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ABSTRACT We study the maintenance task scheduling problem for an aircraft fleet in an uncertain
environment from the viewpoint of robust optimization. Given a daily horizon, the maintenance tasks
delegated to a shop should be scheduled in such a way that sufficient aircrafts are available on time to
meet the demand of planned missions. The tasks are either scheduled maintenance activities or unexpected
repair jobs when a major fault is detected during pre- or after-flight check of each mission. The availability
of skilled labour in the shop is the main constraint. We propose a robust formulation so that the maintenance
tasks duration is subject to unstructured uncertainty due to the environmental and human factors. As a
result of the specific structure of the primary model and non-convexity of the feasible space, the classical
robust optimization methods cannot be applied. Thus, we propose an ε-Conservative model in tandem
with Monte-Carlo sampling to extract the set of all feasible solutions corresponding to various disturbance
vectors. Since the one-way sampling-then-optimization approach does not guarantee the probabilistic
feasibility, we employ a hybrid simulation-optimization approach to ensure that the solutions provided by the
ε-Conservative model are robust to all uncertainty scenarios. The experimental results confirm the scalability
of the proposed methodology by generating the robust optimal solutions, satisfying all conservatism levels
and uncertainty scenarios irrespective of the problem size.

INDEX TERMS Robust optimization, simulation-optimization, maintenance scheduling, aircraft fleet.

NOMENCLATURE
SETS
W Scheduled missions, where w ∈ W .
M Tasks, where m ∈ M .
R Workforce skills, where r ∈ R.
K Aircraft, where k ∈ K .
T Time period, where t ∈ T .

PARAMETERS
A Number of fighters available in the hangar at the

beginning of the horizon.
STw Start time of mission w ∈ W .
CTw End time of mission w ∈ W .
aw Number of required aircrafts
emk A binary parameter which equals 1 if task m ∈ M

is associated with kth aircraft; Otherwise, it
equals 0.

The associate editor coordinating the review of this manuscript and

approving it for publication was Donatella Darsena .

λrm Number technicians of skill r are required to rectify
task m ∈ M .

pmr Processing time of task m ∈ M by skilled
workforce r ∈ R.

ζ 1 Probability that a major fault is detected during the
pre-flight check.

ζ 2 Probability that a major fault is detected during the
after-flight check.

VARIABLES
Cm Completion time of task m ∈ M .
cmr Completion time of task m ∈ M by skill r ∈ R.
δ Minimum fleet availability of missions.
zw Number of fighters assigned to mission w ∈ W .
Ew Expected number of fighters available for mission

w ∈ W .
Uw Number of fighters released from the shop before

time STw
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umw A binary variable which equals 1 if task m ∈ M is
completed before the start time of mission w ∈ W .
Otherwise, it equals 0.

Qw Number of aircraft which are ready for pre-flight
check of mission w ∈ W .

ymrt A binary variable which equals 1 if task m is
started by skill r ∈ R in time slot t ∈ T ;
Otherwise, it equals 0.

λmaxr Required number of workforce with skill r ∈ R

I. INTRODUCTION
The maintenance task scheduling problem (MTSP) is an
essential challenge at the operational level for many indus-
tries. The scheduled maintenance tasks and unscheduled
repair jobs must be done in an efficient manner, given a
short planning horizon, to increase the equipment uptime
and asset availability [1]. The air transportation industry
has a unique condition that is not comparable to any other
transportation industry. Flight management is more than just
take-off and landing schedules. Many procedures, authority,
and maintenance requirements have to be taken into account.
Maintenance tasks not only have to be completed considering
that every aircraft leaving the ground is reliable and safe but
also at the minimum cost [2].

A fleet of aircraft has pre-planned daily missions, and
some unexpected failures during the pre- or after-flight check
of individual aircraft. In addition to the unexpected faults,
a wide range of scheduled maintenance activities must also
be accomplished on time over a certain time period (ranging
from a day to a year) to keep fleet availability at an appropri-
ate level [3].

The MTSP becomes even more challenging when we con-
sider the inherent uncertainty of maintenance tasks’ duration,
as well as limitations on resources, such as skilled labour,
tools, space, and spare parts [4]. Moreover, the environmental
and human factors in the presence of insufficient historical
data make the pattern recognition of uncertain parameters
so difficult. Not surprisingly, then, finding a robust solution
covering a wide range of uncertainty as a proactive response
to unexpected events has become a challenging issue [5].

In this paper, we propose a robust formulation for the
aircraft fleet maintenance task scheduling to generate the
solution satisfying all conservatism levels and uncertainty
scenarios. In other words, for a certain level of conservatism,
we would like to know which trade-off between labour
requirements and fleet availability will cover the majority of
disturbance scenarios of the tasks’ duration?

Since the primary deterministic model has a specific struc-
ture (i.e., uncertain parameters appear in summation bounds)
with a non-convex feasible space, the common robust opti-
mization methods, e.g., polyhedral uncertainty [6] or car-
dinality constrained uncertainty [7], cannot be applied (see
Appendix A). To cope with this drawback, our idea is to
extract the set of all possible labour scenarios corresponding
to various disturbance scenarios using Monte-Carlo sam-
pling. That is, the samples are drawn from the bounded

uncertainty set and then fed to the modified model (we name
it ε-Conservative MTSP model or ε-CMTSP for short) to
extract the set of possible labour scenarios. The first phase
solves the ε-CMTSP model with the aim of minimizing the
labour requirement, and the second phase solves the primary
model to investigate the feasibility of the labour scenarios
generated during the first phase.

The remainder of this paper is organized as follows.
Section II briefly reviews related works and efforts and
Section III explains the problem specifications and the deter-
ministic mathematical modeling. In Section IV, the robust
optimization approach is described and, in Section V, data
generation, sensitivity analysis, and numerical results are
reported. A conclusion and recommendations for future
research are described in Section VI.

II. LITERATURE REVIEW
TheMTSP has been investigated and extended by researchers
from various points of view. For a comprehensive review of
MTSP literature, see [8], [9], and [10]. To the best of our
knowledge, Safaei et al. [11] is the pioneer study regard-
ing the fleet availability considering the skilled-workforce
requirements for military aircraft fleet. Recently, some stud-
ies have addressed maintenance scheduling for military
aircraft fleets by focusing on daily mission and fleet avail-
ability. Verma and Ramesh [12] suggested a multi-objective
model to optimize fleet reliability, cost, introduced criteria,
non-concurrence of maintenance periods and maintenance
start time measure in preventive maintenance tasks. Kozan-
dis [13] proposed a flight and maintenance planning problem
for a military fleet with the aim of maximizing the fleet
availability and minimizing the total residual flight time.
Kozanidis et al. [14] presented a heuristic approach to solve
flight and maintenance planning of mission aircraft with the
aim of maximum fleet availability over a given planning
horizon, while also satisfying certain flight and maintenance
requirements.

Qin et al. [15] presented a mixed-integer linear program-
ming (MILP)mathematical model. Firstly, they integrated the
interrelations between the maintenance schedule and aircraft
parking layout plans. In the model, different maintenance
hangar’s parking limits, as well as the blocking of the air-
craft rolling in and out route, are studied. Cui et al. [16]
developed a mathematical model for aircraft maintenance
routing problem to optimize the number of aircrafts and
total remaining flying time. Deng et al. [17] investigated a
practical dynamic programming-based approach to optimize
the long-term maintenance check plan for a heterogeneous
aircraft fleet. The suggested approach tries to optimize the
wasted period in checks. Sanchez et al. [18] presented amulti-
objective mixed-integer linear programming model and an
iterative algorithm to run commercially viable and mainte-
nance feasible flight and maintenance schedules.

Robust optimization has recently been the topic of many
studies inwhich the exact distribution of uncertain parameters
cannot be identified. This often occurs in practice, especially
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when information about the uncertain parameters is limited to
insufficient historical data [19]. In the maintenance schedul-
ing field, maintenance tasks are highly affected by human
factors. That is, the tasks are performed by different indi-
viduals having various skill levels, tool proficiency, learning
rates, and efficiency. In such a case, the maintenance tasks’
duration might be bounded into an uncertainty set as a key
idea in the robust optimization framework [20]. The goal is
to find a schedule that is optimal for any realization of the
uncertainty in a given set. In practice, this is equivalent to
minimizing the deviation from the optimal solution in the
worst-case scenario [21].

Robust optimization in the aviation industry used in several
studies recently. Robust aircraft sequencing and scheduling
problem studied while arrival and departure delays are uncer-
tain. The problem solved using an artificial bee colony algo-
rithm for robust ASSP model [22]. A two-stage optimization
model proposed to manage the terminal traffic flow problem.
After that, themodel solved using a simulated annealing algo-
rithm [23]. Finally, a two-stagemathematical model proposed
to optimize an aircraft hangar maintenance planning problem
while its MRO activities are outsourced. In order to solve the
problem, a decomposition method deployed [24].

Airside operation research covers different fields in air
transport management, including airspace and air traffic flow
management, aircraft operation in the terminal maneuvering
area, and surface traffic operation [25]. Högdahl et al. [26]
developed a simulation-optimization approach to minimize
travel time and delays in railway timetables. They also
addressed the reliability of the estimation.

A cooperative game theory approach utilized for
multi-level fleet maintenance planning. This approach is
based on agent learning and the problem solved by a sim-
ulated annealing approach [27]. Furthermore, the game
theory also used for fleet condition-based maintenance
planning. The local and global optimal solutions were
obtained by competition and cooperative game algorithms,
respectively [28].

The majority of studies in maintenance scheduling have
used stochastic optimization or simulation approaches to
tackle uncertainty [29]–[32], and [11]. Other studies have
used Markov decision analysis [33] or a combination of
mathematical programming, simulation and data envelop-
ment analysis [34]. However, in recent years, robust optimiza-
tion for scheduling problems has been studied extensively by
researchers [35]–[38], and [39].

From what has been discussed above, the MTSP is a hot
topic in maintenance management to reduce operational costs
of aircraft fleets. Furthermore, ignoring the problem uncer-
tainties may result in infeasible solutions, which induced low
service level and missed missions. Therefore, deploying an
efficient, robust approach is necessary. In this paper, some
gaps in the aircraft MTSP and robust optimization scope are
fulfilled, with contributions as follows:
• Proposing a new robust optimization approach where
the deterministic model has a non-convex feasible space

(e.g., the uncertain parameter appears in summation
bounds)

• Developing a robust model for a real-world aircraft
MTSP

• Utilizing three generic uncertainty scenarios for the
uncertain parameter (job processing time) to examine
the robust optimization approach performance under dif-
ferent realizations.

• Presenting an approach that can be used for the class of
uncertain problems in which the skilled-workforce and
asset availability are major concerns.

III. PROBLEM STATEMENT
The problem is associated with a fighter aircraft fleet with
pre-planned daily missions. Each mission has a scheduled
start and completion time and requires a fixed number of
fighters. There is no time overlap between the missions, and
delay on mission accomplishment is negligible. Each fighter
must be inspected before the flight (pre-flight check) and after
landing (after-flight check) for detection of possible faults.
Major failures are referred to the repair shop, and minor
ones are rectified while the aircraft holds on the flight line.
The time for line rectifications is negligible. The scheduled
maintenance activities must also be done at the shop. The
labour resource is considered the highest priority since the
workforce performing the maintenance tasks are highly paid
and extremely skilled in special areas. The number of techni-
cians of each skill in the shop and line is limited. The main-
tenance tasks’ duration and the possibility of fault detection
during pre- or after-flight checks are subject to uncertainty
with known distributions. The maintenance tasks delegated
to the shop should be scheduled in such a way that sufficient
fighters are available on time to meet the demand of missions.

Considering a daily (24-hour) horizon, W scheduled mis-
sions must be accomplished with a fleet of identical fighters.
The start time, STw, and end time, CTw, of each mission is
known. Each mission w ideally requires aw fighters; however,
ρ percentage of ideal requirement, i.e., ρ×aw, is a must. This
is the minimum requirement to implement a mission. At the
beginning of the horizon, M tasks (including scheduled main-
tenance or unscheduled repair jobs) are lined up in the repair
shop from the past days, each associated with a down fighter.
emk = 1 if task m is associated with kth fighter; otherwise,
it equals zero. The technicians in the shop are divided into R
different skills, and the number of available technicians for
skill r is λmaxr . The technicians are single-skill and special-
ized, e.g., weapon, avionic, mechanic, electrician, structural,
etc., because the internal rules limit them to become licensed
for at most one skill. λmr technicians of skill r are required
to rectify task m. The number of time units required by skill
r , ptmr to perform task m is a stochastic parameter. Task
preemption is not considered. The probability that a major
fault is detected during the pre-flight check is ζ 1 and during
the after-flight check, it is ζ 2 where usually ζ 2 ≥ ζ 1. These
values are extracted from the historical failures recorded in
Computerized Maintenance Management System (CMMS)
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FIGURE 1. Schematic flow of aircraft between hangar, shop, and two consecutive missions.

database (for more information, see Safaei et al. [11]). Due
to the high volume of the workload at the shop, the fighters
with major faults detected or maintenance checks due over
the current day are lined up in the shop to be scheduled over
the next days. The rectified fighters will be sent to a hangar
to be ready for upcoming missions. ‘Hangar’ is used as an
intermediate buffer to house the available fighters for the next
mission.

The objective is to optimally determine the completion
time of the tasks where the fleet availability to accomplish
the missions is maximized. The completion time of task m is
calculated as Cm = maxr {cmr } where cmr is the completion
time of task m by skill r. The fleet availability per mission
is defined as the percentage of demand satisfied. Hence, the
objective function is to maximize the minimum fleet avail-
ability of missions, δ, where

δ ≤
zw
aw
∀w, (1)

and decision variable zw represents the number of fight-
ers assigned to wth mission where zw ≤ aw. Note that
max
w
{ρ × aw} is an explicit lower bound on (1) beyond which

some missions cannot be implemented.

A. PRIMARY MODEL
The primary model was formulated as a probabilistic network
flow problem in which the fighters are flown among the
missions, hangar and shop as nodes and major faults are
treated as leakage in the system. The key idea is to deter-
mine the expected number of fighters available for mission
w, i.e., Ew. This quantity is calculated using the following
recursive function:

Ew =
{(
E(w−1) − z(w−1)

)
+
(
Uw−U(w−1)

)
+z(w−1)

(
1−ζ 2

)}
×

(
1− ζ 1

)
∀w > 1, (2)

with boundary condition

E1 = (A+ U1)×
(
1− ζ 1

)
, (3)

where A is the number of fighters available in the hangar at
the beginning of the horizon, andUw is the number of fighters
released from the shop before time STw:

Uw =
∑

k

∑M
1 emkumw∑M

1 emk
. (4)

In Eq. (4), umw = 1 if task m is completed before the start
time of mission w; otherwise umw = 0. The first term in
(2), i.e.,

(
E(w−1) − z(w−1)

)
, denotes the expected number of

available fighters in the hangar after satisfying the demand
of mission (w-1). The second term, i.e.,

(
Uw − U(w−1)

)
,

is the number of fighters released from the shop between
the starting times of missions w – 1 and w. The third term,
i.e., z(w−1)

(
1− ζ 2

)
, indicates the expected number of fight-

ers released from after-flight check of mission w-1 with
no major fault. The summation of the above three terms,
Qw =

(
E(w−1) − z(w−1)

)
+
(
Uw − U(w−1)

)
+z(w−1)

(
1− ζ 2

)
,

is the expected inflow into the pre-flight check of mission
w. Finally, Qw is multiplied by

(
1− ζ 1

)
, the probability that

a fighter successfully passes the pre-flight check and takes
off without detection of any major fault. The calculation in
(2) is schematically shown in Figure 1 for two consecutive
missions, w -1 and w.

Note that the expected number of fighters available for
a mission, Ew = Qw

(
1− ζ 1

)
, is not necessarily the same

number of fighters assigned to that mission, zw. Moreover,
the number of fighters assigned to a mission should not
exceed the demand aw. Hence, the following condition must
hold:

zw = min {Ew, aw} ∀w. (5)
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Using the above explanation, based on the optimization
model proposed by Safaei et al. [11] the primary model is
as follows:

P1 :
maxZ1 = δ,

Subject to:
(1)-(3), and

T∑
t=1

ymrt = 1 ∀m, r; ptmr 6= 0 (6)

M∑
m=1

 t∑
s=max{1,t−ptmr+1}

ymrs

 λmr ≤ λmaxr ∀r, t, (7)



Cm ≥ ptmr (1+ ε)+
T∑
t=1

tymrt ∀m, r

Cm≤ptmr (1+ε)+
T∑
t=1

tymrt+M+ (1− αmr ) ∀m, r

M∑
m=1

αmr = 1 ∀r

(8)

(Cm − STw) < (1− umw)M+

(Cm − STw) ≥ −umwM+
∀w,m, (9)

Uw ≤
∑

k

(∑M
m=1 emkumw∑M
m=1 emk

)
∀w, (10) zw ≤ Ew

zw ≤ aw
∀w, (11)

ymrt , umw, αmr ∈ {0, 1} ;Cm,Uw ∈ Z+;Ew, zw ∈ R+. (12)

Model P1 is a time-indexed linear mixed-integer program-
ming (MIP) model in which the planning horizon is divided
into T time slots, each with restricted capacity per skill.
The model’s key decision variable, ymrt , is to determine the
starting time of the tasks over the horizon. That is, ymrt = 1
if task m is started by skill r in time slot t where 1 ≤ t ≤ T ;
otherwise, it equals zero. Constraint (6) ensures that each job
by each required skill is started at only one of the time-slots
over the horizon. Knapsack constraint (7) imposes that the
capacity constraint per time slot and skill cannot be violated.
The completion time of the tasks is calculated in Constraint
set (8). The auxiliary variable αmr helps us to fully satisfy the
equality Cm = maxr {cmr }, so that αmr∗ = 1 ⇔ Cm = cmr∗

where cmr = ptmr +
T∑
t=1

tymrt , is the completion time of task

m by skill r and r∗ is r for which cmr is maximized M+ in
constraints (8) and (9) represents the big M. Constraint (9)
determines whether a task is completed before the starting
time of a mission. Using this, inequality (10) calculates the
number of aircraft that their maintenance task is completed
before each mission. Constraints (10) and (11) represent the

linear forms of Equations (4) and (5). Finally, (12) imposes
the variables’ integrality.

IV. ROBUST FORMULATION
Using the dual counterpart of the primary problem to deter-
mine the worst-case scenario is a common practice in
the majority of the robust optimization methods. As such,
P1 might be formulated as the following dual form to min-
imize the required labour size, given the minimum expected
fleet availability, δ; (δ ≥ ρ), per mission:

P2 :

Min Z2 =

R∑
r=1

λmaxr , (13)

Subject to:
(1)-(3), (6)-(11), and

ymrt , umw, αmr ∈ {0, 1} ;Cm,Uw, λmaxr ∈ Z+;Ew, zw ∈ R+

(14)

In Constraint (1), entity δ obviously cannot be greater than
the percentage of aircraft which successfully pass the pre-
flight check, i.e., δ ≤ 1 − ζ 1. This is actually a reasonable
assumption given the resource scarcity. In practice, it rarely
happens that Ew exceeds the demand aw. If the success rate
of the pre-flight check is, for example, α% (in our case =
1 − ζ 1), the minimum expected fleet availability cannot be
rationally greater than α%. Therefore,

(
1− ζ 1

)
is a fair upper

bound on δ. P2 has R-1 variables more than P1, which does
not lead to a significant increase in complexity. However, hav-
ing δ as input parameter facilitates our efforts to incorporate
the concept of robustness into the formulation

Note that the uncertain parameter ptmr appears in sum-
mation bounds in Constraint (7). Moreover, the feasible
set of P2 is not convex because of the form of Con-
straints (8) and (9), which are formulated using the big-M
method. Therefore, recent robust optimization methods, e.g.,
ellipsoidal uncertainty [6] or polyhedral constrained uncer-
tainty [7], cannot be applied. For instance, the latter method
requires a linear dual form (for inner maximization sub-
problem) to compute the worst-case scenario, while P2 has
a non-linear dual counterpart due to the specific structure
of Constraint (7). Moreover, the duality gap, as a result of
the non-convexity of the feasible set, creates a gap between
the optimal solution of the inner maximum sub-problem and
its dual counterpart; therefore, the aforementioned methods
cannot be implemented in practice.

A. CONSERVATIVE FORMULATION FOR P2
Since a straightforward robust formulation for P2 does not
exist, we have to establish a procedure to achieve the list of
all feasible labour scenarios corresponding to possible distur-
bance vectors. To this end, we modify P2 in such a way that
the abovementioned list can be extracted using Monte-Carlo
sampling. That is, we use Monte-Carlo simulation to take
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samples from the uncertainty set bounded by conservatism
level ε and feed the samples to a modified version of P2
(ε-Conservative MTSP or ε-CMTSP), to extract the set of all
feasible labour scenarios. As the uncertainty set is a norm-
bounded set, we will have a finite number of scenarios.

To construct ε-CMTSP, we first define the worst-case sce-
nario using the concept of weak flow conservation proposed
by [40] for robust network flow problems. Using this con-
cept, we prove there is an explicit relationship between the
conservatism level and δ in Eq. (1) as both are determined
by an individual decision maker. This relationship enables
us to embed the conservatism into P2 without increasing the
complexity. Moreover, to incorporate the robustness into the
model, we investigate the conditions under which a solution
of P2 is still feasible when we change the conservatism level.
We first provide an interval representation of the uncertain
quantity ptmr , as follows:

ptmr ∈
[
ptmr (1− ε) , ptmr (1+ ε)

]
, (15)

where ptmr represent the nominal (most likely) value and
0 ≤ ε ≤ 1 is the conservatism level, which controls the
uncertainty aspects of processing times. We say a solution
is robust (to the processing times’ perturbation) if it satisfies
(1) under all realizations of the disturbances ptmr within
Interval (15).

In practice, it is unlikely that all aircraft available for
a mission, Qw, fail simultaneously during the pre-flight
check. Hence, to control the level of conservatism, we define
0w(0w ≤ Qw) as an upper bound on the number of aircraft
with a major fault detected during pre-flight check of mis-
sion w. In this case, the set of all possible scenarios is defined
as:

21
w :=

{
µ = (µk) ∈ {0, 1}Qw |

∑Qw

k=1
µk ≤ 0w

}
. (16)

The binary variable µk indicates whether or not aircraft k
(k = 1, . . . ,Qw) fails. We define robustness using the idea
proposed by [40], i.e., weak flow conservation, for robust
network flow problems. Given directed graph G=(V,E) with
node set V and arc set E, the weak flow conservation con-
straint imposes that for each node v ∈ V , the net flow∑

e∈δ−(v) xe −
∑

e∈δ+(v) xe, i.e., Inflow – Outflow, must be
greater than zero where xe is the flow on arc e ∈ E and δ− (v)
and δ+ (v) denote the set of arcs entering and leaving node v
respectively. In other words, the weak flow conservation
implies that the amount of flow entering a node is at least
the amount of flow leaving it. Thus, we can have excess at
some node, but a deficit is not allowed at any node except
Source. Their objective was to seek the flow from Source to
Sink with maximum net flow. The same idea can be applied
to our network flow problem (Figure 1) in which the objective
is to maximize the inflow into each mission (node). That
is, for each mission w, the inflow (# of fighters passing the
pre-flight check and entering the mission) must be greater
than the outflow (minimum expected demand). Thus, a robust

solution must guarantee:

Qw −
∑Qw

k=1
µk ≥ aw × δ. (17)

To construct our ε-CMTSP, we substitute 1−ρ for δ in P2.
Then, we investigate the conditions under which a solution
of P2 is still feasible when we change ε. Consider solution
Ẏ = (Ẏmrt ) a feasible solution of P2 and let 9̇w := {m|STw ≥
Ċm} to be the set of tasks completed before time STw where
Ċm = maxr {ċmr } and ċmr is the completion time of task m
by skill r. We say Ẏ is robust if slack time (STw − Cm) covers
the effect of disturbances ptmr ∀r on completion time. The
key idea is that the additive uncertainty in processing time
may postpone the completion time; however, the slack times
are long enough to absorb this additive uncertainty without
changing the primary schedule. Hence, Ẏ should satisfy Con-
straint (1) as well as the following constraints under various
disturbance scenarios corresponding to intervals (15).

1. STw ≥ Ĉm ∀ w,m ∈ 9w; Ĉm = maxr {ċmr + ptmr × ε}
2.

M∑
m=1

 t∑
s=max{1,t−ptmr (1+ε)+1}

ẏmrs

 λmr ≤ λmaxr ∀ r, t.

(18)

Given conservatism level ε, the above conditions ensure
sufficient slack times are available to cover the uncertainty
part of ptmr , i.e., ptmr × ε, while the workforce constraints
are still satisfied. In the first condition, STw ≥ Ĉm can be
rewritten as

(
STw − Ċm

)
≥

(
Ĉm − Ċm

)
so that the left-hand

side is the slack time and the right-hand side is the effect
of uncertainty on completion time. To formulate the robust
model, Constraint (8) is turned into the following linear form,
representing the first condition in (18):

Cm ≥ ptmr (1+ ε)+
T∑
t=1

tymrt ∀m, r

Cm ≤ ptmr (1+ ε)+
T∑
t=1

tymrt +M+ (1− αmr )∀m, r

M∑
m=1

αmr = 1 ∀r

(19)

Moreover, Constraint (7) is replaced by Constraint (20).
Finally, the ε-CMTSP model has the following form:
ε-CMTSP:

Min Z2 =
R∑
r=1

λmaxr ,

Subject to:
(2), (3), (9)–(11), (14); (18), (19), and

zw
aw
≥ 1− ∀w. (20)

Constraint (20) is the revised version of (1). ε-CMTSP
does not change the computational tractability as it has the
same size and complexity as P2. As pointed out earlier,
ε-CMTSP is used in tandem with Monte-Carlo sampling to
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extract all labour scenarios corresponding to the possible
disturbance vectors. In this case, each disturbance vector
8 :

{
ptmr +1mr

}
∈ RM×R is a point in a polyhedral

uncertainty set structured by intervals (15) where 1mr is
a random number with an unknown pattern within inter-
val

[
−ε × ptmr ,+ε × ptmr

]
. The overall uncertain space

is covered by the polyhedral, an intersection of intervals
(15) in M × R-dimension space, so that the conservatism
level is an adjustable parameter controlling the size of the
uncertainty set. Assuming a sufficient number of simula-
tion runs, all labour scenarios generated using the sampling-
optimization procedure guarantee (20). However, a question
remains: ‘‘Does each individual solution guarantee (20) under
all uncertainty scenarios’’? To investigate this question, each
solution of ε-CMTSP is fed to the primary model P1 to
check whether it guarantees Z1 ≥ 1 − ρ under various
uncertainty scenarios. In this case, P1 is considered a classical
stochastic programmingmodel in which the uncertain param-
eters follow known probability distributions. Thus, we say a
feasible solution of ε-CMTSP is robust if it is also feasible
for P1 by satisfying Z1 ≥ 1 − ρ for all possible uncertainty
scenarios. The above methodology is the key idea behind our
new hybrid simulation-optimization approach to cope with
the main drawback of one-way sampling-then-optimization
procedure, i.e., lack of probabilistic Guarantees.

B. A HYBRID SIMULATION-OPTIMIZATION APPROACH
FOR PROBABILISTIC GUARANTEES
The proposed hybrid simulation-optimization (HSO)
approach consists of two phases:

1) Sampling: In this phase, ε-CMTSP is iteratively solved
to extract the list of all possible feasible labour sce-
narios. At each iteration of this phase, the disturbance
vectors are uniformly sampled from interval (15) and
ε-CMTSP is solved. The optimal solution of ε-CMTSP
is a labour scenario like 3 :

(
λmax1 , λmax2 , . . . , λmaxR

)
∈

5, where 5 is the finite set of all possible labour
scenarios. In Appendix B, we proof that 5 cannot be
infinite and thereby all its elements can be generated
through the uniform sampling over a finite number of
trails. To facilitate our analysis, we consider three levels
of conservatism and use the linguistic abbreviations
shown in TABLE 1 to display them.

2) Probabilistic Feasibility Check: In this phase, primary
model P1 is iteratively solved for each scenario3 ∈ 5;
assuming ptmr follows a known uncertainty pattern.
That is, given scenario 3, at each iteration of the
Monte-Carlo sampling procedure, P1 is solved when
ptmr are randomly drawn from a specific uncertainty
pattern. We say labour scenario 3 ∈ 5 will be robust
conservatism level ε; if Z∗1 (3; ptmr ; n) ≥ 1 − ∀n
where Z∗1 (3; ptmr ; n) is the optimal objective value of
P1 in nth run. To incorporate the above theoretical inter-
pretation into the simulation results, we say scenario
3 ∈ 5 is feasible if the feasibility rate (or equivalently,

TABLE 1. Conservatism Levels.

guarantee of probability) over runs has an aver-
age greater than 0.95 and a standard deviation less
than 0.05.

For a rough approximation, we adopt three generic uncer-
tainty structures for ptmr as normal, abnormal, andmysterious
situations represent by normal, beta, and uniform distribu-
tions, respectively. ‘Normal’ refers to situations in which the
uncertain parameter is normally distributed around the nomi-
nal value. ‘Abnormal’ refers to situations where the uncertain
parameter has extreme values very close to its lower or upper
bounds with a high probability. ‘Mysterious’ refers to the
situationswhere the behavior of the parameter is very difficult
to identify; in this case, we give the same probability to
all possible values (absolute ignorance). These situations are
schematically shown in Figure 2. Having these definitions,
we consider the possible uncertainty scenarios for ptmr as
presented in TABLE 2.

FIGURE 2. Generic uncertainty scenarios for ptmr .

TABLE 2. Generic uncertainty scenarios for ptmr .

The distribution parameters are set in such a way that the
range of variability of ptmr is the same as the intervals (15).
Distribution Beta(0.5,0.5) represents the abnormal scenarios
within interval (0, 1), which is mapped into the intervals
(15) using the linear transmission shown in TABLE 2. Thus,
the second phase will be run for each labour and uncertainty
scenario, given conservatism level ε.

Phase 1 will be terminated whenever set5 becomes stable;
that is, a new labour scenario is not inserted into the set
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after a specific number of iterations, i.e., π1. Phase 2 will
be terminated whenever the number of iterations exceeds a
predetermined value, i.e., π2. The outcome of our HSO is set
�, the set of all labour scenarios which are feasible for both
primary and robust models and for all uncertainty scenarios
under a certain conservatism level, where � ⊂ 5. We define
B (ε) ∈ �, Best Robust Labour Scenarios, as the labour sce-
nario with minimum size under level ε. Our ultimate goal is to
findω ∈ �, the labour scenario with minimum size satisfying
all conservatism levels; we refer it as ‘Robust Optimal Labour
Scenarios’ (ROLS).

A robust region for decision-making purposes can be
concluded as Figure 3. This region determines the range
of conservatism levels (ψ in Figure 3) which are satisfied
by specific labour size or the range of robust labour sizes
(ϒ in Figure 3) given a conservatism level. The cross point
of two ranges, ψ and ϒ , denotes the minimum robust labour
size at conservatism level ε; B (ε). In this case, the ROLS
is the minimum labour size satisfying all conservatism level,
as shown in Figure 3.

FIGURE 3. Robust Region.

The proposed HSO flow chart is depicted in Figure 4.

V. EXPERIMENTAL RESULTS
In order to examine the performance of proposed simulation-
optimization approach, we use five real-world numerical
examples adopted from Safaei et al. [11] reported in TABLE
3. In these examples, the number of tasks range between
20 and 100 for whole fleet and the number of daily missions
range between 4 and 6. The number of skills is fixed and
equals R = 3, representing three trades: 1- Weapons and
armament electrical, 2- Airframe mechanical, airframe elec-
trical and propulsion, and 3- Avionics/electronics.

The required number of fighters per mission aw is given;
however, the mission may be accomplished with at least
%50 of total demand under the worst-case scenario, i.e., ρ =
0.5. According to the failure data analysis, the nominal value
ptmr is drawn from a log-normal distribution with location
parameter µ = 2 and shape parameter σ = 3. Moreover,
the relationship ζ 2 ≈ 7 × ζ 1 is concluded from the data
where ζ 1 = 0.028. Models P1 and P2(ε) are solved, and the
HSO approach is coded using the CPLEX solver embedded

TABLE 3. Numerical examples.

in GAMS 24.2.3 software and run on a x64-based system
with Intel(R) Core(TM)2 duo CPU P8700 @ 2.53 GHz. The
proposed HSO approach is solved per numerical example and
per conservatism level, as shown in TABLE 1. The stoppage
parameters π1 and π2 are experimentally set to 100 and 1000.
The results obtained from the first phase of the HSO

approach are reported in TABLE 4. This table contains the
possible labour scenarios satisfying the given conservatism
level for different instances. However, there is no guarantee
on their feasibility over the second phase.

Hereafter, to facilitate analysis, we aggregate the labour
scenario

(
λmax1 , λmax2 , λmax3

)
as a single indicator labour size,

3∑
r=1

λmaxr (same as P2’s objective function – Eq. 13). As such,

in accordance with the interval representation of uncertain
parameters; we consider the minimum and maximum val-
ues of labour size per conservatism level, as reported in
TABLE 5 and schematically shown in Figure 3. The shaded
areas (bounded by minimum and maximum labour sizes) in
Figure 5 denote the possible values for ROLS, i.e., the labour
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FIGURE 4. The HSO flow chart.

FIGURE 5. Min/Max labour size per conservatism level – Shaded areas indicate the possible values for ROLS.

scenario(s) with minimum size covering all conservatism
levels and uncertainty scenarios, as an outcome of the second
phase.

To investigate the feasibility of the aggregated labour sizes
provided in TABLE 4, we run the second phase of our
HSO approach; the outputs are summarized in TABLE 6

for instance 1 and 2. This table reports the average (Avg.)
and standard deviation (StDev.) of feasibility rates over π2
simulation runs associated with all possible labour sizes
(TABLE 4) under various conservatism levels and uncer-
tainty scenarios. As reported in this table, the most pes-
simistic labour size scenario (2,6,4)=12 chose as ROLS
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TABLE 4. Output of phase 1 in the form of
(
3max

1 , 3max
2 , 3max

3

)
– HSO

approach.

TABLE 5. Min/Max labour sizes per instance and conservatism level
(concluded from Table 4).

value because the other labour scenario do not have accept-
able performance under all uncertainty scenarios. However,
ROLS value is not necessarily the most pessimistic labour
size scenario. As can be seen in instance 2, labour size
(4,12,8)=24 shows an acceptable performance and deter-
mined as ROLS value. Finally, comparing different solutions
originated from different conservatism levels (L, m and H),
it can be concluded that due to the problem uncertainty low
conservatism solutions result high infeasibility rate. There-
fore, ignoring or underestimating the problem uncertainty
yields low quality solutions.

TABLE 6. Output of phase 2 for instance 1 and 2.

TABLE 7. ROLS values.

In TABLE 7, the summary results of phase 2 for the other
data instances are presented. Indicated ROLS values show
that the proposed HSO robust optimization enables us to find
a high-quality solution that is not too conservatism, but its
feasibility under different uncertainty scenarios and levels
is guaranteed. Therefore, the proposed approach presents
solutions which are not corresponding to hard-worst case
solution.
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VI. CONCLUSION AND REMARKS
This paper has presented an approach to robust scheduling
of the maintenances tasks of fighter aircraft fleets with daily
missions where the tasks’ duration are subject to uncertainty.
The sole objective is to maximize the fleet operational avail-
ability for the planned missions, while the available skilled
labour is the main constraint. The tasks are either scheduled
maintenance activities or unexpected repair jobs when a fault
is detected during pre- or after-flight check of each mission.
The probability of the fault detection is known.

Because of the primary mathematical model’s specific
structure, it cannot be extended to create a robust frame-
work using the existing methods. Thus, we modify the
primary model to generate a finite set of the solutions
corresponding to the uncertainty set. This can be done
using a sampling-optimization procedure. In this procedure,
Monte-Carlo simulation is used to take samples from the
uncertainty set; the samples are iteratively fed to the modi-
fied model to extract the set of feasible solutions. However,
the procedure does not guarantee the probabilistic feasibility;
i.e., we cannot ensure the feasibility of the solutions under
particular distributional assumptions for the disturbance vec-
tors. Thus, we propose a hybrid simulation-optimization
approach to overcome the problem. This approach consists
of two phases: 1- generating the list of all solutions corre-
sponding to the uncertainty set using Monte-Carlo sampling-
optimization; 2- checking the probabilistic feasibility of the
abovementioned solutions under three general uncertainty
scenarios: normal, abnormal, and mysterious. Using this
approach, we determine the optimal robust solutions, i.e., the
solutions with minimum cost satisfying all conservatism lev-
els and uncertainty scenarios. The obtained results reveal that
our approach is not sensitive to the uncertainty scenarios or to
the problem size; validating the performance of the proposed
approach to solve a class of robust scheduling problems
in which the availability of assets for planned programs is
a concern while the tasks’ duration is subject to unknown
uncertainty behaviors. Our hybrid simulation-optimization
approach may be applied to other robust optimization prob-
lems in which either a dual counterpart for the primary model
does not exist or the feasible space has a non-convex form.

Spare part inventory management plays a critical role in
maintenance management. Therefore, integrating spare part
inventory andmaintenance task scheduling in this approach is
recommended for future research. Furthermore, the proposed
approach can be utilized in commercial airlines by consider-
ing related assumptions. Finally, proposing an online robust
maintenance scheduling approach is an interesting research
field to enhance model performance.

REFERENCES
[1] L. Yang, Y. Zhao, and X. Ma, ‘‘Group maintenance scheduling for two-

component systems with failure interaction,’’ Appl. Math. Model., vol. 71,
pp. 118–137, Jul. 2019.

[2] K. Sampigethaya, R. Poovendran, and L. Bushnell, ‘‘Secure operation,
control, and maintenance of future E-enabled airplanes,’’ Proc. IEEE,
vol. 96, no. 12, pp. 1992–2007, Dec. 2008.

[3] L. J. S. Rosales, Y.-W. Chen, and J.-B. Yang, ‘‘Estimation of uncertain
unscheduled activities in aircraft maintenance using ER rule,’’ in Proc. Int.
Conf. Transp. Inf. Saf. (ICTIS), Jun. 2015, pp. 675–681.

[4] J. Gu, G. Zhang, and K. W. Li, ‘‘Efficient aircraft spare parts inventory
management under demand uncertainty,’’ J. Air Transp. Manage., vol. 42,
pp. 101–109, Jan. 2015.

[5] J. Yan, Y. Meng, L. Lu, and L. Li, ‘‘Industrial big data in an industry
4.0 environment: Challenges, schemes, and applications for predictive
maintenance,’’ IEEE Access, vol. 5, pp. 23484–23491, 2017.

[6] A. Ben-Tal and A. Nemirovski, ‘‘Robust solutions of linear programming
problems contaminated with uncertain data,’’ Math. Program., vol. 88,
no. 3, pp. 411–424, Sep. 2000.

[7] D. Bertsimas and M. Sim, ‘‘The price of robustness,’’ Oper. Res., vol. 52,
no. 1, pp. 35–53, Feb. 2004.

[8] P. Samaranayake and S. Kiridena, ‘‘Aircraft maintenance planning and
scheduling: An integrated framework,’’ J. Qual.Maintenance Eng., vol. 18,
no. 4, pp. 432–453, Oct. 2012.

[9] J. Van den Bergh, P. De Bruecker, J. Beliën, and J. Peeters, ‘‘Air-
craft maintenance operations: State of the art,’’ HUBrussel, Brussels,
Belgium, Feb Hubrussel Res. 2013/09, Nov. 2013. [Online]. Available:
https://lirias.kuleuven.be/retrieve/247821

[10] A. Froger, M. Gendreau, J. E. Mendoza, É. Pinson, and L.-M. Rousseau,
‘‘Maintenance scheduling in the electricity industry: A literature review,’’
Eur. J. Oper. Res., vol. 251, no. 3, pp. 695–706, Jun. 2016.

[11] N. Safaei, D. Banjevic, and A. K. S. Jardine, ‘‘Workforce-constrained
maintenance scheduling for military aircraft fleet: A case study,’’ Ann.
Oper. Res., vol. 186, no. 1, pp. 295–316, Jun. 2011.

[12] A. K. Verma and P. G. Ramesh, ‘‘Multi-objective initial preventive main-
tenance scheduling for large engineering plants,’’ Int. J. Rel., Qual. Saf.
Eng., vol. 14, no. 3, pp. 241–250, Jun. 2007.

[13] G. Kozanidis, ‘‘A multiobjective model for maximizing fleet availabil-
ity under the presence of flight and maintenance requirements,’’ J. Adv.
Transp., vol. 43, no. 2, pp. 155–182, Apr. 2009.

[14] G. Kozanidis, A. Gavranis, and G. Liberopoulos, ‘‘Heuristics for flight and
maintenance planning of mission aircraft,’’ Ann. Oper. Res., vol. 221, no. 1,
pp. 211–238, Oct. 2014.

[15] Y. Qin, Z. X.Wang, F. T. S. Chan, S. H. Chung, and T. Qu, ‘‘Amathematical
model and algorithms for the aircraft hangar maintenance scheduling
problem,’’ Appl. Math. Model., vol. 67, pp. 491–509, Mar. 2019.

[16] R. Cui, X. Dong, and Y. Lin, ‘‘Models for aircraft maintenance routing
problem with consideration of remaining time and robustness,’’ Comput.
Ind. Eng., vol. 137, Nov. 2019, Art. no. 106045.

[17] Q. Deng, B. F. Santos, and R. Curran, ‘‘A practical dynamic programming
based methodology for aircraft maintenance check scheduling optimiza-
tion,’’ Eur. J. Oper. Res., vol. 281, no. 2, pp. 256–273, Mar. 2020.

[18] D. T. Sanchez, B. Boyacı, and K. G. Zografos, ‘‘An optimisation frame-
work for airline fleet maintenance scheduling with tail assignment consid-
erations,’’ Transp. Res. B, Methodol., vol. 133, pp. 142–164, Mar. 2020.

[19] V. Gabrel, C. Murat, and A. Thiele, ‘‘Recent advances in robust opti-
mization: An overview,’’ Eur. J. Oper. Res., vol. 235, no. 3, pp. 471–483,
Jun. 2014.

[20] C. G. Palacín, J. L. Pitarch, C. Jasch, C. A. Méndez, and C. de Prada,
‘‘Robust integrated production-maintenance scheduling for an evaporation
network,’’ Comput. Chem. Eng., vol. 110, pp. 140–151, Feb. 2018.

[21] P. Senra, I. Lopes, and J. A. Oliveira, ‘‘Supportingmaintenance scheduling:
A case study,’’ Procedia Manuf., vol. 11, pp. 2123–2130, Jan. 2017.

[22] K. K. H. Ng, C. K. M. Lee, F. T. S. Chan, and Y. Qin, ‘‘Robust aircraft
sequencing and scheduling problem with arrival/departure delay using the
min-max regret approach,’’ Transp. Res. E, Logistics Transp. Rev., vol. 106,
pp. 115–136, Oct. 2017.

[23] K. K. H. Ng, C. K. M. Lee, F. T. S. Chan, C.-H. Chen, and Y. Qin, ‘‘A two-
stage robust optimisation for terminal traffic flow problem,’’ Appl. Soft
Comput., vol. 89, Apr. 2020, Art. no. 106048.

[24] Y. Qin, J. H. Zhang, F. T. S. Chan, S. H. Chung, B. Niu, and T. Qu, ‘‘A two-
stage optimization approach for aircraft hangar maintenance planning and
staff assignment problems under MRO outsourcing mode,’’ Comput. Ind.
Eng., vol. 146, Aug. 2020, Art. no. 106607.

[25] K. K. H. Ng, C. K. M. Lee, F. T. S. Chan, and Y. Lv, ‘‘Review on meta-
heuristics approaches for airside operation research,’’ Appl. Soft Comput.,
vol. 66, pp. 104–133, May 2018.

[26] J. Högdahl, M. Bohlin, and O. Fröidh, ‘‘A combined simulation-
optimization approach for minimizing travel time and delays in railway
timetables,’’ Transp. Res. B, Methodol., vol. 126, pp. 192–212, Aug. 2019.

[27] Q. Feng, W. Bi, Y. Chen, Y. Ren, and D. Yang, ‘‘Cooperative game
approach based on agent learning for fleet maintenance oriented to mission
reliability,’’ Comput. Ind. Eng., vol. 112, pp. 221–230, Oct. 2017.

17864 VOLUME 9, 2021



H. Shahmoradi-Moghadam et al.: Robust Maintenance Scheduling of Aircraft Fleet: A Hybrid Simulation-Optimization Approach

[28] Q. Feng, X. Bi, X. Zhao, Y. Chen, and B. Sun, ‘‘Heuristic hybrid game
approach for fleet condition-based maintenance planning,’’ Rel. Eng. Syst.
Saf., vol. 157, pp. 166–176, Jan. 2017.

[29] H. Zhang and S. C. Graves, ‘‘Cyclic scheduling in a stochastic environ-
ment,’’ Oper. Res., vol. 45, no. 6, pp. 894–903, Dec. 1997.

[30] T. Cheevaprawatdomrong and R. L. Smith, ‘‘Infinite horizon production
scheduling in time-varying systems under stochastic demand,’’ Oper. Res.,
vol. 52, no. 1, pp. 105–115, Feb. 2004.

[31] S. Y. Sohn, K. B. Yoon, and I. S. Chang, ‘‘Random effects model for the
reliability management of modules of a fighter aircraft,’’ Rel. Eng. Syst.
Saf., vol. 91, no. 4, pp. 433–437, Apr. 2006.

[32] X. Cai, X.Wu, and X. Zhou, ‘‘Stochastic scheduling subject to preemptive-
repeat breakdowns with incomplete information,’’ Oper. Res., vol. 57,
no. 5, pp. 1236–1249, Oct. 2009.

[33] D. C. Dietz and M. Rosenshine, ‘‘Optimal specialization of a maintenance
workforce,’’ IIE Trans., vol. 29, no. 5, pp. 423–433, May 1997.

[34] J. Van den Bergh, P. De Bruecker, J. Beliën, L. De Boeck, and
E. Demeulemeester, ‘‘A three-stage approach for aircraft line maintenance
personnel rostering usingMIP, discrete event simulation andDEA,’’Expert
Syst. Appl., vol. 40, no. 7, pp. 2659–2668, Jun. 2013.

[35] W.Yi, Y. Zhang, Z. Zhao, andY. Huang, ‘‘Multiobjective robust scheduling
for smart distribution grids: Considering renewable energy and demand
response uncertainty,’’ IEEE Access, vol. 6, pp. 45715–45724, 2018.

[36] X.-C. Su, W. Han, Y. Wu, Y. Zhang, and J.-Y. Song, ‘‘A robust scheduling
optimization method for flight deck operations of aircraft carrier with
ternary interval durations,’’ IEEE Access, vol. 6, pp. 69918–69936, 2018.

[37] D. Rahmani, R. Ramezanian, P. Fattahi, and M. Heydari, ‘‘A robust
optimization model for multi-product two-stage capacitated production
planning under uncertainty,’’ Appl. Math. Model., vol. 37, nos. 20–21,
pp. 8957–8971, Nov. 2013.

[38] H. Shahmoradi-Moghaddam, K. Akbari, S. J. Sadjadi, and M. Heydari,
‘‘A scenario-based robust optimization approach for batch processing
scheduling,’’ Proc. Inst. Mech. Eng. B, J. Eng. Manuf., vol. 230, no. 12,
pp. 2286–2295, Dec. 2016.

[39] K. Shahnaghi, H. Shahmoradi-Moghadam, A. Noroozi, and H. Mokhtari,
‘‘A robust modelling and optimisation framework for a batch processing
flow shop production system in the presence of uncertainties,’’ Int. J.
Comput. Integr. Manuf., vol. 29, pp. 1–15, Feb. 2015.

[40] D. Bertsimas, E. Nasrabadi, and S. Stiller, ‘‘Robust and adaptive network
flows,’’ Oper. Res., vol. 61, no. 5, pp. 1218–1242, Oct. 2013.

HANI SHAHMORADI-MOGHADAM received
the B.Sc. degree from the University of Tabriz,
in 2012, and the M.Sc. degree from the Iran Uni-
versity of Science and Technology, in 2014. He is
currently pursuing the Ph.D. degree with the Dres-
den University of Technology. He is also with
the Boysen-TUDresden-Research Training Group
as a Ph.D. Student. His research interests include
transportation, logistics, vehicle routing problem,
supply chain management, operations research,
and robust optimization.

NIMA SAFAEI received the Ph.D. degree in sys-
tem and industrial engineering from the Iran Uni-
versity of Science and Technology. He held a
Postdoctoral position at the Center for Mainte-
nance Optimization and Reliability Engineering
(C-MORE), University of Toronto. He worked
with the Department of Maintenance Support and
Planning, Bombardier Aerospace, as a Senior Spe-
cialist. He is currently with Scotiabank as an Asso-
ciate Director of data science and analytics.

SEYED JAFAR SADJADI received the Ph.D.
degree from the University of Waterloo, Canada.
He has been serving for the Iran University of
Science and Technology since 2001. His research
interests include solving different classes of opti-
mization problems in industrial engineering areas,
such as supply chain management, portfolio opti-
mization, and optimal pricing.

VOLUME 9, 2021 17865


