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ABSTRACT In this paper, we focus on human pose transfer in different videos, i.e., transferring the dance
pose of a person in given video to a target person in the other video. Our methods can be summed up in three
stages to tackle this challenging scenario. Firstly, we extract the frames and pose masks from the source
video and target video. Secondly, we use our model to synthesize the frames of target person with the given
dance pose. Thirdly, we refine the generated frames to improve the quality of outputs. Our model is built on
three stages: 1) human pose extraction and normalization. 2) a GAN based on cross-domain correspondence
mechanism to synthesize dance-guided person image in target video by consecutive frames and pose stick
images. 3) coarse-to-fine generation strategy which includes two GANs: a GAN used to reconstruct human
face in target video, the other generates smoothing frame sequences. Finally, we compress the sequential
frames generated from our model into video format. Compared with previous works, our model manifests
better person appearance consistency and time coherence in video-to-video synthesis for human motion
transfer, which makes the generated video look more realistic. The qualitative and quantitative comparisons
represent our approach performs significant improvements over the state-of-the-art methods. Experiments
on synthetic frames and ground truth validate the effectiveness of the proposed method.

INDEX TERMS Generative adversarial network (GAN), image-to-image translation, video-to-video
synthesis, pose-guided person image generation.

I. INTRODUCTION
With the development of various generative adversarial
networks (GANs), variational autoencoder (VAE), and con-
ditional GANs (CGANs), pose-guided person image gen-
eration has been widely studied recently. However, human
pose transfer in videos is still an important and challeng-
ing research domain in computer vision. Being able to syn-
thesize novel realistic videos of a person in a melodious
dance from the online music videos will not only enrich
our lifestyle but also have a great application prospect in
e-commerce business, short video production, virtual clothes
try-on and automatic fashion design, etc. Due to the popu-
larization of short videos on the Internet, people have more
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and more opportunities to become Internet celebrities. Nev-
ertheless, making a music video or short video is usually a
time-consuming and complex work, which always requires
the high cost and a professional team. Generally, it is a
meaningful task to create videos by artificial intelligence.

Given a music video of a singer or dancer, we can visualize
how to transfer the dance in the video to ourselves. In our
daily life, if someone wants to become specialized in dance,
then he or she needs to spend a lot of time to study and imitate
the movements of dance instructors. It takes years to improve
a trainee from amateur to professional level. How about to
only use a deep generative model to synthesize a personalized
dancing video without day-by-day practice? It can show your
outstanding performance in dance or transfer the dance steps
from your favorite stars to your body. Turning you from a
green hand into a dance master immediately.
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FIGURE 1. Given a dance video (the central top row) of a source person (left) and body pose frames (the central second row), our model can
generate a new video (the central bottom row) of the target person (right) with the frames of source pose. The results show that our proposed
method can not only produce frames with visual human appearance but also retain the details of target video, such as texture, style, color, clothes,
and background.

For the purpose of accomplishing this challenging work
(see Fig. 1), we propose a method to tackle with human
motion transfer in different videos. Our work is inspired by
video-to-video synthesis research [1]–[5], similarly to their
methods, we use consecutive human motion of target video
to guide training our model. In our method, the pose stick
figures are viewed as an intermediate representation during
transferring human pose between two given videos. Because
the key-point based pose can retain the body positions of
different persons rather than their appearance, in addition,
the sequential frames of pose label map can preserve the
movement trajectory of the human beings superiorly. Open
Pose skeleton estimator [6] is utilized for extracting keypoints
of human pose and represent them as multi-channel label
maps in order to adapt to our model. Then the continuous
frames of pose stick feature map and the target person images
in corresponding video are fed into the generator to produce
realistic images. The well-trained generator is used to syn-
thesize the images of target person under the source pose.
Finally, we convert the sequence of generated images into a
video.

Differentially from previous human motion transfer meth-
ods which almost use CycleGAN [7] or pix2pixHD [8] as
global conditional generative adversarial networks (condi-
tional GANs) [9], we present a new human pose transfer
(HPT) [10] general framework based on cross-domain cor-
respondence network (CoCosNet) [11] for pose-guided per-
son image generation. Specifically, the generator comprises
two sub-networks and learns cross-domain correspondence
and image translation simultaneously by end-to-end learning.
After training, the coherent pose label maps of the source
person are input into the generator to synthesize the person
images with target pose in a frame-by-framemanner. To solve
the blurred person face images, we design a face GAN
to enhance the image quality and facial reality. Compared
with several popular methods, the quantitative results exhibit
the superior performance of our model. Furthermore, our

method also achieves compelling results in ablation studies.
In summary, our contributions can be depicted as follows:
•We propose a novel three-stage framework to address the

task of human motion transfer on Internet videos.
• An end-to-end video generation network learns

to translate continuous frames with the cross-domain
correspondence, which outperforms other methods.
• We collect two datasets: a high-quality single-person

video dataset which we use mobile phones to record our-
selves, and a series of short videos we download from
YouTube including various dance types.

II. RELATED WORK
A. IMAGE-TO-IMAGE TRANSLATION
Conditional image-to-image translation [12] aims to learn
a mapping function that transforms an input image to
another image with a target domain. Variations of Condi-
tional Generative Adversarial Networks (CGANs) [9] have
become widely-used models for image translation between
different domains owing to their remarkable effectiveness.
Pix2pix [13] introduces an encoder-decoder with skip con-
nections following U-Net [14] architecture, and its modi-
fied version pix2pixHD [8] uses a coarse-to-fine genera-
tor to synthesize high-resolution images, which composes
of a global generator network and a local enhancer net-
work. Different from these methods, CycleGAN [7] requires
unpaired images to learn domain transfer with a cycle
consistency loss, analogously, DiscoGAN and DualGAN
[15], [16] also use reconstruction consistency to study
cross-domain mapping with unsupervised learning. Insta-
GAN [17] extends the previously proposed CycleGANmodel
by taking into account per-instance segmentationmasks. Spe-
cially, it introduces a context preserving loss to learn iden-
tity function. CoCosNet [11] presents an end-to-end frame-
work for exemplar-based image translation, and learns the
dense semantic correspondence for cross-domain images by
weakly supervised learning. A novel generative model named

VOLUME 9, 2021 17545



H. Wang et al.: Supervised Video-to-Video Synthesis for Single Human Pose Transfer

swapping autoencoder [82] shows excellent performance in
image manipulation task, which encodes each image into two
disentangled components and map the swapped features via
an unsupervised manner.

B. VIDEO-TO-VIDEO SYNTHESIS
The aim of video-to-video synthesis (vid2vid) [1], [3] is
to convert an input semantic video to an output convinc-
ing video. Generally speaking, video restoration [18]–[23],
including super-resolution [24]–[31], deblurring [32]–[37],
dehazing [38]–[44], blending [45], [46] and future video
prediction [47]–[53] can be considered as different research
directions of the video-to-video synthesis issues. A rou-
tine approach is to represent source video as consecutive
frames in order, and then generate target video from the
model-processed images according to the time sequence.
Few-shot vid2vid [3] takes a semantic video and some images
of target domain for video generation, which enhances
the domain generalization capability by using attention
mechanisms.

Compared with images, videos have one more dimension:
temporal information, so videos can be understood as a
sequence of images in time orientation. Analogously, video
style transfer [54]–[57] can be regarded as image-to-image
translation at the time series.

C. POSE-GUIDED PERSON IMAGE GENERATION
In early research, PG2 [58] proposed a two-stage model to
generate person images and refine the results via a coarse-
to-fine module. Ma et al. [59] further improved their previ-
ous work by disentangling and encoding the image factors,
such as foreground, background and pose. For the geometric
variability and spatial displacement challenges, Soft-Gated
Warping-GAN [60] demonstrates the excellent performance.
Instead of Open Pose [6], Natalia et al. develop amodel based
on Dense Pose [61] for mapping pixels from input images and
pose labels to a common surface-based coordinate system.
Similarly, Li et al. [62] proposed to estimate dense and intrin-
sic 3D appearance flow to guide person image generation.
Zhu et al. [63] introduce cascaded Pose-Attentional Transfer
Blocks into generator to transform the source data. On this
basis, Men et al. [64] put forward a new network architecture
with style block connections and a human parser to sep-
arate the attributes and encode them respectively. In order
to deal with person image spatial transformation problems,
Ren et al. [65] combine flow-based operations with attention
mechanisms and the model consists of a Global Flow Field
Estimator and a Local Neural Texture Renderer. Furthermore,
[66], [67] also use an unsupervised manner to tackle this task
via end-to-end training. Different from these methods, 3D
body mesh recovery component is proposed to disentangle
the pose and shape, moreover, an innovative Liquid Warping
Block (LWB) [68] is applied to preserve the diverse texture,
style, color, facial details, cloth fabrics and other source
information.

III. MATHOD OVERVIEW
Given two different videos, one is the reference video with
a source person, and the other is the training video that
needs to transfer the pose of a target person, we aim at
generating a new video of the target person with motions as
same as the source person. We consider the human motion
transfer task as follows. Representing the input videos as a
sequence of frames,

{
Fs ∈ R3×W×H

}
is the frames of the

source person, while
{
Ft ∈ R3×W×H

}
is the frames of the

target person. The images are center-cropped to the resolution
of 512× 512 and resized to 256× 256. Then we use human
pose estimator (HPE) to extract the 18-channel heat map
that encodes the locations of 18 joints of a human body,
i.e., the corresponding keypoint-based pose Ps ∈ RK×W×H

and Pt ∈ RK×W×H (K = 18). After that, the images of the
target pose Pt and the frames of target person Ft are fed into
the model to train the generator. After end-to-end training,
the source pose Ps and the frames of target person Ft are
input into the network to synthesize images with the target
person appearance but under the pose Ps. Finally, we splice
the successive images into a video. In the following, we will
describe each module of our model in detail.

A. POSE LABEL GENERATION
We use a pre-trained pose detector P [6], [69] to extract the
18 human keypoints which are encoded into a 18-channel
binary heatmap. Due to open pose detector only extracts the
keypoints coordinates of human body, we should visualize
these keypoints and link the joints so that we can obtain the
pose skeleton labels for the human pose transfer task. This
open-source method has been widely used in [58]–[60], [63],
[64]. In order to create pose label images that encode human
body position, we fill each channel with pixels around the
radius of corresponding keypoint and draw the lines between
nearby coordinates. Then the generated pose skeleton labels
are used as semantic images to guide generative adversarial
network to output the person images under the target pose.

B. GLOBAL POSE NORMALIZATION
We have observed that the body proportions of persons are
not always the same in different videos. This is caused by
the distance between camera lens and captured person is
always different in each video. Some cases maybe occur
during human motion transfer, for example, the position of
source person is visibly upper or lower than the target person
in a frame. If we directly input the pose label images to our
model, the results are not always satisfactory. Therefore, it is
essential to find an appropriate transformation in terms of
translation between the source and target pose.

For the sake of translating the source pose reasonably,
we need to caculate a suitable translation value. The trans-
lation factor is computed according to the maximum and
minimum head positions in the condition frames.We describe
the pose normalization as the translation of pose coordinates
in the y direction. When given a frame where the source
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FIGURE 2. The overview of our framework architecture. With the input frames Ft , its pose frames Pt extracted by the pose detector, and the pose
frames of the source person Ps, the goal of our model is to generate new consecutive frames in pose Ps. The pipeline of the generator contains two
stages. In the first stage, the network is trained to output the frames under the source pose Pt , then the normalized target pose Ps and the
generated frames are fed into the well-trained generator to transform the human pose during the second stage.

FIGURE 3. The pose normalization component is used to adjust the
position of pose keypoints so that the translated pose coordinates appear
in appropriate position.

person is at a random location, then the translationN for the
source pose is determined by:

N = tmin +
L − smin

smax − smin
(tmax − tmin) (1)

where smin and smax are the source person’s farthest and
closest positions in one video, tmin and tmax are the target
person’s farthest and closest positions in the other video.
These symbols are all the y coordinates of person’s head and
represent the farthest and closest distances from the person to
the camera respectively. From the visual perspective, you can
feel that when the person’s head is at the farthest position,
the person in the video is always far away from you, and
the person is small in the frame, while the head is at the
closest position, the person looks large in the frame and close
to you. Location L is the average coordinates in y direction
of source person’s head extracted by pose detector (Open
pose represents the 18 keypoints of human body as paired
coordinates in both x and y directions). We define the head
coordinates as the position of source person in the images.

Different from [2] uses the average of the left and
right ankle coordinates to determine the position of per-
son, we select head coordinates to translate the source per-
son’s pose vertically. As you can see the 1st row in Fig. 3,
when the original pose skeleton is higher in frame, the pose

normalization module will translate the pose coordinates
downwards in vertical direction, similarly in the 2nd row,
if the original pose skeleton is lower in frame, it will translate
the pose coordinates upwards in vertical direction. The goal
of pose normalization is to find a transformation factor in
terms of translation between a source pose and a target pose.

C. HUMAN POSE TRANSFER NETWORK ARCHITECTURE
1) CROSS-DOMAIN CORRESPONDENCE NETWORK
Our goal is to learn the translation from the pose domain P
to the image domain I . To be specific, given a pose image
xP ∈ Pt and its person image yI ∈ It , the generated person
image zI ∈ Ig should conform to the appearance as It but
under the pose Ps. As shown in Fig. 2, we adopt an indirect
two-stagemethod to accomplish human pose transfer task due
to directly input the source pose figures and target person
images into the model will cause the background informa-
tion lost. In the first stage, the frames of target person Ft
and its extracted pose figures Pt are fed into the generative
adversarial network (GAN) to learn the mapping between the
pose figures and person foreground. For the background tex-
ture, we use the spatially-adaptive denormalization (SPADE)
block [83] to restore it by projecting the spatially struc-
tural style information to different activation locations [11].
In the second stage, we input the pose figures from source per-
son Ps and the frames of target person Ft into the well-trained
model to generate the person images Ig under the source
person’s pose Ps.

In order to match the features between the pose labels
and person images, we add a domain alignment of pose and
appearance in our model. We convert the input images which
from two different domains to a shared domain S where
the both input semantics can be represented. Two domain
adaptors without weight sharing are used to regulate the
person images and the pose skeletons to a shared domain S.
The domain adaptors comprise several Conv-InstanceNorm-
LeakReLU blocks and the spatial size of features in S is
64 × 64 [11]. Concretely, the condition pose labels Pt and
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FIGURE 4. The illustration of the coarse-to-fine network. The background
of coarse image is warped randomly since the pose figure has no
information on it. We employ modulation parameters to control the
projection of the style information to different activation locations and
the refined image contains the background texture.

the target person frames Ft are sent to the feature pyramid
network (FPN) to extract the features and transform them to
the representations xS ∈ RWH×C and yS ∈ RWH×C in S
(W ,H are the spatial size, C is the channel-wise dimension).
The transformation can be defined as:

xS = TP→S
(
xP; θT ,P→S

)
, (2)

yS = TI→S
(
yI ; θT ,I→S

)
. (3)

where θ indicates the learnable parameter.
In order to match and correspond the features within

shared domain S better, we denote a correlation matrix
Mcorr ∈ RWH×WH of which each element is a pairwise
feature correlation.

Mcorr
u,v
=

[xS(u)− x̄S(u)]T [yS(v)− ȳS(v)]
‖xS(u)− x̄S(u)‖ ‖yS(v)− ȳS(v)‖

(4)

where xS(u) − x̄S(u) and yS(v) − ȳS(v) ∈ RC represent the
channel-wise centralized features of xS and yS in position u
and v.Mcorr manifests a higher semantic similarity between
xS and yS .
While learning the match by indirect supervised training,

we observe that when the network focuses on the correct
corresponding regions, the generator performs well. For this
reason, we match these intermediate representations from
the pose images and person images according to Mcorr and
obtain the coarse image ŷI ∈ RWH×3. As in [11], the blurred
image ŷI is acquired by selecting the most correlative pixels
in yI and computing their weighted average.

ŷI (u) =
∑
v

softmax
v

(σMcorr (u, v)) · yI (v) (5)

where σ is the coefficient that adjusts the sharpness of the
softmax, ŷI is the coarse person image without pose transfer,
and softmax function is used as a filter to output the suitable
semantic similarity weight between pose image and person
image calculated by the correlation matrixMcorr .

2) COARSE-TO-FINE NETWORK
The spatially-adaptive denormalization (SPADE) is used to
conserve the structural information in image synthesis. In the
SPADE residual block [83], the image is projected onto an
embedding space and then convolved to produce the modula-
tion parameters λi andµi (see in Fig. 4), and they characterize
the style and texture information of the original image yI . The
coarse-to-fine network has L layers with the style information
progressively injected [11]. For refining the details of output,

FIGURE 5. The architecture of temporally coherent sequence network.
The purpose of this module is to distinguish true temporally interframe
sequence from the incoherent sequence.

such as texture, style and color etc., we combine the positional
normalization (PN) and spatially-variant denormalization. 0
represents the projection of original image yI and ξ0 is the
mapping parameter, the denormalization parameter λi and µi

can be depicted as:

λi, µi = 0i (yI ; ξ0) (6)

We use two convolutional layers to actualize the mapping
0, λi and µi have the same spatial size as yI . With the texture
modulation for each normalization layer [11], the refined
image rI can be denoted as:

rI = G
(
8,0i (yI ; ξ0) ; θG

)
(7)

where rI ∈ Ît is the refined person image before pose
transfer, 8 denotes the vector of coarse image ŷI , and θG is
the learnable parameter.

For transferring the source person’s pose to the target
person, the pose figures Ps and refined images of target
person Ît are fed into the well-trained generator to produce
the images of target person Ig (see in Fig. 2) under the source
person’s pose Ps. In our method, video synthesis is based
on the consecutive frame sequences. In order to make the
synthesized video more realistic and natural, we add two
components to improve the quality of generated images.

3) COHERENT INTERFRAME CONSISTENCY
We notice that in the process of video-to-video synthesis, it is
necessary to set an appropriate image interval to generate
coherent video sequences. If the time interval is too long,
the actions of the person in the video are incoordinate, while
too short time interval will produce information redundancy,
which increases the training time. Inspired by [2], [70],
we consider that the video frames are produced sequentially,
and use pair (Pt ,G1 (Pt−l) · · ·G1 (Pt−1)) to train the genera-
torG1 to outputG1(Pt ). As shown in Fig. 5, our network pre-
dicts l consecutive frames where the first generated sequence
G1(Pt−l) is conditioned on its paired pose label image Pt−l
and a placeholder image z (the first frame in the video,
which is not produced). The last generated sequence G1(Pt )
is dependent on its corresponding pose label image Pt and
the previous l − 1 frames output (G1 (Pt−l) · · ·G1 (Pt−1)).
The discriminator D1 is used to distinguish the real tempo-
rally coherent sequence (Pt−l · · ·Pt , It−l · · · It) from the fake
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FIGURE 6. The overview of our face refinement network. The residual
map ψr is used to enhance the facial details of target person.

sequence (Pt−l · · ·Pt ,G1 (Pt−l) · · ·G1 (Pt)). The temporal
smoothing loss Lts(G1,D1) is given by:

Lts(G1,D1) = E(P,I )
[
logD1 (Pt−l · · ·Pt , It−l · · · It)

]
+EP

[
log (1− D1 (Pt−l · · ·Pt ,G1 (Pt−l)

· · ·G1 (Pt)))] (8)

4) FACE REFINEMENT NETWORK
We capture and extract the head information of the target
person in the frames, and crop the face images into the size of
64×64. To preserve the facial details of target person, such as
the hairstyle, appearance features, facial expressions, we use
a GAN to reconstruct the face region. Fig. 6 shows that the
face refinement network emphasizes the content integrity and
style consistency, which can generate realistic outputs and
overcome detail deficiency.

The local face enhancement GAN and global generator
network are separate. First, the global generator produces the
coarse results which combine the target person and full back-
ground. Then we input the cropped images centered around
the face F(P)f and the corresponding pose label maps in the
same size Pf to generatorG2 which produces a residualψr =
G2(Pf ,F(P)f ). The final result contains a residual map with
coarse face regionF(P)f+ψr to refine both the full image and
the original face. Finally, the optimized face image patch will
be embedded into the corresponding region of the original
image. Simultaneously, we use a discriminator to guide the
training of the model, which tries to differentiate the real
face pairs (Pf , If ) from the fake face pairs (Pf ,F(P)f + ψr ).
The objective function of face enhancement learning can be
formulated as follows:

Lface (G2,D2)

= E(Pf ,If )
[
logD2

(
Pf , If

)]
+EPf

[
log

(
1− D2

(
Pf ,F(P)f + ψr

))]
(9)

where Pf is the face region of the pose label map P, If is the
face region of ground truth It . The perceptual loss [77] is used
to refine the face region If of It .

IV. GLOBAL NETWORK LOSS
A. DOMAIN ALIGNMENT LOSS
To ensure the transformed features xS and yS from different
domains into the same domain completely, we set up a loss
function. This domain alignment loss is used to align the

embedding features of paired images (xP, rI ). Formally this
loss is defined by:

L`1D = ‖TP→S (xP)− TI→S (rI )‖1 (10)

where xP is the conditional pose image, and rI is the
refined person image before pose transfer. T is the domain
transformation operation.

B. RECONSTRUCTION LOSS
For the reconstruction term, we argue that the genera-
tor should be capable of avoiding distinct color distor-
tions, so that the results are not significantly different from
the source images in human visual perception. Therefore,
we introduce Lrec to enforce the L1 distance constraint
between the generated images zI and source images yI . The
reconstruction loss is computed as:

Lrec = ‖zI − yI‖1 (11)

C. PERCEPTUAL LOSS
To make the generated images look more natural and smooth
in RGB color space, we add a perceptual loss, which has been
confirmed as available in image generation tasks [63], [64],
[77]. The perceptual loss can be written as:

L`1per=
1

WζHζCζ

Wζ∑
x=1

Hζ∑
y=1

Cζ∑
z=1

∥∥∥9ζ (Ig)x,y,z −9ζ (It)x,y,z∥∥∥1
(12)

where 9ζ is the output feature from layer ζ of pre-trained
VGG-19 network on ImageNet [71], in addition,Wζ ,Hζ ,Cζ
are spatial width, height and depth of feature 9ζ . Ig
is the pose transformed image and It is the original
image.

D. CONTEXTUAL LOSS
We use the proposed method [72] to measure the simi-
larity between generated image and ground truth in the
human pose transfer task. This method regards an image as
a set of features, measuring the feature similarity between
images rather than the spatial locations of features. We match
all the corresponding features of the original images and
the generated images in the global image context to mea-
sure the image similarity. Then calculating the similarity
between the images according to the similarity between
the matching features. Different from previous loss functions,
contextual loss is applied to the patch blocks at the corre-
sponding position of the feature layers instead of the entire
features. The contextual loss can be formulated as [64]:

Lcontext = −log(CX (F l(Ig),F l(It ))) (13)

where F l(Ig) and F l(It ) are the feature maps extracted
from layer l by pretrained VGG19 model for images
Ig and It severally. CX calculates the similarity between
features.
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Algorithm 1 End-to-End Training for Our Network

Input: Training images
{
I is,P

i
s, I

i
t ,P

i
t
}N
i=1 ,

{
Î if ,P

i
f

}N
i=1

.
1: Initialize the network parameters.
//Train Human Pose Transfer Network

2: With
{
I is,P

i
s, I

i
t ,P

i
t
}N
i=1, train {G,D} to

optimize L`1D , Lrec, L`1per , and Lcontext .
//Train Coherent Interframe Consistency Network

3: With
{
Pit , I

i
t , Î

i
t

}N
i=1

, train {G1,D1} to optimize Lts.
//Train Face Refinement Network

4: With
{
Î if ,P

i
f

}N
i=1

, train {G2,D2} to optimize the
loss Lface.

Output: {G,D}, {G1,D1}, and {G2,D2}.

E. THE OVERALL LOSS
We adopt an adversarial loss LGAN with a discriminator D
which differentiates synthesized images from real consecu-
tive frames to help the generator G learn the distribution of
the real data.

LGAN =E(P,I )[logD(P, I )]+EI [log(1−D(I ,G(I )))] (14)

The total loss function for our human motion transfer
network is a linearly weighted sum of above terms:

Lfull = min
G

max
D
ψ1L`1D + ψ2Lrec + ψ3L`1per
+ψ4Lcontext + ψ5Lts + ψ6Lface (15)

where ψi denotes the weight of corresponding loss respec-
tively. The whole training is implemented by solving the
objective min-max optimization problem.

Our training process can be summarized in Algorithm 1.

V. EXPERIMENTS
In this section, we conduct extensive experiments on human
motion transfer task to evaluate the performance of our pro-
posed framework. The tests include a comparison of several
state-of-the-art methods and illustrate its superiority over the
baseline models. Furthermore, both the quantitative analysis
and ablation study to verify the effectiveness of the network
in this paper.

A. DATASETS AND SETTINGS
We use several types of short videos downloaded from
YouTube to create a dataset and perform validation. The
dataset consists of ballet, jazz and street dance videos, etc.
Besides, we also collect a high-quality indoor person video
dataset, which we filmed ourselves from 3 to 5 minutes of
videos with 1920 × 1080 resolution. We use a stabilizer
to hold the phone at a fixed place to avoid jittering in the
recorded videos and ensure a static background in all frames.
After that, we use the cellphone camera to film the target
person of real time footage at 25 frames per second. During
this process, we require the subjects to move slowly and act
randomly, or try to imitate the actions of source person in
a downloaded video. Each video contains the dance of one

person, and we train our model separately for each video.
Fig. 7 shows our model performs well in dance transfer.

B. EVALUATION METRICS
Similar to previous research, we use several evaluation
indicators which are commonly used, such as Structure Sim-
ilarity (SSIM) [73], Inception Score (IS) [74], Peak Signal-
to-Noise Ratio (PSNR), Sharpness Difference (SD), Learned
Perceptual Image Patch Similarity (LPIPS) [75] and Fréchet
Inception Score (FID) [76] to assess the quality of generated
images in the human motion transfer task. These indicators
have their own strengths andweaknesses, in order to make the
experimental results more convincing, the results of eachmet-
ric are taken into account. In the following, we will describe
them in detail.

1) SSIM
From the perspective of image composition, the structure
similarity models distortions as a combination of three fac-
tors: luminance, contrast, structure. According to the theory
of structural similarity, the image signals are highly struc-
tured, and there is a correlation between the closest pixels
in the spatial domain. However, SSIM is sensitive to the
non-structural distortions of the images (e.g., translation,
rotation, scale, etc.), and cannot evaluate images with local
or cross distortions well.

2) IS
Inception Score uses Inception V3-Network pre-trained on
ImageNet as the classifier, which inputs the generated images
and the output values (image categories) of the network are
statistically analyzed. Nevertheless, inception score is biased
towards the internal weights of the network and the score
will be unsatisfied if the images have a different distribution
than ImageNet. In particular, IS cannot reflect whether the
generate model is over-fitting.

3) FID
Different from IS only considering the generated images, FID
uses Gaussian functions to model the features extracted from
the Inception network, then calculates the score by computing
Fréchet distance between two Gaussians fitted to feature
representations. FID has better robustness to noise compared
with IS, and the training set is more extensive.

4) LPIPS
LPIPS metric computes distance in AlexNet feature space
(conv1-5, pretrained on ImageNet) with linear weights to
match human perceptual judgments well. It learns the per-
ceptual similarity and train the network by cross-entropy loss
instead of calculating the similarity of the output features via
a pre-trained classifier.

5) PSNR
PSNR provides an objective criterion to measure image
distortion or noise level, and it is always used in image
compression and other fields. However, it is based on error
sensitivity between the corresponding pixels, ignoring the
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FIGURE 7. The results of human motion transfer. These examples consist of six short videos, we select five consecutive frames from each video. The first
row shows the source person, the second row shows the normalized pose skeleton images, and the third row is the generated frames of the target
person by our network. The bottom right video sequence shows that our model can not only generate the back of person, but also perform well in some
sports pose transfer tasks (Note that other five videos are the results of dance pose transfer).

characteristics of the human visual system (HVS), so the
results are often inconsistent with subjective perception.

6) SD
Sharpness difference is an important factor to measure image
quality which determines the amount of details an image
can represent. It is defined by the boundaries between zones
of different tones or colors. A higher SD value indicates a
smaller visual difference between the two images on the edge
features.

C. ABLATION STUDY
In this section, we conduct extensive ablation study to val-
idate the performance of each component in our network.
Fig. 8 shows that temporal smoothing and face enhancement

GANs are very important modules to generate realistic
images. We also observe that adding each of loss functions
can improve the quality of output (see Fig. 9). To be specific,
we gradually remove components of the full framework and
describe the evaluation of each variant in detail. All the
various variants are trained by using the same implementation
details to ensure the validity of experiments.

w/o. Lts. This model adopts CoCosNet generator with a
face refinement GAN. The reconstructive face images are
added to the experimental results.

w/o. Lface. The purpose of this experiment is to verify
the effectiveness of the face refinement GAN. This vari-
ant consists of CoCosNet baseline and temporal smoothing
module.
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FIGURE 8. The visualization results of ablation study. The left column is a
sequence of frames cropped from the target video. It is obvious that the
face enhancement component can improve the facial details. Compared
with the ground truth, the actions are incontinuous without Lts.

FIGURE 9. The ablation study of different loss functions in human motion
transfer module. As we can see, the L

`1
D is effective at synthesizing

details. The Lrec is helpful to reduce distortions. Without L
`1
per ,

the information of human body is not well preserved. Besides,
the Lcontext ensures the generator to retain the texture in output.

w/o. L`1D . In this experiment we remove the domain
alignment loss to verify this loss can preserve the pixels
efficiently. w/o. Lrec. In order to test the reconstruction term
we proposed, this model shows the performance of generating
frames without reconstruction loss.w/o.L`1per . We analyze the
rationality of perceptual loss [77], whether it can output more
realistic frames.

w/o. Lcontext . In this test, we evaluate the contextual loss
and verify its effect.

Full. We use our proposed full framework in this
experiment.

TABLE 1. Ablation study of our proposed model.

TABLE 2. Quantitative comparison with state-of-the-art methods on our
dataset. (∗) denotes the results tested on our test set.

The assessment results of the ablation study are exhibited
in Table 1. Compared with all variants, we can observe that
the temporal smoothing significantly improves the capability
of keeping frame to frame coherence and always generates
photo-realistic human video sequence in consecutive frames.
Furthermore, without the guidance of face enhancement net-
work, the facial appearances of the outputs are blurred. The
results show that it is unable to refine facial details clearly in
the generated frames after removing the face GAN, in addi-
tion, temporal information produces positive effectiveness in
frame-by-frame generation. We also study the role of each
term in the objective loss functions, the results suggest our
proposed losses not only substantially help generate natural
frames but also significantly improve the visual plausibility of
output images. In general, the full model outperforms other
variants in terms of generating correct human pose, vivid
faces and consistent background, which yields better SSIM,
IS, FID and LPIPS scores.

D. COMPARISON WITH STATE-OF-THE-ARTS
1) QUANTITATIVE COMPARISON
In Table 2, we show the quantitative comparison measured by
SSIM, IS, FID, LPIPS, PSNR, and SD. But it should be noted
that the dataset we used in this work is not same as others,
thus we train their models on our dataset instead of using the
well-trained models released by their previous works [1], [8],
[13], [79], [80]. The results manifest that our method achieves
the best performance in terms of most metrics. It indicates
that the network proposed in this work can not only produce
more realistic details with higher IS value, but more natural
textures. Due to the blurry images always achieve higher
SSIM score, which has been proved in other works [58],
[59], [67], [77], [78], our SSIM value is slightly lower than
baselines, but it cannot deny the effectiveness of our model.
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FIGURE 10. The qualitative comparison with several state-of-the-art methods, such as pix2pix, BicycleGAN, PoseWarp, pix2pixHD, and vid2vid. The
results show our model preserve the facial details and clothes attributes (e.g., color, texture, logo) better.

Overall, our proposed approach outperforms state-of-the-art
methods in human motion transfer task.

2) QUALITATIVE COMPARISON
We compare our proposed method with state-of-the-art meth-
ods, i.e., pix2pix [13], BicycleGAN [79], pix2pixHD [8],
PoseWarp [80], and vid2vid [1]. The quantitative results
are shown in Fig. 10. All the results of these baselines are
available by using the open source codes released by authors.
As we can see, our model generates more realistic images.
Moreover, our method is especially superior in reducing
the image artifacts and preserving the global structures and
detailed textures, including background, clothes, color, style
and shadow.

E. FAILURE CASES ANALYSIS
Overall our proposed method is available to generate con-
vincing results in human motion transfer task. Although our
model performs well in most cases, sometimes a few results
are not satisfactory. We approximately split them into four
categories and expound on each type of errors. Fig. 11 illus-
trates the examples of failure cases produced by our model.
The 1st row shows that our method fails to synthesize frames
with rare pose transformation, e.g., crossing limbs flexibly
or overlapping legs correctly during an intricate dance of the
output video. The 2nd row demonstrates our model is difficult
to deduce the frontal face appearance accurately from the

FIGURE 11. Example failure cases caused by pose attributes or modules
in our model. We illustrate four different types of typical errors.

back or profile of the target person. From the examples in
the 3rd row, we can see that the pose normalization module
is unable to produce the pose maps on the scale of the source
person, which mainly causes the body pixel-level alignment
error and misaligned background pixels. As shown in the 4th
row, our model outputs some unsatisfactory results due to the
complexity of image background and foreground. In order to
solve this challenging issue, [59], [68], [80], [81] introduce
the multistage framework which includes three networks:
1) a foreground transformer network synthesizes the human
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body motion. 2) a background transformer network for gen-
erating the realistic texture and style of the target images.
3) a fusion module is utilized to blend the generated person
images with corresponding background images, then outputs
the final results.

VI. CONCLUSION
In this paper, we propose a novel framework for weakly
supervised pose-to-video generation, which outperforms in
human motion transfer task. Our method uses pose labels
as an intermediate representation for video-to-video synthe-
sis. The model consists of a three-stage pipeline. Stage-I
represents the input videos as two sequences of frames
respectively. Stage-II extracts the pose stick labels, nor-
malizes the pose skeleton figures, and transfers the nor-
malized pose from the source person to the target person.
Stage-III combines the frames into video according to the
temporal sequences. Extensive experimental results show
that our proposed method obtains superior performance in
both subjective visual perception and objective metric scores.
Additionally, the rationality of each component has been
experimentally verified through the ablation study.

However, our model outputs some unsatisfactory results
in dealing with large pose changes (e.g., turn around, leap,
cross legs or arms). For each video, we should train our model
separately, i.e., a well-trained model can only generate videos
of the person in the training set, which limits the domain
generalization capability. In the future, our work could focus
on improving the consistency of generated contents across the
whole video, including appearance and background. More-
over, the model can be extended to other persons who are not
in the training dataset.
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