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ABSTRACT Classification is a fundamental problem in machine learning and data mining. During the past
decades, numerous classification methods have been presented based on different principles. However, most
existing classifiers cast the classification problem as an optimization problem and do not address the issue
of statistical significance. In this paper, we formulate the binary classification problem as a two-sample
testing problem. More precisely, our classification model is a generic framework that is composed of two
steps. In the first step, the distance between the test instance and each training instance is calculated to
derive two distance sets. In the second step, the two-sample test is performed under the null hypothesis that
the two sets of distances are drawn from the same cumulative distribution. After these two steps, we have
two p-values for each test instance and the test instance is assigned to the class associated with the smaller
p-value. Essentially, the presented classificationmethod can be regarded as an instance-based classifier based
on hypothesis testing. The experimental results on 38 real data sets show that ourmethod is able to achieve the
same level performance as several classic classifiers and has significantly better performance than existing
testing-based classifiers. Furthermore, we can handle outlying instances and control the false discovery rate
of test instances assigned to each class under the same framework.

INDEX TERMS Classification, hypothesis testing, two-sample testing, machine learning.

I. INTRODUCTION
Classification is a fundamental data analysis procedure,
which is ubiquitously used across different fields. Thousands
of classification algorithms (classifiers) have been developed
during the past decades [1]. These classifiers range from
simple models such as k-nearest neighbor (k-NN) [2] to more
sophisticated models such as support vector machine (SVM)
[3] and random forests [4].

Despite the advances in the development of new classifiers,
no single classification algorithm can always achieve the best
performance on all data sets [1]. This indicates that differ-
ent classifiers are complementary to each other in different
contexts. Therefore, it is still necessary to develop new and
alternative classifiers based on some principles that remain
unexplored.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Li .

The motivation behind this research is based on the fol-
lowing observations. First, existing non-lazy classifiers typ-
ically formulate the classification problem as an optimiza-
tion problem. Such optimization-based learning strategies
can always generate the target classifiers, regardless of the
statistical significance of learned models. Second, classifiers
such as logistic regression are able to provide probability
values for categorizing an unknown test instance. However,
it is not an easy task to determine a universal probability
threshold to ensure that the classification of the test instance
into the corresponding class is statistically significant. Last
but not least, existing classifiers cannot control the number
of misclassified test instances in terms of metrics such as
the false discovery rate (FDR) [5]. Such capability is quite
important in the scenario of biological data analysis, in which
the prediction results will be further validated by wet-lab
experiments that can be costly and time-consuming [6]. Thus,
we need to add some notion of statistical significance to
classifiers.
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In fact, the classification problem has already been for-
mulated as a hypothesis testing issue in [7]. More recently,
several research efforts [8], [9] further extend the initial for-
mulation in [7] from different aspects. However, the follow-
ing observations motivate this research. First of all, existing
testing-based classification methods deserve certain theoret-
ical drawbacks, as discussed and summarized in Section II.
Second, only simulation data sets and several small real
data sets have been empirically tested, making it difficult
to convince people on the practical usage of such testing-
based formulation. Third, the connection between this new
formulation and existing classification methods has never
been discussed. Finally, the potential benefit of the testing-
based classification model remains unexplored.

Based on the above observations, we present a new testing-
based classification formulation, in which the null hypothesis
is that, informally, the test instance does not belong to any
class. To precisely define the null hypothesis, we focus on
the classification problem in a two-class setting. First, we can
calculate the distance between the test instance and each
training instance in the training data set. In this way, we will
generate two sets of distances for one test instance to be
classified. Then, the hypothesis testing issue can be casted
as a two-sample testing problem [10], in which each sample
corresponds to a set of distances. In this formulation, the null
hypothesis is that two sets of distances are drawn from the
same cumulative distribution.

Two-sample testing is a fundamental problem in statistics.
We employ the classical Wilcoxon-Mann-Whitney (WMW)
test for quantifying the statistical significance in terms of
p-values. To alleviate the effect of outlying and irrelevant
training instances, we further apply the WMW test to two
distance sets that are generated from k-nearest neighbors (k-
NNs) of the test instance.

The testing-based classification formulation has several
salient features. First of all, it can provide p-values for each
test instance to quantify the statistical significance of clas-
sifying this instance to certain classes. Accordingly, we can
detect outlying test instances that do not belong to any class
if the p-values with respect to all classes are larger than the
significance level threshold. Second, we can control the FDR
of test instances that are assigned to each class based on their
p-values.

We evaluate our method on 38 data sets from the UCI
[11] repository and the KEEL-dataset repository [12] with
respect to the standard classification task. The experimental
results show that our method is able to achieve the same level
performance as the state-of-the-art classifiers. Meanwhile,
it can handle outlying test instances and control the FDR of
test instances assigned to each class in a natural manner.

The main contributions of this paper can be summarized as
follows.

(1) The binary classification issue is formulated as a two-
sample testing problem. Since two-sample testing is a funda-
mental problem in statistics and many well-known tests are
available in the literature, it can be expected that we may

introduce many effective testing-based classifiers in the near
future.

(2) The classification model that integrates hypothesis test-
ing and the k-NN method is presented. This formulation
can alleviate the effect of outlying and irrelevant training
instances to improve the classification accuracy significantly.

(3) A comprehensive performance comparison over 38 real
data sets is conducted. The experimental results demonstrate
the fact that the testing-based classifier is able to achieve the
same level performance as standard classifiers such as SVM
and decision tree.

(4) Some interesting connections between our testing-
based classifiers and existing classification methods are
presented.

(5) The advantage of the testing-based classification model
on handling outliers and controlling the type I error rate in
terms of FDR is empirically investigated.

The rest of this paper is organized as follows. Section II
discusses some previous works that are related to our method.
Section III presents the details of our method, followed by
experimental results on 38 real data sets in Section IV.
Section V discusses the relationship between our method and
other approaches. Finally, Section VI concludes this paper.

II. RELATED WORK
A. INSTANCE-BASED LEARNING
Instance-based learning is a lazy learning scheme in which
the training instances are simply stored. When a new instance
is encountered, a set of similar training instances are retrieved
to classify the unknown testing instance. The most basic
instance-based method is the k-nearest neighbor algorithm
(k-NN) [2], [13], which assigns a new instance to the most
common class among its k-NNs in training instances.
Essentially, our method can be considered as an instance-

based learning approach since the two-sample test is con-
ducted on the distance sets generated from all training
instances or k-NNs. This indicates that it is feasible to apply
techniques developed for instance-based learning during the
past decades [14]–[16] to further improve our method.

B. CLASSIFICATION BASED ON HYPOTHESIS TESTING
Liao and Akritas [7] introduce a classification method based
on hypothesis testing, which is abbreviated to TBC. Suppose
there are two classes (positive vs. negative) in the train-
ing set, i.e., a binary classification problem, the issue is to
allocate a new instance t∗ to one of the two classes. The
basic idea of TBC is that if t∗ is placed into the wrong
class, then the difference of two samples will be blurred. To
implement this idea, two tests with respect to the equality
of the means of two samples are conducted, in which t∗

is placed into the set of positive instances and the set of
negative instances, respectively. Accordingly, we will obtain
two p-values p+ and p−, where p+ (p−) is generated from the
test in which t∗ is assumed to belong to the positive (negative)
class. If p+ < p−, then t∗ is classified as a positive instance.
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Otherwise, t∗ will be classified as a negative instance. This
method works well when the theoretical p-values can be com-
puted and compared. However, TBC has two deficiencies.
First, when the number of features of data set is larger than
the sample size of one class, the p-values cannot be computed
at all because of the singularity of the sample covariance
matrix. Second, when the instances from two classes are well
separated, the two p-values will equal to zero so that one test
instance cannot be classified.

Ghimire and Wang [8] improve the TBC method by intro-
ducing aminimumdistance into themethod and come upwith
a new classifier for image pixels. Their new method works
well in the context of image pixel classification.

Modarres [17]–[19] studies the properties of squared
Euclidean interpoint distances (IPDs) between different sam-
ples which are taken frommultivariate Bernoulli, multivariate
Poisson and multinomial distributions. And he also discusses
some applications based on IPDs within one sample and
across two samples in different distributions.

Afterwards, Guo and Modarres [9] employ interpoint dis-
tances to measure the closeness of the samples and develop
a new testing-based classifier for the classification of high
dimensional discrete observations, which can be abbrevi-
ated to IDC. IDC is capable of classifying high dimensional
instances by computing the IPDs between different instances.
Several different test statistics based on IPDs have been dis-
cussed in [9] and we will take the Baringhaus and Franz (BF)
statistic as the example. Given two sets of training instances,
i.e., one positive set D+ and one negative set D−, IDC
first computes the average IPDs within D+, within D− and
between D+ and D−, which are denoted by d̄D+ , d̄D− and
d̄D+D− respectively. Then, it calculates BF0 = 2d̄D+D− −
d̄D+− d̄D− . Similarly, BF1 = 2d̄(D+∪{t∗})D−− d̄D+∪{t∗}− d̄D−
and BF2 = 2d̄D+(D−∪{t∗}) − d̄D+ − d̄D−∪{t∗} can be obtained
by placing t∗ into D+ and D−, respectively. Note that |BF1−
BF0| (|BF2 − BF0|) can be used to measure the change in
the value of BF when t∗ is assigned to D+ (D−). Therefore,
if |BF1 − BF0| < |BF2 − BF0|, t∗ is classified as a positive
instance; otherwise, t∗ will be labeled as a negative instance.

C. ASYMMETRIC CLASSIFICATION ERROR CONTROL
In binary classification, most classifiers are constructed to
minimize the overall classification error, which is a weighted
sum of type I error (misclassifying a negative instance as
a positive one) and type II error (misclassifying a positive
instance as a negative one). However, in many realistic appli-
cations, different types of errors are often asymmetric, which
have different costs and need to be treated with different
weights.

The cost-sensitive classification (CSC) method [20], [21]
can solve this problem to some extent. It takes the misclassifi-
cation costs into consideration and aims to minimize the total
cost of both errors. Another method is the Neyman-Pearson
(NP) classification [22], which is inspired by classical NP
hypothesis testing. It is a novel statistical framework for

handling asymmetric type I/II error priorities and can seek
a classifier that minimizes the type II error while maintaining
the type I error below a user-specified level α [23], [24]. CSC
and NP classification are fundamentally different approaches
that have their own pros and cons [22]. A main advantage
of the NP classification is that it is a general framework that
allows users to control type I classification error under α with
a high probability.

It is very easy to control the type I error in terms of FDR
in our formulation since the p-values of each test instance
with respect to different classes will be generated in the
classification phase. In other words, such testing-based classi-
fication formulation provides a unified framework to control
the asymmetric classification error in a natural way.

III. METHOD
A. TWO-SAMPLE TESTING
Given two independent random samples GX and GY , where
GX = {x1, x2, . . . , xm} is drawn from the X population and
GY = {y1, y2, . . . , yn} is drawn from the Y population, the
general two-sample testing problem is concerned with the
null hypothesis that the two samples are drawn from identical
populations [10]:

H0 : FX (t) = FY (t) for all t,

where FX and FY are the cumulative distribution functions
for the X population and the Y population, respectively.

B. PROBLEM FORMULATION
We consider the binary classification problem, in which the
training set D is composed of two disjoint sets D+ and D−.
D+ = {t+1 , t

+

2 , . . . , t
+
m } and D− = {t−1 , t

−

2 , . . . , t
−
n } are

called the positive training set and the negative training set,
respectively. Given a test instance (t∗, ŷ) whose class label ŷ
is unknown, the classification task is to decide its class label
(positive vs. negative).
We formulate the binary classification problem as a two-

sample testing problem. In this formulation, the first sample
GX is a set of m observations, where the i-th observation is
the distance between the test instance t∗ and the i-th training
instance t+i in D+, i.e. GX = {xi|xi = d(t∗, t+i ), 1 ≤ i ≤ m}.
Similarly, each observation in the second sample GY is the
distance between the test instance and each training instance
in D−, i.e. GY = {yj|yj = d(t∗, t−j ), 1 ≤ j ≤ n}.
To conduct the standard classification task, we may test the

null hypothesis against two alternative hypotheses (FX (t) <
FY (t) and FY (t) < FX (t)) to obtain two one-sided p-values
(pX and pY ). If pX < pY , we will label t∗ as a positive
instance. Otherwise, wewill classify t∗ as a negative instance.
To handle the multi-classification problem with K classes

(K > 2), we can explore the one-vs-all strategy like existing
testing-based classification methods (TBC [7] and IDC [9]).
Specifically, we regard the set of instances from one class
as the positive training set and the set of instances from the
remaining classes as the negative training set. For each of K
binary classification problems, we first generate a one-sided
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p-value for the corresponding class by conducting the two-
sample test where the alternative hypothesis isFX (t) < FY (t).
Then, we can assign the test instance to the class that has the
smallest p-value.

C. K-NN VARIANTS
In the above problem formulation, the distances to all training
instances are utilized in the hypothesis testing. However, the
existence of outlying and irrelevant training instances may
decrease the classification accuracy. To alleviate this issue,
we can conduct the hypothesis testing on two samples that
are derived from the k-NNs of the test instance in the training
sets.

Under H0, two natural k-NN variants can be formulated.
Similar to the k-NN classifier, the first variant is to directly
take the k-NNs of the test instance to generate two samples.
The distances from the test instance to these k nearest training
instances are divided into two groups according to the class
label, where each group corresponds to one sample in our sce-
nario. The second variant is to take k1 nearest instances from
D+ and retrieve k2 nearest instances fromD− to generate two
distance sets, where k1

k2
=

m
n . The rationale behind the second

variant is that, if the null hypothesis is true, then the number
of k-NNs from each class is proportional to the number of
training instances in that class. Since k1 = k2 when n = m,
we can take the same number of k-NNs from each class in
this case.

D. THE CHOICE OF TESTING METHODS
The testing method for two-sample differences has been
extensively investigated in the literature. One widely used test
for this issue is theWMW test, which is also called theMann-
Whitney U test or Wilcoxon rank-sum test [25]. To obtain
the test statistic in WMW test, GX and GY are merged to
form a combined sample GZ = {z1, z2, . . . , zm+n}. Then, the
observations in GZ are ordered:

z(1) ≤ z(2) ≤ . . . ≤ z(m+n).

According to the ordered list, Ri1 is defined as the rank of xi in
GZ and R1 =

∑m
i=1 Ri1. Then we can get U1 = R1−

m(m+1)
2 .

If the null hypothesis H0 is true, then

Z =
U1 − E(U1|H0)
√
Var(U1|H0)

∼ N (0, 1),

where

E(U1|H0) =
mn
2
,Var(U1|H0) =

mn(m+ n+ 1)
12

.

Based on the above normal approximation, we can calculate
the one-sided p-value to test H0 against H1(FX (t) < FY (t))
for some t .
In our classification model, the choice of testing method

is very flexible since the samples to be tested are unidi-
mensional. That is, we can use any univariate two-sample
testing method in our classifier. Therefore, we can also
employ the testing methods such as pooled t-test, two-sample

Kolmogorov-Smirnov test [26] and precedence test instead of
the WMW test. In Section V, we will further show that the
use of different testing methods will establish the connection
between our formulation and existing classification models.

E. HANDLING OUTLIERS AND FDR CONTROL
As we have argued, the testing-based classification model
has the advantage of controlling the FDR of classified test
instances and handling outlying instances under the same
framework. In general, we will assign the test instance to the
class that has the smallest p-value amongK p-values, whereK
is the number of classes. However, it is inappropriate to do so
when all K p-values are not significant. Luckily, we can use
FDR to tackle this problem. We can obtain K sets of p-values
from all test instances because our method returnsK p-values
to classify every test instance. Every p-value set is firstly
sorted in a non-descending order: p1 ≤ p2 ≤ . . . ≤ pu, where
u is the number of all test instances. Given a significance level
α, let imax be the largest index for which

pi ≤
i× α
u

.

If i ≤ imax , then the corresponding test instance will be
assigned to the current class. After conducting FDR control
on all K p-value sets, we can label the test instances that are
not classified to any class as outliers.

IV. EXPERIMENTS
A. DATA SETS AND EXPERIMENTAL SETTINGS
We have conducted experiments on 38 data sets from the
UCI [11] repository and the KEEL-dataset repository [12].
Among these data sets, the number of instances ranges
from 80 to 10092 and the number of features varies
from 2 to 90. All the features in these data sets are
numeric and the Euclidean distance is used for measur-
ing the dissimilarity between two instances. Most data sets
have less than 10 classes and only six of them have more
than 10 classes. The detailed characteristics of these data sets
are given in Table 1. Moreover, the instances with missing
values are discarded and all the numeric feature values are
normalized into the interval [0, 1] in the pre-processing pro-
cess.

In the experiment, we perform 10-fold stratified cross-
validation (CV) and compute an average classification accu-
racy value for ten folds. For every data set, we repeat the
10-fold CV experiment 10 times and record the average and
standard deviation of 10 accuracy values as the final results.
For the classifiers to be compared, we also compute their
average accuracies and ranks over 38 data sets.

B. ALL INSTANCES VS. K-NNs
In the first experiment, we compare several variants of our
formulation to check which one is better in practice. Since our
method is a classifier that combines instance-based learning
and hypothesis testing, we will use the abbreviation IBT to
denote such a classification model. To distinguish different
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TABLE 1. The main characteristics of the data sets used in the
experiment. If there are some missing values in one data set, the number
of instances with missing values is provided inside the parentheses in the
second column. The number of features and classes are listed in the third
and fourth column, respectively.

TABLE 2. The average accuracy and rank over 38 data sets for IBT-U and
two k-NN variants (k=3).

variants, IBT-U is used to denote the classification model
when the Mann-Whitney U test is applied to the distance
sets derived from all training instances. Similarly, IBT-U-K is
used to denote the classification model in which the distance
sets are generated according to k-NNs of the test instance.
Furthermore, two k-NN variants are denoted by IBT-U-K-D
(k-NNs are obtained Directly without considering the class
label) and IBT-U-K-S (k-NNs are obtained Separately from
different classes), respectively.

Additionally, the parameter k for two k-NN variants is
specified as 3, 5, 7 and 9, respectively. The detailed exper-
imental results on IBT-U and two k-NN variants are given in
Appendix Table 6, Appendix Table 7 and Appendix Table 8
respectively. According to these results, we also compute
the average accuracy and the average rank for each method

TABLE 3. The average accuracy and rank over 38 data sets for two k-NN
variants when k varies.

over 38 data sets, which are summarized in Table 2 and
Table 3.
As shown in Table 2, the performance of IBT-U is much

worse than that of two k-NN variants. This indicates that
it is plausible to explore the k-NN strategy in the testing-
based classification model. As shown in Table 3, the average
classification accuracies and ranks of two k-NN variants are
quite similar when k varies from 3 to 9. In the forthcoming
sections, we will use IBT-U-K-D (k=3) as a representative of
our classification method in the performance comparison.

C. OUR METHOD VS. OTHER TESTING-BASED
CLASSIFIERS
In the second experiment, we compare our method with two
previous methods, TBC [7] and IDC [9], which also use
hypothesis testing to solve a classification problem. Their
detailed experimental results are given in Appendix Table 9.
According to these results, we further record the average
accuracy and the average rank for each method over 38 data
sets in Table 4.
In the implementation of TBC, we employ the Hotelling’s

T 2 test as the testing method, which has been utilized in [7].
And we use the Hotelling’s T 2 statistics instead of p-values in
the classification since the generated p-values are often zeros.
In the implementation of IDC, we use the Baringhaus and
Franz (BF) statistic as the test statistic and assume equal prior
probabilities in spite of unequal sample sizes.

For TBC, the classification accuracies on five data sets
(Cleveland, Dermatology, Hepatitis, Movement_libras and
Winequality-red) are N/A because the number of features of
these data sets is larger than the sample size of one class so
that the Hotelling’s T 2 statistics cannot be calculated. As a
result, we only use the rest 33 data sets to compute the average
classification accuracy. For IDC, it can be applied to all data
sets, so we simply compute the average of 38 accuracy values.

From Table 4, we can see that our method can achieve the
best performance among these three methods. The reasons
are as follows. First, our method only consider the k-NNs of
test instance while TBC and IDC utilize all training instances
without considering the existence of outlying and irrelevant
ones. Second, our method employs a hypothesis testing strat-
egy that is easy to understand and totally different from that
used in TBC and IDC.

D. OUR METHOD VS. CLASSIC CLASSIFIERS
In the third experiment, we compare our method with four
classic classifiers: k-NN, support vector machine (SVM),
decision tree (DT) and nearest centroid classifiers (NC).
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TABLE 4. The average accuracy and rank over 38 data sets for IBT-U-K-D
(k=3) and two existing testing-based classification methods: TBC, IDC.

TABLE 5. The average accuracy and rank over 38 data sets for IBT-U-K-D
(k=3) and four classic classifiers: k-NN (k=3), SVM, decision tree (DT),
nearest centroid classifier (NC).

The detailed experimental results are given in Appendix
Table 10 and Appendix Table 11. Meanwhile, the aver-
age accuracies and the average ranks of these classifiers
over 38 data sets are presented in Table 5.
For k-NN, SVM and DT, we use the functions fitcknn,

fitcecoc and fitctree in MATLAB 2018b, respectively. More
specifically, fitcecoc adopts linear kernel as its kernel func-
tion and uses the one-versus-all strategy like our method
when the number of classes is larger than 2. fitctree is an
implementation of the standard CART algorithm [27]. In the
experiment, we use the default parameter settings of fitctree.
From Table 5, we can see that our method is able to

achieve the same level performance as these classic classi-
fiers (SVM, k-NN and DT) and nearest centroid classifier
performs worst among these five methods. Concretely, there
are 13, 19 and 18 data sets on which our method can produce
higher classification accuracies than k-NN, SVM and DT
among the 38 data sets, respectively. In a word, our method
is competitive to these classic classifiers with respect to the
overall performance.

E. HANDLING OUTLIERS THROUGH FDR CONTROL
In the last experiment, we investigate the potential of our
method on outlier detection and FDR control. The Bal-
ance data set from UCI is used as an example, which
has 625 instances and three classes (L, B and R). There are
288, 49 and 288 instances in the three classes respectively.
If we take a subset of the 576 (288+288) instances from the
class L and R as training instances and use the 49 instances
from the class B as test instances, then it is obvious that all
test instances should be considered as outliers.

We randomly take 80 percent of instances from the class
L and R to compose the training set. In order to obtain the
average performance, 10 different random training sets are
generated.We use IBT-U as the classifier and the significance
level for FDR is set to be 0.05. The experimental results
show that 48 of 49 test instances can be labeled as outliers
on average. Specifically, there are at most two test instances
which cannot be labeled as outliers and they are usually
different when the training set is different. Therefore, our

method is able to recognize outliers and control the FDR of
classification results in the same time.

V. RELATIONSHIP TO OTHER APPROACHES
Our classification method is a two-phase approach: two
distance sets are first generated and then the two-sample
test is conducted. As we have discussed, we may use dif-
ferent significance testing methods in the second phase.
In this section, we will show that the use of dif-
ferent testing methods will lead to different classifiers
that have close relationship with existing classification
models.

A. CONNECTION TO NEAREST CENTROID CLASSIFIER
The nearest centroid (mean) classifier is one of the most
widely used instance-based classification models [28]. In
the training phase, only the centroid for each class is
calculated and stored. In the classification phase, the
distance between one unknown instance and each cen-
troid is calculated to find the nearest centroid. Then, this
new test instance is assigned to the class of its nearest
centroid.

If the pooled t-test is employed as the significance testing
procedure in our model, then we can reveal some interesting
connections between our method and the nearest centroid
classifier. To simplify the analysis, we first consider the
scenario of univariate data set and then discuss the case of
multivariate data set.

Given two one-dimensional sets D+ = {t+1 , t
+

2 , . . . , t
+
m }

and D− = {t−1 , t
−

2 , . . . , t
−
n }, their centroids (means) can

be easily computed by CD+ =
1
m

∑m
i=1 t

+

i and CD− =
1
n

∑n
j=1 t

−

j . Given an unknown instance t∗, the distances
between t∗ and these two centroids can be measured by
d+ = |t∗ − CD+ | and d− = |t∗ − CD− |. The
nearest centroid classification method will assign t∗ to
the positive or the negative class according to whether
d+ < d−.
In our method, two samples GX = {|t∗ − t

+

i |, 1 ≤ i ≤ m}
and GY = {|t∗ − t+j |, 1 ≤ j ≤ n} are obtained and their
means are denoted by d̄X = 1

m

∑m
i=1 |t

∗
− t+i | and d̄Y =

1
n

∑n
j=1 |t

∗
−t−j |. Then, we test the null hypothesis against two

alternative hypotheses (FX (t) < FY (t) and FY (t) > FX (t)) on
the two samples to obtain two one-sided p-values (pX and pY ).
At last, our method will assign t∗ to the positive (negative)
class if pX < pY (pX > pY ).
Note that when the pooled t-test is employed in our

method, we will obtain two t statistics (tX and tY ). We can
get

pX < pY ⇔ tX < tY
⇔ d̄X − d̄Y < d̄Y − d̄X
⇔ d̄X < d̄Y .

Similarly, we can also get pX > pY ⇔ d̄X > d̄Y . Therefore,
our method will assign t∗ to the positive class if d̄X < d̄Y .
Otherwise, we will label t∗ as a negative instance.
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TABLE 6. The detailed experimental results of IBT-U.

According to the triangle inequality, we can get

d+ = |t∗ − CD+ |

= |t∗ −
1
m

m∑
i=1

t+i |

=
1
m
|mt∗ −

m∑
i=1

t+i |

≤
1
m

m∑
i=1

|t∗ − t+i |

= d̄X

in which the equality holds if and only if t∗ ≥ max
1≤i≤m

t+i or

t∗ ≤ min
1≤i≤m

t+i . Similarly, we can get d− ≤ d̄Y in which the

equality holds if and only if t∗ ≥ max
1≤i≤m

t−i or t∗ ≤ min
1≤i≤m

t−i .

When d+ = d̄X and d− = d̄Y , our method will assign the
test instance to the same class label as the nearest centroid
classificationmethod. Obviously, the above analysis establish
the equivalence between our method and the nearest centroid

TABLE 7. The detailed experimental results of IBT-U-K-D.

classifier under very strict constraints: (1) one-dimensional
data set, (2) the test instance is no less (more) than all training
instances in each class.

For the multivariate case, it is very difficult to analyze their
relationship in a quantitative manner. One naive connection
is that if (dX − dY )(d+ − d−) > 0, then our method and the
nearest centroid classification method will produce the same
classification result.

B. CONNECTION TO K-NN CLASSIFIER
The k-NN classifier is one of the most popular classification
methods in the literature [29]. In our formulation, if the
precedence test [10] is employed as the significance testing
method, then we may uncover some interesting connections
between our method and the k-NN classifier.

We still consider the binary classification problem inwhich
the training data is composed of m positive instances from
D+ and n negative instances from D−. Given an unknown
instance t∗, the k-NN classification method finds its k nearest
neighbors (k-NNs) to conduct the classification. These k-
NNs can be divided into two groups: k+ positive instances
from D+ and k− instances from D−, where k = k+ + k−.
If k+ > k−, then t∗ will be classified as a positive instance.
Otherwise, t∗ is assigned to the negative class.

The precedence test is a two-sample test based on the
order of early failures [30]. Given two independent samples,
GX = {x1, x2, . . . , xm} and GY = {y1, y2, . . . ., yn}, let x(1) ≤
x(2) ≤ . . . ≤ x(m) and y(1) ≤ y(2) ≤ . . . ≤ y(n) denote their
order statistics. The precedence test is based on the number of
observations from one sample which exceed (precede) some
threshold specified by the other sample. More precisely, the
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TABLE 8. The detailed experimental results of IBT-U-K-S.

test statistic Wr is the number of observations in GX that
precede the r-th order statistic y(r) from GY . Alternatively,
one can use the number of observations inGY that exceed the
s-th order statistic x(s) from Gx as the test statistic Ws. Large
values of these two test statistics will lead to the rejection of
the null hypothesis that two distributions are equal.

In our problem formulation, GX (GY ) is the distance
set between t∗ and the instances in D+ (D−). Then,
x(1), x(2), . . . , x(k+), y(1), y(2), . . . , y(k−) will be the k distance
values between t∗ and its k-NNs. If we use the precedence test
as the significance testing method and suppose that x(k+) ≤
y(k−+1) ≤ x(k++1), we can set r = k− + 1 to obtain the
corresponding test statistic Wr = k+ for testing the null
hypothesis against the alternative hypothesis (FX < FY ).
Alternatively, if we let s = k+ + 1, we can obtain another
test statistic Ws = k− for testing the null hypothesis against
the alternative hypothesis (FX > FY ). And we can also get
two p-values, pX and pY . At last, t∗ will be assigned to the
positive (negative) class if the former (latter) is smaller.

If we further assume that the positive training set and the
negative training set have the same size, i.e., m = n, then
the two p-values will be totally determined by the two test
statistics: pX < pY ⇔ k+ > k− or pX > pY ⇔ k+ < k−.
Therefore, our method and the k-NN classifier will generate
the same classification result under the above assumptions.
From this aspect, we may regard our method equipped with
the precedence test as a generalized ‘‘statistical’’ k-NN clas-
sifier.

VI. CONCLUSION
Due to the importance of the classification problem, many
effective classification algorithms have been proposed from

TABLE 9. The detailed experimental results of TBC and IDC.

different societies. However, most work on classification does
not address the issue of statistical significance. Towards this
direction, several initial research efforts have investigated
the feasibility of constructing a classifier through signifi-
cance testing. Unfortunately, this interesting idea has not
received much attention during the past 10 years. This is
mainly because of the following reasons: (1) there are still
no such testing-based classifiers that can achieve the same
level performance as the state-of-the-art methods on real data
sets; (2) the potential benefit of deploying such testing-based
classifiers is still not clear.

Based on the above observations, this paper takes one
step further towards this direction by formulating the clas-
sification problem as a two-sample testing problem. This
new formulation enables us to generate several testing-based
classifiers that have comparable performance with standard
classifiers such as SVM. In addition, we show that it is quite
easy to handle outlying test instances and control the FDR
of classification results based on the p-values associated with
each test instance.

We believe this paper will significantly contribute to the
development of testing-based classification model, which
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will become a new promising classifier family. As the study
on the testing-based classification model is still in its infancy
stage, many research issues remain unexplored and should
be further investigated in the future work. For example, since
all the existing testing-based classifiers are based on the
idea of instance-based learning, how to build a non-lazy
testing-based classifier will be an interesting and challenging
issue.

APPENDIX. DETAILED EXPERIMENTAL RESULTS
A. THE DETAILED EXPERIMENTAL RESULTS OF IBT-U
The detailed experimental results of IBT-U are given in
Table 6.

B. THE DETAILED EXPERIMENTAL RESULTS OF IBT-U-K-D
The detailed experimental results of IBT-U-K-D are given in
Table 7.

C. THE DETAILED EXPERIMENTAL RESULTS OF IBT-U-K-S
The detailed experimental results of IBT-U-K-S are given in
Table 8.

D. THE DETAILED EXPERIMENTAL RESULTS OF TBC AND
IDC
The detailed experimental results of TBC and IDC are given
in Table 9.

E. THE DETAILED EXPERIMENTAL RESULTS OF k-NN
The detailed experimental results of k-NN are given in
Table 10.

TABLE 10. The detailed experimental results of k-NN.

F. THE DETAILED EXPERIMENTAL RESULTS OF SVM,
DECISION TREE AND NEAREST CENTROID CLASSIFIER
The detailed experimental results of SVM, decision tree (DT)
and nearest centroid classifier (NC) are given in Table 11.

TABLE 11. The detailed experimental results of SVM, DT and NC.
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