣c(i) − c̃(i)∣∣∣)2

≤

(
δ∗

∣∣h(j)∣∣
ξ (j)

(∣∣∣ď (j)∣∣∣+ δ∗ ∣∣∣h(j)∣∣∣))2 L∑
i=1

∣∣∣c(i) − c̃(i)∣∣∣2
=

(
δ∗

∣∣h(j)∣∣
ξ (j)

(∣∣∣ď (j)∣∣∣+ δ∗ ∣∣∣h(j)∣∣∣))2

‖c− c̃‖2 , (C.7)

where δ∗ := maxi=1,··· ,L δ(i).
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