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ABSTRACT The adjustable parameters of the traditional fuzzy Petri net (FPN) are single and mostly depend
on expert experience. This approach lacks the adaptability to the complex network of sensors, which will
result in insufficient accuracy of fault diagnosis. We propose a method combining the FPN with an adaptive
arc and deep belief network (DBN) and improved a fast Gibbs sampling (FGS) algorithm to realize sensor
fault diagnosis. First, we present the concept of adaptive arcs with label-weights based on the confidence-
weights of directed arcs, which is an important component of the sensor fault model. Then, the improved
FGS algorithm optimizes the model layer-by-layer, and the adjustment of the transition threshold relies on
the marginal distribution of a restricted Boltzmann machine (RBM). Finally, the optimized dual-weights and
dual-transition influence factors are applied to the forward and backward fuzzy reasoning of the model to
achieve network adaptability. Our studies showed that this method has obvious advantages in terms of the
accuracy and adaptability of complex networks compared to other FPN fault diagnosis methods. The fault
reasoning confidence can provide an effective reference formaintenance personnel and improvemaintenance
efficiency, ensuring the reliable operation of sensors and related systems.

INDEX TERMS Adaptive arc, fuzzy Petri net, deep belief network, fast Gibbs sampling, sensor fault
diagnosis.

I. INTRODUCTION
As complex detection devices containing multiple compo-
nents and modules, sensors are susceptible to failure due
to external environmental factors and internal factors [1].
Although it can continue working, inaccurate data will affect
the control and decision-making of the system, and even
bring serious hidden dangers [1], [2]. Early sensor fault
diagnosis methods using deviations are usually effective, but
excessive use of sensors will increase the cost and make
the system more complicated [2]. In addition, although both
quantitative analysis and qualitative analysis can realize sen-
sor fault diagnosis [3]–[9], as modern control systems have
become more versatile and fault types have become more
complex, the previous methods could not meet the current
requirements anymore. In recent years, the development of
computer technology has provided a new theoretical basis for
fault diagnosis technology [2]. The qualitative fault diagnosis
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based on an expert system is more effective because the
complex relationship between the sensor components and the
fault characteristics are uncertain and nonlinear. This method
does not need to establish an accurate mathematical model
but rather analyzes historical data to diagnose whether the
sensor is malfunctioning [10]. However, this method has low
versatility and scalability [10] and is not suitable for handling
inaccurate and uncertain fault information.

The Petri net is a network structure based on the known
logical relationships between inputs and outputs in a system,
and the place and weight of fuzzy Petri net (FPN) [11] is
not limited to the number of tokens, it can express the fuzzy
value and has a mechanism for representing and reasoning
with uncertain knowledge. The advantage of the FPN is that
it can express logical knowledgemore intuitively and visually
and capture the dynamic nature of fuzzy rule-based reasoning
through mark evolution [12], [13]. Unlike traditional expert
systems, fuzzy logic can make reasonable decisions under
certain and inaccurate situations [12]. The traditional FPN
fault diagnosis method [14], [15] is suitable for solving the
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problem of unavailability or unreliability of safety data but
may lead to insufficient diagnosis accuracy [13]. Further-
more, some FPNs may lack the ability to adjust the param-
eters, and the setting of weights and transition thresholds
depend largely on expert experience, leading to the subjec-
tivity of the diagnosis results.

Endowing the FPN with a certain learning ability in order
to improve the adaptability of the network represents a break-
through in FPN fault diagnosis. To improve the learning
ability of the FPN, a generalized fuzzy Petri net (GFPN)
was proposed [16]. Due to their powerful nonlinear approx-
imation and adaptive learning capabilities, neural networks
have become a widely used nonstatistical data-driven fault
diagnosis tool [10]. The adaptive fuzzy Petri net (AFPN) is
a model of dynamic knowledge representation and reason-
ing, and weights are optimized according to the weighted
fuzzy production rules (WFPR) [17], endowing the FPN
with a learning ability similar to that of neural networks.
In [18], the FPN model was established according to the
fuzzy production rules in the radar fault expert system; it
was combined with a neural network to learn the weights
through sample data and then find the cause of the fault
through fault reasoning based on the fault probability of the
symptom. Li et al. [19] focused on the use of neural fuzzy
Petri nets (NFPN) combined with an error backpropagation
(BP) algorithm for fault diagnosis of corresponding variant
sensors, providing confidence-level fuzzy inference formulas
and accurately assessing the state of sensors. Tan et al. [20]
studied a method of power grid fault diagnosis based on
intuitionistic fuzzy inhibitor arc Petri net (IFINPN), which
aims to simplify the logical relationship of complex networks.
Cheng et al. [21] considered the learning problem of tran-
sition influence factor in FPN, and used the comprehensive
learning particle swarm optimization (CLPSO) algorithm to
realize fault diagnosis for complex motors.

Previous research has used many approaches to combine
the FPN with learning algorithms such as the BP algo-
rithm in parameter optimization [18], [20], [22], [23], with
a few studies adopting the Elman, genetic, artificial immune,
chaotic bat [24], particle swarm optimization (PSO) [25], and
CLPSO algorithms, which mainly solved the problem of fault
diagnosis in shallow networks. However, for these methods,
the weight and the transition influence factor are singular,
the network’s mapping ability is limited, the weight conver-
gence speed is slower, it is easy to fall into a local optimum,
and the transition threshold generally depends on highly
subjective expert experience, which is prone to give low
accuracy and poor adaptability of fault diagnosis when faced
with a complex fault network [21]. Therefore, to solve the
above problems, we propose the DBN-AAFPN fault diagno-
sis method based on deep belief networks (DBN) [26]–[28].
DBN is a generated graphical model that can be regarded
as a deep neural network. Restricted Boltzmann machine
(RBM) is a widely used Markov random field (MRF) model,
and it is also an important model that constitutes DBN [29].
This model is based on the energy function and can express

random neural networks. Therefore, it has a good approx-
imation effect in the face of complex networks and large
quantities of data [26]. The fast algorithm of contrast diver-
gence (CD) proposed by Hinton [30] has always been the
standard algorithm for training RBM models since the early
days. Gibbs sampling is a well-known Markov Monte Carlo
(MCMC) algorithm that can extract samples from complex
high-dimensional posterior distributions and is often used
in randomization algorithms for Bayesian inference [31].
The fast Gibbs sampling (FGS) [29] algorithm based on
Gibbs sampling adds acceleration weights and adjustment
coefficients, significantly improving the mixing speed of the
sampling chain and the accuracy of RBM training. Most of
the existing improved FGS algorithms achieve a faster con-
vergence rate at the data and algorithm level to achieve better
prediction results [32]–[36]. However, there are relatively few
algorithm improvements for complex fault diagnosis models.

This article combines the FPN and DBN to present an
adaptive arc generation mechanism that introduces the label-
weight based on confidence-weight to mark the occurrence of
a fault. The introduction of dual-transition influence factors
does not require an artificial setting of transition thresh-
olds, which depend on the marginal distribution of RBM.
These two methods combine the improved FGS algorithm to
improve the adaptability and accuracy of fault diagnosis. The
main contributions of this study are as follows:

• Based on the FPN, we proposed an adaptive arc, dual-
weights (label-weight and confidence-weight) and dual-
transition influence factors, and obtained a new FPN
called adaptive arc fuzzy Petri net (AAFPN).

• Combine the AAFPN and the DBN to form the
DBN-AAFPN, which makes it more adaptable than the
previous FPN, thereby improving the accuracy of fault
diagnosis for complex models.

• We improved the FGS algorithm and applied it to the
network optimization of DBN-AAFPN, which achieved
better optimization results than other algorithms.

II. THE PROPOSED METHOD: ADAPTIVE ARC FUZZY
DBN-PETRI NET (DBN-AAFPN)
A. ADAPTIVE ARC FUZZY PETRI NET (AAFPN)
Definition 1: The AAFPN is a compound six-tuple:∑

1
= {S,T ,F,A,W (x, y),M}, (1)

where {S,T ,F,M} is a marked net, S ∩ T = dom(F) ∩
cod(F) = ∅, S ∪ T = dom(F) ∪ cod(F) 6= ∅, F ⊆
(S×T )∪ (T ×S), andM : S → {0, 1}. Moreover, A ⊂ (·T ×
S·) ⊂ F is an adaptive arc set, represented by a combination
of dotted lines and hollow arrows, as shown in Fig. 1, the dual-
weight W (x, y) is composed of the confidence-weight W (x)
and the label-weight W (y), where w(x) ∈ W (x), 0 ≤ w(x) <
1,w(y) ∈ W (y),w(y) = 0 or 1. For ∀t ∈ T ,∀s ∈ S : (s, t) ∈
F → M (s) = 1,∀t ∈ T ,∀s ∈ S : (·t × s·) ∈ A→ w(y) = 1,
otherwise, w(y) = 0. In other words, only when the transition
t is enabled can the corresponding adaptive arc be activated.
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FIGURE 1. Adaptive arc fuzzy Petri net.

FIGURE 2. Adaptive arc fuzzy RBM-Petri net structure.

At this time, the label-weight w(y) of the adaptive arc is set to
one; otherwise, it is set to zero.

B. ADAPTIVE ARC FUZZY RBM-PETRI NET
AAFPN’s confidence propagation algorithm is an iterative
method that can solve the probabilistic reasoning problem
of the complex probability graph model, and all information
propagation can be run in parallel to achieve higher compu-
tational efficiency. In addition, the DBN formed by stacking
RBM is a random neural network with strong self-learning
ability. As shown in Fig. 2, the combined adaptive arc fuzzy
RBM-Petri net can be regarded as the inference engine in the
expert system, and the confidence value of all fault places can
be obtained through efficient inference calculation, which can
be used as the basis of fault diagnosis [19]. The definition of
fuzzy RBM-Petri net is shown in Equation (2).
Definition 2: The adaptive arc fuzzy RBM-Petri net is a

compound eleven-tuple:∑
2
= {P,T , I ,O,K ,W (x, y), v, h, a, b, λ}, (2)

1) P = (p1, p2, . . . , pn)T is a collection of faults, includ-
ing all of the faults related to the sensor.

2) T = (t1, t2, . . . , tm)T is a set of transitions, indicating
the evolution of the fault. If the transition is enabled,
then tj = 1; otherwise, tj = 0.

3) I is the input matrix of the fuzzy RBM-Petri net.
4) O is the output matrix of the fuzzy RBM-Petri net.
5) K = (k1, k2, . . . , kn)T represents the label vector of the

place. When the fault place occurs, kj = 1; otherwise,
kj = 0.

6) W (x, y) = {wij(x),wij(y)} is the dual-weight matrix
between the place and the transition, including the
confidence-weight w(x) of the visible layer place and
the label-weight w(y) of the hidden layer place. W (y)
is an m × n matrix with only zero or one, W (x) =
(w(x1),w(x2), . . . ,w(xq))T , where q depends on the

number of visible layer places of the next fuzzy
RBN-Petri net and the connection mode with the hid-
den layer places of this layer.

7) v = (v1, v2, . . . , vn)T is the n-dimensional confidence
vector of the visible layer place and indicates the cred-
ibility of the fault.

8) h = (h1, h2, . . . , hm)T is the m-dimensional confi-
dence vector of the hidden layer place and indicates the
credibility of the fault.

9) a = (a1, a2, . . . , an)T is the n-dimensional confidence
vector of the transition influence factors.

10) b = (b1, b2, . . . , bm)T is the m-dimensional confi-
dence vector of the transition influence factors.

11) λ = (λ1, λ2, . . . , λn)T is the threshold set of transition
vectors and depends on the marginal distribution of
RBM.

C. FUZZY INFERENCE OPERATOR
To clearly express the forward and backward reasoningmech-
anism of fuzzy RBM-Petri net, four special operators are
introduced:

1) The comparison fuzzy operator ♦: C = A♦B, where
A, B and C are m × n matrices. When aij ≥ bij, cij =
1, but when aij < bij, cij = 0. i = 1, 2, . . . ,m; j =
1, 2, . . . , n.

2) The minimum fuzzy operator ∧: C = A ∧ B, where A,
B and C are m × n matrices. cij = min(aij, bij), i =
1, 2, . . . ,m; j = 1, 2, . . . , n.

3) The maximum fuzzy operator ∨: C = A∨ B, where A,
B and C are m × n matrices. cij = max(aij, bij), i =
1, 2, . . . ,m; j = 1, 2, . . . , n.

4) The max-min fuzzy composition operator ◦: C = A ◦
B, where A, B and C are m × n matrices. µcij =∨m,n

i=1,j=1{µaij (x, y) ∧ µbij (x, y)}, i = 1, 2, . . . ,m; j =
1, 2, . . . , n.

III. DBN-AAFPN CONFIDENCE REASONING
A. FORWARD REASONING
When the transition connected to the fault place is fired,
the corresponding forward propagation path is opened.
According to the assumed fault type, forward reasoning can
realize the fault location and determine the fault propagation
path. The adaptive arc fuzzy RBM-Petri net has n visible
places and m hidden places, and vectors v and h represent the
states of the visible places and hidden places, as well as the
initial confidence and inference confidence of the assumed
fault type, as shown in Fig. 2. vi represents the state of the
ith visible storage place, and hj represents the state of the
jth hidden storage place [19]. Given a set of states (v, h),
the energy definition of the adaptive arc fuzzy RBM-Petri net
as a system is shown in Equation (3).

E = (v, h|θ ) = −
n∑
i=1

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
j=1

viwijhj (3)

VOLUME 9, 2021 20307



S. Zhao et al.: Sensor Fault Diagnosis Based on Adaptive Arc Fuzzy DBN-Petri Net

In the above equation, ai, bj, and wij(x) are the parameters
of adaptive arc fuzzy RBM-Petri net, where ai represents
the transition influence factor of the visible place unit i, bj
represents the transition influence factor the hidden place unit
j, and wij(x) represents the confidence weight between the
visible layer place and the hidden layer place.When the initial
parameters are determined, based on the energy function,
the joint probability distribution of (v, h) and its marginal
distribution can be obtained [37], as shown in Equations (4)
and (5). The marginal distribution represents the distribution
of the observation data v, which determines the adjustment
of the transition threshold λ and the firing conditions of the
transition, where Z (θ ) is the normalization factor, also known
as the partition function.

P(v, h|θ ) =
e−E(v,h|θ)

Z (θ )
, Z (θ ) =

∑
v,h

e−E(v,h|θ) (4)

P(v|θ) =
1

Z (θ )

∑
h

e−E(v,h|θ) (5)

The adaptive arc fuzzy RBM-Petri net is a special struc-
ture with connections between the layers and no connections
within the layers. When given the state of visible layer places,
the activation states of the hidden layer places are indepen-
dent of each other. At this time, the activation probability of
the jth hidden layer place is shown in Equation (6).

P(hj = 1|v, θ) = σ (bj +
∑
i

viwij(x)) (6)

The structure of the adaptive arc fuzzy RBM-Petri net is
symmetric. When the state of the hidden layer place is given,
the activation state of each visible layer place is also con-
ditionally independent, and the probability of the ith visible
layer place is shown in Equation (7).

P(vi = 1|h, θ) = σ (ai +
∑
j

wij(x)hj) (7)

where σ (z) = (1 + exp(−z))−1 is the Sigmoid activation
function.

B. BACKWARD REASONING
Backward reasoning is the process of analyzing the causes
of the fault and realizing fault diagnosis. The optimized
DBN-AAFPN model is used to obtain the inference confi-
dence and the actual fault type according to the confidence of
the terminal fault place obtained from the confidence predic-
tion value of forward reasoning, and the effective recovery of
the sensor fault is obtained by combining the fault priority.
The method of the max-min and maximum fuzzy compo-
sition operation is adopted in backward fuzzy reasoning,
as shown in Equations (8) and (9).

v(l)
′

=

(
h(l) ◦W T (x)

)
◦W (y) (8)

h(l−1)
′

= v(l)T
′

∨ h(l−1) (9)

where v(l)
′

is the confidence value of the visible layer place
of the RBM-Petri net of the lth layer of backward reasoning,

FIGURE 3. DBN-AAFPN fault diagnosis process.

and h(l−1)
′

is the confidence value of the hidden layer place of
the (l−1)th layer. h(l−1) is the confidence value of the hidden
layer place in the (l − 1)th layer of forward reasoning.

IV. FAULT DIAGNOSIS
A. REASONING RULES AND DIAGNOSIS PROCESS
The reasoning rules and process of the DBN-AAFPN fault
diagnosis method are shown in Fig. 3.

B. ESTABLISH FAULT MODEL
In this article, the 3irobotix Delta-2A laser radar is selected
as the research object of sensor fault diagnosis, and the
DBN-AAFPN fault model is established according to its
structural principle and failure mode. The DBN-AAFPN
model of laser radar and the corresponding semantics of
the places are shown in Appendix A. The laser radar is
mainly composed of ‘‘laser’’ and ‘‘receiver’’. To facilitate the
analysis, this article selects the ‘‘laser fault’’ local model to
illustrate the learning and reasoning process of this method.
As shown in Fig. 9, the DBN-AAFPN fault model consists
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FIGURE 4. FGS algorithm learning process.

of three layers stacked by adaptive arc fuzzy RBM -Petri
nets.

C. PROCESSING OF RAW DATA
The original data of the fault source in this article is
taken from the GJB/Z299C − 2006 and GB/T37963 −
2019 Reliability Prediction Handbook for Electronic Equip-
ment. Related calculation formulas and tables are shown in
Appendix B. Finally, as shown in Equation (10), the initial
confidence value of the fault source is obtained by normaliz-
ing the Gaussian function.

f (x0) = e−5000·(x0−0.017)
2

(10)

D. SIMULATION
1) IMPROVED FAST GIBBS SAMPLING (FGS) ALGORITHM
Based on the symmetrical structure of the RBM model
and the conditional independence of the neuron states,
the Gibbs sampling method can be used to obtain random
samples that follow the distribution defined by the RBM.
The specific algorithm of kstep Gibbs sampling is to use
a training sample or any randomized state of the visible
layer place for alternating sampling, as shown in Fig. 4.
The FGS algorithm introduces the accelerated confidence-
weight fastW and the adjustment coefficient ξ , and the
confidence-weights of the entire network are the sum of the
acceleration confidence-weights fastW and the traditional
confidence-weights, effectively ensuring that the confidence-
weights updates are updated rapidly in the early stages of
training. The added adjustment coefficient can effectively
change the update rate of the accelerated confidence-weights,
and the adjustment coefficient changes within the range of
zero to one, effectively reducing the trend of accelerated
confidence-weights update in the middle and later stages of
training [29].

The input data used to obtain the data of the hidden layer
places, v+ = v−, both represent the input data, as shown in
Equation (11).{

h− = P(h|v−,W )
h+ = P(h|v−,W + fastW )

(11)

The data of the hidden layer places are obtained through
calculation, and the positive and negative gradients of the

weights are updated as shown in Equation (12).{
W+ = v+

T
h+

W− = v−
T
h−

(12)

The data of the visible layer places can be calculated by
the hidden layer places, as shown in Equation (13). The
confidence-weights are the sum of traditional confidence-
weights and accelerated confidence-weights.{

v− = P(v|h−,W )
v+ = P(v|h−,W + fastW )

(13)

To adapt the fault model to multiple fault types and
complex topological structures, this article improves the
original FGS algorithm, and the weight update gradient
is shown in Equation (14). We multiply the update gradi-
ent of the weights by the initial confidence of the visible
layer places. On the one hand, unnecessary calculations are
avoided and optimization efficiency is improved. On the
other hand, the confidence-weights corresponding to the non-
faulty places quickly converge to values close to zero, and
the corresponding label-weights have also been identified
and set, ensuring the accuracy in the analysis of the failure
causes in backward reasoning. The initial update gradient
of the weights consists of the traditional confidence-weight
update and the accelerated confidence-weight update. More-
over, the accelerated update of the accelerated confidence-
weights depends on the difference between the expected value
of the data and the expected value of the model. The recon-
struction gradient of the confidence-weights is described by
Equations (15) and (16).

W = (W +1Wij) ∗ vi(0) (14)

where

W = W+ +W− (15)

1Wij =
〈
vihj

〉
data −

〈
vihj

〉
recon

= P(hj = 1|vi(0)) ∗ vi(0)− P(hj = 1|vi(k)) ∗ vi(k)

(16)

The updating of traditional confidence-weights and accel-
erated confidence-weights is shown in Equation (17). The
update of the accelerated confidence-weights is determined
by the adjustment coefficient ξ and the update gradient 1W
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of the confidence-weights.{
W = W +1W
fastW = ξ ∗ fastW +W

(17)

In addition, the introduction of the dual-transition influ-
ence factors can further improve the adaptability of a complex
fault model to multiple fault types compared to the single
transition influence factor. Similarly, the FGS algorithm is
improved, and the update gradient of the transition impact
factor a is multiplied by the initial confidence of the visible
layer places. The training process of the dual-transition influ-
ence factors a and b is shown in Equations (18) and (19).
The reconstruction gradient of the dual-transition influence
factors is described by Equations (20) and (21).

ai = (ai +1ai) ∗ vi(0) (18)

bj = bj +1bj, (19)

where

1ai = 〈vi〉data − 〈vi〉recon
= vi(0)− vi(k) (20)

1bj =
〈
hj
〉
data −

〈
hj
〉
recon

= P(hj = 1|v(0))− P(hj = 1|v(k)) (21)

2) MODEL OPTIMIZATION AND TRAINING
In this study, the initial confidence vector of the
fault source places is selected by Equation (10) and is
v(1)(0) = (0.3297, 0, 0.5646, 0.9445, 0, 0.2516, 0, 0.2852)T .
The confidence-weights and dual-transition influence factors
are randomly initialized and are w11(x), w21(x), w32(x),
w33(x),w44(x),w54(x),w64(x),w65(x),w75(x),w85(x), a1, a2,
a3, a4, a5,a6, a7, a8, b1, b2, b3, b4, and b5. The adjustment
coefficient ξ is 0.4, the initial acceleration weight fastW is
zero, the transition threshold λ is set according to the partition
function of the fuzzy RBM-Petri net, and the number of
learning iterations k is set to 200.
Figs. 5 and 6 show the change process output by the

fault places of the visible and hidden layers, respectively,
of the first layer of fuzzy RBM-Petri net. The fault places
of the remaining hidden layers are generated iteratively
layer by layer. After training, the corresponding converged
confidence-weight w(x) is obtained and stored in the vector
W (x), and the corresponding label-weightw(y) is stored in the
vector W (y). The change process of the confidence-weights
of the first-layer fuzzy RBM-Petri net is shown in Fig. 7,
and the confidence-weights matrix after training is shown
in W (1)(x, y), as shown at the bottom of the next page.
The confidence-weights corresponding to the fault places
converged rapidly, while the confidence-weights correspond-
ing to the non-faulty places quickly converged to ε, where
ε → 0+. Similarly, the change process of the transition
influence factors of the first-layer fuzzy RBM-Petri net is
shown in Figs. 8 and 9. In short, for faulty and non-faulty

FIGURE 5. The change process of the hidden places hj of the first-layer
fuzzy RBM-Petri net.

FIGURE 6. The change process of the visible places vi of the first-layer
fuzzy RBM-Petri net.

places, various parameters have different convergence prop-
erties, which avoids unnecessary calculations and reflects the
adaptability of the network.

3) FAULT PROPAGATION AND LOCATION
Forward reasoning represents the evolution process from
the source of the fault to the end of the fault, from which
the location of the fault can be determined, and the loca-
tion of the fault is represented by the label K . The initial
confidence v0 is known from the previous text. As shown
in Fig. 10, the initial label of the fault source places are
K1 = (1, 0, 1, 1, 0, 1, 0, 1)T , and the corresponding fault
modes are ‘‘no laser output’’, ‘‘spectral degradation’’, ‘‘drive
current increase’’, ‘‘clogged condenser’’, ‘‘crack’’, ‘‘pollu-
tion’’, ‘‘unable to adjust’’, and ‘‘electron tube overvoltage’’.
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FIGURE 7. The change process of the confidence weights wij of the
first-layer fuzzy RBM-Petri net.

Moreover, the hollow token marks the fault place to be
identified.

The improved FGS algorithm is used to obtain the model
optimized results as the basis of forward reasoning. The
first hidden layer label used as the second visible layer
label is K2 = (1, 1, 1, 1, 1)T , the corresponding failure type
is ‘‘laser emission failure’’, ‘‘exothermic loss’’, ‘‘overcur-
rent stress’’, ‘‘reduced reflectivity’’, ‘‘performance failure’’,
and the place confidence value is h(1)(k) = v(2)(0) =
(0.5340, 0.6415, 0.6432, 0.9135, 0.5948)T ; the second hid-
den layer label used as the third visible layer label is K3 =

(1, 1)T , the corresponding failure type is ‘‘optoelectronic
semiconductor failure’’, ‘‘optical resonant cavity failure’’,
and the place confidence value is h(2)(k) = v(3)(0) =
(0.6695, 0.6263)T ; and the third hidden layer label used as the
terminal fault place is K4 = (1)T , the corresponding failure
type is ‘‘laser fault’’, and the confidence value of the place is
h(3)(k) = (0.6288)T .

4) FAULT CAUSE ANALYSIS AND DIAGNOSIS
The backward reasoning from the end of the fault to the cause
of the fault adopts the inference method of fuzzy composition
in turn, as shown in Equations (8) and (9). According to
the observed confidence value of the fault end, the corre-
sponding confidence weight w(x) and label weight w(y) are

FIGURE 8. The change process of the transition influence factors ai of the
first-layer fuzzy RBM-Petri net.

FIGURE 9. The change process of the transition influence factors bj of the
first-layer fuzzy RBM-Petri net.

extracted from the pretrained confidence weight vectorW (x)
and label weight vectorW (y). The label of the fault source is
obtained through backward reasoning. As shown in Fig. 11,
the backward reasoning accurately locates the cause of the
fault and obtains the confidence of the relevant fault locations,
which can be obtained by the place of the fault marked by

W (1)(x, y) =



(0.1659, 1) (0, 0) (0, 0) (0, 0) (0, 0)
(ε, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0.4144, 1) (0.4196, 1) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.8690, 1) (0, 0)
(0, 0) (0, 0) (0, 0) (ε, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.1310, 1) (0.4629, 1)
(0, 0) (0, 0) (0, 0) (0, 0) (ε, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0.5371, 1)


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TABLE 1. Fault related statistics and inference results.

TABLE 2. Comparison of different fault diagnosis methods.

FIGURE 10. Forward reasoning fault occurrence model.

the solid token. This approach provides an effective reference
for maintenance personnel and prioritizes maintenance of
components with high fault confidence, improving the main-
tenance efficiency and ensuring the normal operation of the
sensor.

After backward reasoning, the confidence value of each
layer of the visible layer places and the corresponding fault
cause are:

1)

K ′3 = (1, 1)T → P46,P47

v(3)
′

= (0.5187, 0.4813)T ;

FIGURE 11. Backward reasoning fault diagnosis model.

2)

K ′2 = (1, 1, 1, 1)T → P34,P35,P36,P37,P38

v(2)
′

= (0.2583, 0.3723, 0.3693, 0.6876, 0.3124)T ;

3)

K ′1 = (1, 0, 1, 1, 0, 1, 0, 1)T → P1,P3,P4,P6,P8

v(1)
′

= (0.1659, ε, 0.4196, 0.8690,

ε, 0.4629, ε, 0.5371)T .
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FIGURE 12. The DBN-AAFPN fault model of laser radar.

TABLE 3. Place semantics of the DBN-AAFPN fault model of laser radar.

TABLE 4. Basic failure rate λ0 and temperature influence coefficient πt .

E. STATISTICS AND VERIFICATION
In this study, the number of faults is taken from the recent five
years of statistical data for the laser radar of the intelligent
dust removal robot underground in the Huibaoling Iron Mine

of Shandong Energy Linyi Mineral Group Co., Ltd. Through
backward reasoning, taking a series of specific fault types
as an example, we obtain the corresponding confidence of
the occurrence of Fault Type 1, Fault Type 2, and Fault

VOLUME 9, 2021 20313



S. Zhao et al.: Sensor Fault Diagnosis Based on Adaptive Arc Fuzzy DBN-Petri Net

TABLE 5. Basic failure rate λb.

TABLE 6. Environmental coefficient of the resonator πE .

TABLE 7. Environmental coefficient of the magnetic devices πE .

TABLE 8. Environmental coefficient of the electronic filter πE .

TABLE 9. Environmental coefficient of the welding point πE .

TABLE 10. Quality factor πQ. (From A to C, the quality is getting lower
and lower).

Type 3. The statistical data and inference results are shown in
Table 1.

1) Fault Type 1:
Two of the eight fault sources failed, with P1 and P3
faults;

2) Fault Type 2:
Three of the eight fault sources failed, with P5, P6, and
P7 faults;

3) Fault Type 3 (Example in this article):
Five of the eight fault sources failed, with P1, P3, P4,
P6, and P8 faults.

The Pearson correlation coefficient is a statistical index
that measures the actual number of faults and the confidence
of inference. The fault correlation calculation can be used
as an indicator of fault diagnosis accuracy, and the calcu-
lation method is shown in Equation (22). The correlations
of the actual faults of the three fault types 1, 2, and 3 are
0.9667, 0.9540, and 0.9266, respectively. Moreover, we have
performed comparative experiments for multiple methods
under the same defined conditions, including fault model,
fault type, network initial parameters, and the number of
training iterations. As shown in Table 2, our proposed method
has a stronger ability to adjust parameters and a higher adapt-
ability and accuracy of fault diagnosis, and it is consistent
with the expected goal.

r =

n∑
i=1
(xi − x) (yi − y)√

n∑
i=1
(xi − x)2

n∑
i=1
(yi − y)2

(22)
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TABLE 11. Component failure mode and frequency ratio.

V. CONCLUSION
The sensor fault model has a complicated topology and con-
tains a high amount of uncertain information. The adaptabil-
ity and accuracy of the traditional FPN fault diagnosis method
are insufficient. In this research, we presented the concept of
adaptive arc and endowed the FPNwith the topology and gen-
eration mechanism of DBN. The transition threshold does not
rely on expert experience but rather on the marginal distribu-
tion of RBM, and the dual-weights and dual-transition influ-
ence factors are optimized by the improved FGS algorithm,
solving the problem of poor diagnostic adaptability caused

by the manual setting of parameters and single adjustable
parameters. However, a large number of fault source nodes in
a complex network will still give rise to high fault information
dimensions and node explosion. Therefore, the optimization
of fault source nodes is the focus of our next study.

APPENDIX A
In this article, the 3irobotix Delta-2A laser radar is selected
as the research object of sensor fault diagnosis, and the
DBN-AAFPN fault model is established according to its
structural principle and failure mode, as shown in Fig. 12.
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The semantic description corresponding to the DBN-AAFPN
fault model places is shown in Table 3.

APPENDIX B
In this study, we use the standard failure rate and related
calculation formulas in the Reliability Prediction Handbook
for Electronic Equipment to obtain the original data. The
calculation methods of the related failure types and the orig-
inal data list are shown below. Among them, there are two
calculation methods for different types of faults, as shown
in Equations (23) and (24). The relevant variables in the
formulas, such as basic failure rate λ0, temperature influ-
ence coefficient πt , can be obtained in Table 4 to Table 10,
according to the characteristics of the components and actual
need. Table 11 shows the proportion of specific failure modes
under different failure components, and finally solves the
failure rate of specific failure modes through it. In addition,
it should be noted that the incomplete failure modes and data
in the table can be appropriately adjusted according to work
experience.

1) Calculation method of failure rate of laser diode
module;

2) Calculating method of failure rate of photodiode and
receiving module for communication.
The 1) and 2) failure rate prediction model is shown in
Equation (23).

λa = λ0 × πt (23)

where λa is the failure rate, the unit is 10−9/h, λ0 is the
basic failure rate of the module, the unit is 10−9/h, and
πt is temperature influence confficient. The values of
λ0 and πt are shown in Table 4.

3) Calculation method of failure rate of resonator;
4) Calculation method of failure rate of magnetic devices;
5) Calculation method of failure rate of electronic filter;
6) Calculation method of failure rate of welding point.

The 3) to 6) failure rate prediction model is shown in
Equation (24).

λp = λb × πE × πQ (24)

where λp is the failure rate, the unit is 10−6/h, λb is
the basic failure rate, the unit is 10−6/h, and πE is
the environmental factor, πQ is the quality factor. The
values of λb,πE andπQ are listed in Table 5 to Table 10.
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