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ABSTRACT Effective distance metric plays an important role in time series classification. Metric learning,
which aims to learn a data-adaptive distance metric to measure the distance among samples, has achieved
promising results on time series classification. However, most existing approaches focus on learning a
single linear metric, which is unsuitable for nonlinear relationships and heterogeneous datasets with locality
information. Besides, the hard samples in the training set account for only a small part, which may fail to
characterize the global geometry of the metric embedding space. In this paper, we propose a novel deep
multiple metric learning (DMML) method for time series classification. DMML contains a convolutional
network component to extract nonlinear features of time series. For exploiting locality information, the last
feature layer of the convolutional network is divided into several nonoverlapping groups and a separatemetric
learner is built on each group to get multiple metrics. In order to reduce the correlations among learners and
facilitate robust metric learning, we design an adversarial negative generator to synthesize different hard
negative complements for different metric learners. Moreover, an auxiliary loss is introduced to increase the
robustness of DMML for the magnitude of distance. Extensive experiments on UCR datasets demonstrate
the effectiveness of DMML for time series classification.

INDEX TERMS Adversarial training, deep learning, metric learning, time series classification.

I. INTRODUCTION
Since that time series data are generated in a wide range
of real-life domains, including healthcare [1], finance [2],
and meteorological [3], time series research has attracted
significant interests within the data mining community. The
pervasiveness of time series inspires machine learning tech-
niques for time series analysis, such as classification and
forecasting. In this paper, we mainly focus on time series
classification.

Most existing time series classification methods focus on
designing an effective distance metric among series and clas-
sify a time series to the same class as its nearest time series
according to the distance metric [4]–[7]. These methods usu-
ally use hand-crafted distance metric and perform the same
distance function on all the tasks ignoring the differences
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in data distribution. However, the distance metric should
be task-specific because different datasets usually subject to
variable distributions [8]. To learn a data-adaptive distance
metric from the dataset, several metric learning-based meth-
ods that aim to enlarge the similarity of each positive time
series pair and reduce that of each negative time series pair
have been proposed for time series classification [9]–[11].
For instance, Do et al. [12] proposed to learn a distance
metric by combining several modalities at multiple tempo-
ral scales for an effective k nearest neighbors classification.
Although these methods provide competitive or acceptable
performance, they usually learn a linear distance metric and
cannot capture the nonlinear manifold of time series [8].

More recently, several deep metric learning approaches
have been proposed to address the nonlinear problem by
learning a nonlinear embedding with deep neural net-
works [13] and yielded impressive performance gains on the
tasks including feature matching [14], classification [15] and

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 17829

https://orcid.org/0000-0002-5159-1280
https://orcid.org/0000-0002-4906-7025
https://orcid.org/0000-0002-5916-3141
https://orcid.org/0000-0001-8716-4179
https://orcid.org/0000-0001-9225-307X
https://orcid.org/0000-0002-4733-9955
https://orcid.org/0000-0002-2384-763X
https://orcid.org/0000-0002-3719-3710


Z. Chen et al.: DMML for Time Series Classification

collaborative filtering [16]. The goal of deep metric learning
is to build an embedding space on the deep feature representa-
tion to capture the semantic similarity of data [17]. The deep
feature representation and semantically meaningful embed-
ding are jointly learned by a neural network model. Despite
the impressive results achieved by the current researches,
there are still some limitations:
• Existing methods only learn a single distance metric,
which is difficult to adapt for heterogeneous datasets
withmultiple relationships andmay not be able to handle
the data varying locally. Recently, the investigations on
local distance metric learning have considered locality
specific approaches, and consequently multiple met-
rics are learned to capture multiple relationships [8].
However, these methods seldom exploit complementary
information of metrics, which is of great importance for
the performance of local distance metric learning.

• For most metric learning methods, the training proce-
dure is to minimize a loss function weighted by the
selected samples, and hence, the selected samples play
an import role for the performance of metric learn-
ing [18]. However, vast majority of samples in the
training set may satisfy the constraints imposed by the
loss function and produce gradients close to zero, pro-
viding little supervision information for the training
model [19]. The informative hard samples are inade-
quate to characterize the global geometry of the embed-
ding space comprehensively.

• Moreover, the loss of metric learning is sensitive to the
magnitude of distance. Traditional methods that only
use the metric loss function can optimize the loss by
shrinking the magnitude of distance, which is meaning-
less and may degrade classification performance. For
example, as shown in Fig. 1(a), there are four classes
in the training set before optimizing the metric learning
loss. Obviously, each sample in class 3 and class 4 shares
the same label as its nearest neighbor and we can cor-
rectly classify the samples in class 3 and class 4 based
on 1 nearest neighbor classifier. Besides, the distance
relationship between the samples of class 1 and class 2 is
incorrect. The metric learning loss can be optimized by
shrinking the distance between all samples in horizontal
direction, as shown in Fig. 1(b). However, this update not
only does not benefit the classification for the samples
in class 1 and class 2 but destroys the classification for
the samples in class 3 and class 4.

To address these problems, we propose an effective deep
multiple metric learning (DMML) model for time series
classification. For capturing the nonlinear manifold of time
series, a deep convolutional neural network is designed to
project time series into a nonlinear feature space. For exploit-
ing locality information, the nonlinear feature is divided
into multiple nonoverlapping groups and a metric learner is
established for each group to learn multiple distance metrics.
To reduce the correlations between metrics and facilitate
robust metric learning, a hard negative mining strategy is

FIGURE 1. Illustration of metric degradation.

proposed to synthesize hard samples as the complementary
training data for successive groups. The metric learner in
successive group distinguishes both original training sam-
ples and the adversarial samples that generated in previous
group. The metric learning and hard negative generating are
simultaneously trained in an end to end fashion. Besides,
we introduce an auxiliary loss to increase the robustness for
the magnitude of distance. The concatenation of all met-
ric embeddings serves as the input for k nearest neighbor
classifier.

This paper’s main contributions are summarized as:
• We propose a novel framework DMML, which is
able to learn multiple complementary distance metrics
and capture the nonlinear relationships for time series
classification.

• We design an adversarial hard negative mining strategy
to reduce the correlations between metrics and facilitate
robust metric learning.

• We introduce an auxiliary loss to increase the robustness
for the magnitude of distance.

• Comprehensive experimental results show the effective-
ness of our proposed approach for time series classifica-
tion compared with different types of methods.

The rest of the paper is organized as follows. In Section II,
we briefly review previous studies on time series classifi-
cation and metric learning. In Section III, we introduce the
details of the proposed method, including deep multiple met-
ric learning, adversarial hard negative mining and auxiliary
loss. In Section IV, our proposed DMMLmethod is evaluated
and compared with the state-of-the-art methods. Section V
concludes this paper.

II. RELATED WORK
In this section, we briefly review two related topics: time
series classification and metric learning.

A. TIME SERIES CLASSIFICATION
Time series classification is an important topic in machine
learning research. There are four representative types of
techniques for time series classification: (1) shapelet-based
methods, (2) feature-based methods, (3) deep learning-based
methods, and (4) distance-based methods.

Shapelet-based methods extract short discriminative series
segments called shapelets rather than the full series to offer
interpretable results [20]–[23]. These methods must scan a
large pool of subsequences, leading to a time-consuming
process. Different with searching subsequences on existing
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sequences, shapelet learning adopts an optimization scheme
to learn discriminative subsequences from raw numeric
data [24]–[27], which improves the accuracy significantly.
For example, SAX-VFSEQL [27] and efficient learning
interpretable shapelets (ELIS) [24] generate shapelet candi-
dates by aggregating approximation and adjust the shape of
shapelets using shapelet learning.

Feature-based methods extract discriminative features for
time series classification. For instance, time series classifica-
tion based on a bag-of-features representation (TSBF) [28]
computes the features of random subsequences to handle
warping. Time series forest (TSF) [29] adopts a random
feature sampling strategy to reduce the computational com-
plexity. Highly comparative feature (HCF) [30] constructs
feature-based representations of time series using highly
comparative method.

Deep learning-based methods extract nonlinear features
from time series by neural networks. For example, Lin
and Runger [31] presented a group-constrained convo-
lutional recurrent neural network to model time series
data. Ma et al. [32] simplified the learning process of echo
state network through spatio-temporal aggregation operation
and orthogonal function basis expansion. Wang et al. [33]
proposed a time series classification algorithm based on
echo state network and adaptive differential evolution.
Chen et al. [10] conductedmetric learning in themodel space
of echo state network.

Distance-based methods classify a time series to a certain
category based on the distance to the tagged samples. Com-
monly used distance metric include dynamic time warping
(DTW) distance [5], longest common subsequence (LCS)
distance [6], spatial assembling distance (SAD) [7], etc. DTW
aims to find an optimal warping path between two series to
deal with the problem of phase aberration and regards the
distance between the warping path as the distance between
two series. LCS exploits the time series distance measure-
ment based on derivatives. SAD is proposed to handle shift-
ing and scaling in both temporal and amplitude dimensions.
However, these distance metrics ignore the differences in data
distribution and cannot capture the nonlinearmanifold of time
series [8]. Unlike existing methods that define the same linear
distance metric for all datasets, the proposed DMML aims
to learn multiple nonlinear distance metrics by utilizing the
nonlinear feature extraction capability of neural networks in
a data-adaptive manner.

B. METRIC LEARNING
Metric learning aims to learn an effective metric to measure
the distance of the input pairs. The existing metric learning
methods can be classified into linear metric learningmethods,
kernel trick-basedmethods, and deep learning-basedmethods
based on literature [8], [18], [19].

Traditional metric learning methods seek a linear Maha-
lanobis distance [34]–[38]. For instance, information theo-
retic metric learning (ITML) [34] formulates the problem
of metric learning as a constrained optimization task by

minimizing the differential relative entropy. Large margin
nearest neighbor (LMNN) [35] learns a linear transformation
under which the k nearest neighbors of each data point shar-
ing the same label. Pairwise-constrained component anal-
ysis (PCCA) [36] learns a projection that projects similar
pairs inside a ball while dissimilar pairs are pushed away
by gradient descent method. However, these methods cannot
explicitly obtain the nonlinear mappings [39].

Kernel trick-based methods [40] are proposed to address
the problem of nonlinear correlations of samples. Yeung and
Chang [41] formulated the metric learning problem as an
optimization problem for kernel learning. Wang et al. [42]
generalized popular metric learning methods by a kernel clas-
sification framework. To handle multilabel learning and tasks
with continuous decision values, Zhu et al. [40] formulated
metric learning as a kernel regression problem. However, it is
difficult and empirical to choose a proper kernel with flexible
expression power.

With the ability of learning hierarchical nonlinear trans-
formations, deep learning has been studied to address both
the nonlinear and scalability problems simultaneously. Most
of the deep metric learning methods are proposed for visual
tasks, such as person re-identification [43], fine-grained
visual categorisation [17], kinship verification [44] and
images retrieval [45]. Song et al. [45] proposed lifted struc-
tured embedding to take full advantage of training batches.
Duan et al. [19] adopted a hard negative generator to gen-
erate synthetic hard negatives from the observed negative
samples. However, a single distance metric is often unable
to accurately handle the task in which the data are multi-
modal or the decision boundary is complex [46]. Differently,
DMML aims to train multiple distance metrics and generate
hard negatives based on current metric for successive met-
ric. In this way, different metrics are trained with different
samples and complement each other well. Duan et al. [8]
developed a deep localized metric learning (DLML) model
to cluster all samples into multiple groups and construct a
deep neural network to learn a distance metric based on each
group. However, constructing multiple deep neural networks
is computationally expensive. DMML divides the feature
vector of a network into multiple groups for constructing
multiple metric learners, which reduces the computational
consumption. Moreover, each metric learner is trained with
a subset of the entire dataset in DLML, which may not fully
exploit the information buried in all samples. Differently,
each metric learner in the proposed DMML framework is
trained with all training samples and synthetic hard samples
generated in the previous metric learner, whichmakes full use
of all training samples.

In the filed of time series classification, Do et al. [12]
proposed to learn a distance metric by combining several
modalities at multiple temporal scales for an effective k
nearest neighbors classification. Gong et al. [47] utilized
a multiobjective model-metric learning framework based
on recurrent network. However, these approaches focus on
learning a single distance metric, which is unsuitable for

VOLUME 9, 2021 17831



Z. Chen et al.: DMML for Time Series Classification

FIGURE 2. Illustration of the proposed DMML method. Given a set of time series, we first construct a convolutional network to get the
feature vectors and divide the feature vectors into multiple nonoverlapping groups (step 1). Then we synthesize hard negatives for
successive metric learners by the hard negative generator (step 2). We conduct metric learning on each group and get the final embedding
by concatenating the embeddings on all metric learners (step 3). The hard negative generating and metric learning is trained in an
adversarial manner to learn multiple distance metrics.

heterogeneous datasets with locality information. Different
from previousmethods that only learn a single distancemetric
based on original training samples, we aim to learn multiple
distance metrics to exploit locality information. Moreover,
a hard negative mining strategy is proposed to synthesize
hard samples as the complementary training data for reducing
the correlations between metrics and facilitate robust metric
learning.

III. PROPOSED APPROACH
In this section, DMML is described in detail. We first
introduce the linear metric learning-based time series classifi-
cation. The convolutional network-based deep multiple met-
ric learning is then explicated. After that, the hard negative
generator is detailed. Finally, the auxiliary loss is presented.
Fig. 2 illustrates the pipeline of DMML.

A. LINEAR METRIC LEARNING
Let X = {(xi, yi)}Ni=1 be a set of N time series, where xi
and yi are the i-th time series and its corresponding label,
respectively. Given an unclassified time series, we assign to
it the label of the nearest neighbor among the training set
according to a distance metric. Therefore, we aim to learn a
distance metric under that the distances between dissimilar
samples are enlarged while the distances between similar
ones are reduced.

Most existing metric learning methods focus on learning
the Mahalanobis distance [34]–[38]. Given samples xi and xj,
where xi, xj ∈ Rd and d is the dimension of the feature space
(For a given time series, its dimension of the feature space
is usually the length of time series), Mahalanobis distance
DM (xi, xj) is defined as

DM (xi, xj) = (xi − xj)>M (xi − xj). (1)

We denote DM (xi, xj) as Di,j for simplicity. The symmet-
ric positive definite (SPD) matrix M ∈ Rd×d called

Mahalanobis matrix is learned by an algorithm to fit the
distance reflected by the training data. The SPDMahalanobis
matrix can be decomposed asM = W>W , whereW ∈ Rm×d

is the transformation matrix and m is embedding size. Then
the Mahalanobis distance between xi and xj can be rewritten
as

Di,j = (xi − xj)>M (xi − xj)

= (xi − xj)>W>W (xi − xj)

= (Wxi −Wxj)>(Wxi −Wxj)

= ||(Wxi −Wxj)||2. (2)

It can be seen that learning a Mahalanobis distance metric
is equivalent to seeking a linear transformation W which
projects a sample into a new space. In this space, dissimilar
samples should be far apart from each other, whereas similar
samples should be close to each other. Therefore, a large
number of models are proposed to either directly learn Maha-
lanobismatrixM or indirectly learn transformationmatrixW .

Then, we present the loss function for training the distance
metric. The loss function adopted in this work is the lifted
structure loss [45]. The structured loss encourages the small-
est distance between the samples in a positive pair and their
negatives is larger than a margin, which is defined as

Lstruc(X ) =
1

2|P|

∑
(xi,xj)∈P

max (0, l(xi, xj))2.

l(xi, xj) = max
(

max
(xi,xq)∈N

α − Di,q, max
(xj,xl )∈N

α − Dj,l

)
+Di,j, (3)

where P and N are the set of positive pairs and the set of
negative pairs in the training set, respectively, α is the margin.
However, this loss is non-smooth and requires all sample pairs
several times. Lifted structured loss address these challenges
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by a smooth upper bound on the function:

Llifted (X ) =
1

2|P|

∑
(xi,xj)∈P

max (0, l(xi, xj))2.

l(xi, xj) = log(
∑

(xi,xq)∈N

exp {α − Di,q}

+

∑
(xj,xl )∈N

exp {α − Dj,l})+Di,j, if (xi, xj)∈P,

(4)

Parameter α is set to 1 following Song et al. [45].

B. DEEP MULTIPLE METRIC LEARNING
Traditional metric learning methods only seek a linear metric
and cannot well exploit the nonlinear manifold of time series.
In DMML, we construct a convolutional neural network to
compute the nonlinear feature representations of time series
to overcome this limitation. The convolutional neural network
can be viewed as a nonlinear function φ that maps time series
xi into an feature representation x ′i = φ(xi), x

′
i ∈ Rr , where r

is the size of feature representation. As a result, the distance
between two time series xi and xj passing through the network
can be written as

DM (i, j) = (φ(xi)− φ(xj))>M (φ(xi)− φ(xj))

= ||(Wφ(xi)−Wφ(xj))||2. (5)

This lets us incorporate metric M into a deep net in the
form of a fully connected layer before a loss layer. However,
learning a holistic distance metric over the input space is not
able to fully capture the relationships between input pairs.
Inspired by the fact that localized metric learning approaches
learn a set of local metrics, we aim at learning multiple
complementary distance metrics. For deep metric learning,
one way is to train several convolutional networks and learn
a metric on each network. However, training multiple convo-
lutional networks is computationally expensive. In this work,
the shared computation of convolution [48] is used to get an
elegant and effective solution. Specifically, the feature vector
φ(xi) is divided into K nonoverlapping subfeature groups:

φk (xi) = φ(xi)[πk : π(k+1)], (6)

where φk (xi) is the k-th subfeature group, πk is the split point
between groups k − 1 and k , and all groups have the same
size. Then, a separate metric learner is built on each group.
The loss function for a positive pair on the k-th group is

lk (xi, xj) = log(
∑

(xi,xq)∈N

exp {α − Dki,q}

+

∑
(xj,xl )∈N

exp {α − Dkj,l})+ D
k
i,j, if (xi, xj) ∈ P.

(7)

Dki,j is the distance between xi and xj on the k-th group, which
is defined as

Dki,j = ||(Wkφk (xi)−Wkφk (xj))||2, (8)

where Wk is the transformation matrix of the k-th metric
learner. The loss function on the k-th group in the training
dataset X is defined as

Lk (X ) =
1

2|P|

∑
xi,xj∈P

max (0, lk (xi, xj))2. (9)

Then the global loss function for deep multiple metric learn-
ing is given as

Llifted (X ) =
∑
k

Lk (X ). (10)

After learning all metrics, we concatenate them to get the final
distance metric. Our deep multiple metric learning frame-
work is constructed based on a shared convolutional network.
Therefore, all distance metrics share the same underlying
feature representation and the computational consumption is
reduced.

C. HARD NEGATIVE MINING
If we only optimize the global loss function on the training
set, the metrics with high correlation are then learned, result-
ing in no performance improvements at all [49]. Besides,
due to different samplings between training set and test set,
the trained models often fail to learn a reliable metric on the
ambiguous test pairs. Therefore, it is not desirable to train all
metric learners on the same data directly.

To overcome these limitations, we introduce the adversar-
ial hard negative generator to synthesize different hard nega-
tive complements for different metric learners. Our goal is to
generate potential hard negatives based on original training
data and current metric to provide synthetic complements for
successive metric learner. The generator aims to synthesize
negative samples that are confused for current metric learner.
The metric learner in the successive group distinguishes both
original training samples and the adversarial samples gen-
erated in the previous group. Different metrics are trained
with different samples, which reduces the correlations among
learners.

We add perturbations to existing samples to get the adver-
sarial samples. Specifically, we construct a perturbation gen-
erator based on original training data and the k-th metric:

rk,i = ε
gk (xi, x

−

i ,Wk )

||gk (xi, x
−

i ,Wk )||
, (11)

where x−i is the sample with different label from xi, rk,i is the
synthetic perturbation, gk is the perturbation generator, and ε
is the parameter that controls the magnitude of perturbation.
We concatenate xi and x

−

i as the input of generator gk . The
synthetic adversarial sample is

x̃−k,i = x−i + rk,i. (12)

Since that only a small perturbation is applied to existing
sample x−i in the input space, x̃−k,i should share the same
label with x−i . The goal of generator is to synthesize neg-
ative samples difficult for the current metric to classify in
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the embedding space. The loss function of the generator is
formulated as

Lgen =
∑
k

∑
(
xi,x
−

i

)
∈X

Lpn − Lnn

=

∑
k

∑
(
xi,x
−

i

)
∈X

(∥∥∥Wkφ (xi)−Wkφ
(
x̃−k,i
)∥∥∥2

−

∥∥∥Wkφ
(
x−i
)
−Wkφ

(
x̃−k,i
)∥∥∥2)

(13)

The goal of Lpn is to make the synthetic sample close to the
anchor xi in the embedding space. The second term Lnn aims
to make the synthetic sample keep away from the negative
sample x−i in the embedding space. The generator with Lgen
is able to synthesize negative samples that would be misclas-
sified by the learned metric. The generator used in this work
is a convolutional network with three fully connected layers
of output dimensions 64, 128 and 64, and a fully connected
layer of which the dimension is the length of the input time
series.

The metric leaner in the successive group is trained on both
original training samples and the adversarial samples gener-
ated in previous group. The loss function is then formulated
as

Llifed (X ) =
∑
k

Lk (X , X̃k−1), (14)

where X̃k−1 is the set of synthetic samples generated in
previous group. The metric learning and the hard nega-
tive generating are trained with the following loss function
simultaneously

Lmetric = Llifted + Lgen. (15)

Hard negative mining has two advantages. First, the pro-
cedure of adversarial training enhances the ability of met-
rics to address potential unobserved hard negatives [50].
We follow the idea of adversarial training to generate
ambiguous but critical data as important complements to
existing samples. Metrics in successive groups discriminate
the confusing unseen adversarial samples to enhance the
discriminative power. Second, training different metrics with
different samples reduces the correlations among metrics.
The synthetic samples that confuse the current metric are a
part of the training data of the next learner. Different met-
rics focus on different samples and capture different local
specificities.

D. AUXILIARY LOSS
For most metric learning methods, the loss is a function
of distance, which is sensitive to the distance magnitude.
For example, the lifted structure loss is composed of the
distance between similar pairs and that between dissimilar
pairs. It means that we can shrink the distance magnitude
to reduce the loss. However, it is meaningless for clas-
sification and might result in some unexpected results as

Algorithm 1 DMML
Input: Training set X , number of groups K , embedding size
m, parameters λ and ε, and iteration numbers T .
Output: Parameters of deep metric learning θmetric,
and parameters of the hard negative generator
θgen.
1: Initialize parameters θmetric and θgen.
2: for t = 1 to T do
3: Compute nonlinear feature representation φ(xi) of

input time series xi.
4: Divide φ(xi) into K subfeature groups using Eq. 6.
5: for k = 1 to K do
6: Produce hard negative sample x̃−k,i using Eq. 12 for

xi.
7: Compute nonlinear feature representation φ(x̃−k,i) of

φ(x̃−k,i).
8: end for
9: Jointly optimize θmetric and θgen using Eq. 16 with

BackPropagation.
10: end for
11: return θmetric and θgen.

discussed in Section I. We call this phenomenon as metric
degradation.

In this paper, we incorporate an auxiliary loss term to avoid
the problem of metric degradation. Specifically, a softmax
layer is added on the top of the feature representation to
predict the label of input time series. Thus, the sofltmax loss
function is added:

L = Lmetric + λLaux , (16)

where λ is a balance factor and Laux is the auxiliary softmax
loss function. The softmax loss ensures that the optimizing
of DMML is meaningful to classification to avoid metric
degradation. We show the main algorithm of DMML in
Algorithm 1.

IV. EXPERIMENTS
In this section, we first describe the implementation details.
Then, we discuss how framework components contribute to
DMML. Next, we test several key parameters of DMML.
Finally, we compare DMML with state-of-the-art time series
classification methods.

The experiments are conducted on some widely used
benchmark datasets from the ‘‘UCRTime Series DataMining
Archive’’ [51]. Each dataset has been divided into a training
set and a test set by the provider. The testbed provides diverse
characteristics such as the number of classes, the number of
samples and the length of series so as to enable a comprehen-
sive evaluation. The ablation study and parameter analysis are
conducted on 6 datasets that exhibit various characteristics
for fair comparison, i.e., ECGFiveDays, FISH, MoteStrain,
SonyAIBORobotSurface, SonyAIBORobotSurfaceII, and
SwedishLeaf.
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TABLE 1. Classification accuracy (%) comparison with different ε and
DMML−adv .

A. IMPLEMENTATION DETAILS
All experiments are conducted on a computer with an Intel
Xeon(R) Gold 5122 3.60-GHz CPU, 64-GB RAM, and a
GeForce GTX 1080-Ti 11G graphics card. We implement
DMML with PyTorch package.

The architecture of the deep network is recommended by
Wang et al. [52]. The network is a residual network with
9 convolutional layers and a global average pooling layer,
which is composed of 3 residual blocks. For each block,
the lengths of the filters are set as 8, 5, and 3, respectively,
and the number of filters is 128 for all convolutions. The
following global average pooling layer averages the series
across the time dimension. Then the global average pooling
layer is followed by a softmax layer and a metric learning
layer.

B. ABLATION STUDY
In this section, we discuss how framework components con-
tribute to DMML through quantitative component-wise eval-
uation.

1) EFFECT OF HARD NEGATIVE MINING
In this group of experiments, we analyze the contribution
of hard negative mining. The model without hard negative
mining is denoted as DMML−adv. We compare DMML with
DMML−adv. Parameters m, K , and λ are fixed to 512, 3, and
100, respectively. As shown in Table 1, DMML outperforms
DMML−adv for most datasets. The reason is that hard nega-
tive mining generates synthetic hard negatives for different
metric learners and exploits more information from a lim-
ited training set than conventional methods that only exploit
the observed negatives in their original form, increasing the
complementarity of metrics. With adequate and diversiform
synthetic hard negatives, the final distance metric presents
strong robustness.

2) EFFECT OF AUXILIARY LOSS
We show the effectiveness of our auxiliary loss. The embed-
ding size m, the number of groups K , and the perturbation
parameter ε are set to 512, 3 and 0.01, respectively. We first
set λ = 0 to abandon the auxiliary loss, and the derived
model is denoted as DMML−a. Similarly, we cancel the
metric learning loss to freeze the metric learning module
and denote the derived model as DMML−m. We show the
results of different model settings in Table 2. To show the
convergence of different model settings, the corresponding
learning curves are shown in Fig. 3. We can make some
interesting observations from these results. 1) The optimal

TABLE 2. Classification accuracy (%) comparison with different λ,
DMML−a, and DMML−m.

TABLE 3. Classification accuracy (%) comparison with different K .

DMML model outperforms DMML−a, which shows that we
can improve the performance of DMML by including an
auxiliary loss during training. 2) The optimal DMML model
outperformsDMML−m, which shows that the metric learning
module in DMML is effective. 3) The absence of metric
learning loss results in the fluctuation of accuracy curves and
a dramatic performance reduction, which demonstrates that
if we only consider the auxiliary loss during training, it is
difficult to convergence.

3) EFFECT OF MULTIPLE METRIC LEARNING
In this part, we illustrate the effect of multiplemetric learning.
We implement a variant of DMML named DMMLs which
only learns a single distance metric. The performance of
the variant (K = 1) and DMML (K >= 2) are shown
in Table 3. As can been seen, DMML achieves better results
than the single metric learning method. The reason is that
DMML exploits multiple complementary local specificities
to improve the classification performance with multiple dis-
tance metrics and generated hard negatives. To show the
effectiveness of DMML on heterogeneous dataset, we con-
duct experiments on Heterogeneity Human Activity Recog-
nition (HHAR) dataset [53]. HHAR dataset is gathered with
various device models and use-scenarios to reflect sensing
heterogeneity existing in real deployments. The dataset con-
tains 6 activities, including biking, sitting, standing, walk-
ing, stair up and stair down) collected from 9 users using
smartphones and smartwatches. These devices varied in the
supportedmaximum sampling rate which varies from 25Hz to
200Hz. Moreover, there exists different accelerometer biases
and gains among different devices. These heterogeneities
in the dataset increase the intra-class distance while reduce
the inter-class distance. In our experiment, accelerometer
measurements are model inputs, while activities are used
as labels. We unify the data with different sampling rates
to 10Hz using downsampling and segment the data into
5 seconds samples. We randomly select 70% samples as the
training set and the rest are used as the test set. The results
of different methods are presented in Table 3. As shown
in Table 3, we can find that DMML achieves better results
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FIGURE 3. Classification accuracy comparison with different λ, DMML−a, and DMML−m.

than DMMLs on HHAR dataset. The results show that our
DMML method that learns multiple distance metrics to
exploit the local specificities is beneficial for improving the
performance on the task of heterogeneity human activity
recognition.

C. PARAMETER ANALYSIS
In the proposed algorithm, several parameters may influence
the time series classification performance, including the num-
ber of groups K , embedding size m, perturbation parameter
ε, and balance factor λ. We conduct experiments to illustrate
the effects of these parameters on DMML.

1) IMPACT OF NUMBER OF GROUPS AND EMBEDDING SIZE
We first illustrate the effects of K and m while fixing ε and
λ at 0.01 and 100, respectively. To evaluate the impact of K ,
we fix the embedding size as 512. Then we run our model
withK = {1, 2, 3, 4, 5, 6}. ForK = 1, the model degenerates
into a single metric learning model. Table 3 shows the varia-
tions in the accuracy of different numbers of groups. We find
that the optimal number of groups for DMML is in the range
of [4, 5]. Besides, we see that when K is small, the classifi-
cation accuracy of the proposed method is low. The reason
for this phenomenon is that, for a limited number of groups,
a small number of metrics are learned, which is not able
to fully capture the relationships between input pairs. With
more groups, the final representation captures more local
specificities of data. However, a large number of groups mean
a lot of adversarial samples need to be generated, increasing
the computational complexity and memory cost during the
training. These observations show that our multiple metric
learning with a proper K can exploit multiple complementary
local specificities to improve the classification performance.

TABLE 4. Classification accuracy (%) comparison with different m.

Then we analyze the impact of m. In the experi-
ments, we fix K at 3 and run our model with m =

{64, 128, 256, 512, 1024}, respectively. The results of
DMML with different m are shown in Table 4. We can see
that DMML is not very sensitive tom in a wide range, and the
overall proper results are obtained using embedding with the
size in the range of [128, 512] for most datasets. Besides,
the performance of DMML with large embedding size (e,g.,
1024) also slightly decreases. It may be because too large
embedding size inevitably includes more parameters, leading
to overfitting problem.

2) IMPACT OF BALANCE FACTOR AND
PERTURBATION PARAMETER
We fix K andm at 3 and 512, respectively, in the following to
discuss the behaviors of λ and ε. The additional parameter
λ is introduced when we add our auxiliary loss. We set
λ = {1, 10, 100, 1000} to analyze the performance of DMML
with ε = 0.01. We show these results in Table 2. It is found
that the optimal λ is in the range of [1, 100]. Besides, when
λ is too large (e.g., 1000), the classification performance
decreases. In fact, metric learning loss has little impact when
λ goes to infinity and the model with a large λ can be
considered to be trained using only auxiliary loss. This shows
the effectiveness of the metric learning loss in our framework.

Then we demonstrate the influence of ε on DMML.
To this end, we fix λ to 100 and run our method with
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TABLE 5. Classification accuracy (%) of 6 distance-based methods and DMML on 28 UCR datasets.

ε = {0.0001, 0.001, 0.01, 0.1, 1}, respectively. Table 1 illus-
trates the classification performance with the increasing of
ε. The best classification performance of DMML is obtained
when ε is in the range of [0.1, 0.001] for most datasets.
Besides, the performance of themodel dramatically decreases
when ε = 1. The reason is that the synthetic perturbations are
too large and the synthetic series are too far from the original
series. Thus, the synthetic series bring a lot of interference
information that disturbs the training and affects the learning
of distance metrics.

D. PERFORMANCE COMPARISON
In this section, we compare DMML with four represen-
tative types of techniques: (1) distance-based methods,
(2) shapelet-based methods, (3) feature-based methods, and
(4) deep learning-based methods. As comparison data,
we use the reported error rate from the available litera-
ture. We report the average performance of DMML over
10 replicates. In addition, we report the rank difference and
the Wilcoxon test p-value between DMML and baseline
methods. Rank difference measures the gaps between the
average ranks of DMML and baseline methods. Wilcoxon
test is a non-parametric test which is used to make statistical
comparison.

We first compare DMML with 6 distance-based methods,
i.e., Euclidean distance based 1-nearest neighbor (EDNN),
dynamic time warping based 1-nearest neighbor (DTWNN),
sequence weighted alignment (SWA) [54], spatial assembling
distance (SAD) [55], longest common subsequence using the
first and second derivatives (2DDLCSS ) [6], and geometric
template matching (GTM) [7]. The classification results of
EDNN and DTWNN are reported in [51], and the results of
SWA and SAD are reported in [56]. For 2DDLCSS andGTM,
the results are reported in [6] and [7], respectively. Table 5
shows the experimental results of DMML and 6 distance-
based methods. On 28 datasets, DMML achieves the best
accuracy for 18 datasets. There is a is a significant dif-
ference between DMML and the distance-based methods
according to the rank difference and Wilcoxon test p-value.
Besides, the average rank and average accuracy ofDMMLare
2.179 and 89.9%, respectively. GTM ranks the second with
an average rank of 3.750, and its winning times and average
accuracy are 1 and 84.5%, respectively, which are lower than
DMML. It suggests that our proposed DMML model that
learns a data-adaptive distance metric yields better perfor-
mance compared with other distance-based methods.

Then we compare DMML with 5 shapelet-based time
series classification methods, i.e., naive shapelet decision tree
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TABLE 6. Classification accuracy (%) of 5 shapelet-based methods and DMML on 15 UCR datasets.

TABLE 7. Classification accuracy (%) of 5 feature-based methods and DMML on 26 UCR datasets.
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TABLE 8. Classification accuracy (%) of 5 deep learning-based methods and DMML on 24 UCR datasets.

(NSD) [20], fast shapelet (FSH) [21], learning time series
shapelets (LTS) [25], sequence learning in all-subsequence
space (SLAS) [27], and efficient learning interpretable
shapelets (ELIS) [24]. The experiments are conducted on
15 time series datasets. Experimental results of all shapelet-
based models are reported in [24]. Table 6 presents the results
of 5 shapelet-based methods and DMML. On 15 datasets,
DMML achieves the best accuracy on 10 datasets. Besides,
the average rank and the average accuracy of DMML are
1.400 and 95.0%, respectively, which are better than other
shapelet-based methods. There is a significant difference
between DMML and the 5 shapelet-based methods at the
0.1 level according to the Wilcoxon test p-value. The results
demonstrate that DMML outperforms these shapelet-based
models by notable gains.

Subsequently, 5 feature-based methods are compared with
DMML: bag of SFA symbols (BOSS) [57], learned pattern
similarity (LPS) [58], time series based on a bag-of-features
representation (TSBF) [28], time series forest (TSF) [29],
and dynamic time warping distances as features (DTWF) [4].
We conduct experiments on 26 datasets. The classification
results of feature-based models are reported in [59]. Table 7
shows the classification results of DMML and 5 feature-
based methods. DMML provides the best accuracy on 19 of
26 datasets and achieves the highest average rank of 1.600.

Besides, DMML outputs an average accuracy of 90.8%,
which is slightly higher than BOSS’s average accuracy
of 88.1%. According to the rank difference and Wilcoxon
test p-value, DMML significantly outperforms the 5 feature-
based methods. From the experimental results, it is clear that
our method is superior to the feature-based algorithms in
terms of classification accuracy.

Finally, we compare DMML with 5 deep learning-based
time series classification methods: fully convolutional neural
network (FCN), Encoder [60], multiscale convolutional neu-
ral network (MCNN) [61], time Le-Net (t-LeNet) [62], and
time warping invariant echo state setwork (TWIESN) [63].
For the fair comparison, we use the results provided by [64].
Table 8 summaries the experimental results of 5 deep
learning-based models and DMML. DMML is the most
accurate on 12 of 24 datasets, while FCN outputs the most
accurate results on 10 of 24 datasets. DMML has an aver-
age rank of 1.625, which is better than FCN’s average rank
of 1.792. The performance comparison reveals that DMML
outperforms state-of-the-art methods in terms of classifica-
tion accuracy. Although FCN achieves comparable perfor-
mance (Wilcoxon test p-value = 0.496), it is difficult to
extend it to the datasets with unseen classes. DMML captures
the semantic distances between time series, which is suitable
for the datasets with classes not in training set.
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We further observe that the datasets that DMML performs
the best have a small number of classes or a small length
of series. However, DMML loses its effectiveness on several
datasets, such as 50words and Aiac. The common feature
of them is that the numbers of classes are larger than other
datasets. The numbers of classes in 50words and Aiac are
50 and 37, respectively, which are the largest among all
datasets. It means that DMML is not good at dealing with
the dataset with a large number of classes. The reason may
be that, with the increase of the number of classes, the pro-
portion of negative pairs increases while that of positive
pairs decreases, resulting in an imbalance problem for met-
ric learning. Besides, it can be seen that DMML performs
poorly for the datasets with long time series, e.g., BettleFly,
OliveOil, and Lighting2. The lengths of series in BettleFly,
OliveOil, and Lighting2 are 512, 570, and 637, respectively,
which are far longer than the average. The reason for this
phenomenon may be that the convolutional network is not
suitable for capturing the discriminative features from long
series.

V. CONCLUSION
In this paper, we present a deep multiple metric learning
(DMML) approach for time series classification. DMML
learns multiple local distance metrics through a shared con-
volutional network. The hard negative mining is introduced
to enhance the capability of learned metrics to deal with
the ambiguous test data samples and encourage the com-
plementarity of metrics. Besides, we introduce an auxiliary
loss to guide the model to learn a discriminative metric.
The experiments show that our model can outperform the
state-of-the-art methods.

We also show that DMML loses its efficiency in some
situations. First, DMML is not good at dealing with the
datasets with a large number of classes.The reason may be
that the number of negative pairs is much more than that of
positive pairs if the number of classes is large. For example,
if there exists C classes in a dataset with N training samples
and each class contain the same number of samples, i.e.,N/C ,
the number of negative pairs is N 2/2 − N 2/(2C) while that
of positive pairs is N 2/(2C) − N/2. As can be seen, with
the increase of C , the number of positive pairs decreases,
while the number of negative pairs increases. The number of
positive pairs is (N 2

+ N )/2− N 2/C more than the number
of negative samples. Since that most of the training pairs are
negative pairs when C is large, the model mainly focuses on
increasing the distances between samples. However, the cor-
rectness of the relationships between the samples from the
same class can not be guaranteed, decreasing the discrimina-
tive power of the distance metric. In our future work, we will
design a hard positive mining algorithm to generate enough
positive pairs to address the imbalance problem. Specifically,
for each sample, we generate a hard positive sample that is
close to it in the input space and far away from it in the
embedding space. The sample pair consisting of the sample
and the generated hard positive sample is then used as a

supplementary training pair so as to increase the number of
positive pairs.

Second, DMML performs poorly in face of long series.
The reason may be that we use the same size convolution
kernels for all datasets. For CNN, the kernel size is essential
to capture the informative features from time series [65].
In this paper, we use the same kernel size for all datasets. The
kernel sizes are set as 8, 5, and 3, respectively, for the three
convolutional blocks in DMML. Compared with the length
of time series in BettleFly, OliveOil, and Lighting2 datasets,
the kernel sizes are relatively small. We consider that the
small kernel sizes are not able to extract informative features
on these datasets and therefore yield bad performance. As a
future work, we may develop a multiscale version of DMML,
which contains multiple convolutional neural networks with
different kernel sizes, to solve this problem. Each convolu-
tional neural network captures the feature at a scale. Thus,
we can get the features extracted by kernels with different
sizes and avoid time-consuming parameter selection.
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