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ABSTRACT To mitigate the ever worsening ‘‘Power wall’’ and ‘‘Memory wall’’ problems, multi-core
architectures with multi-level cache hierarchies have been widely accepted in modern processors. However,
the complexity of the architectures makes modeling of shared caches extremely complex. In this article,
we propose a data-sharing aware analytical model for estimating the miss rates of the downstream shared
cache under multi-core scenarios. To avoid time-consuming full simulations of the cache architecture
required by conventional approaches, the proposed model can also be integrated with our refined
upstream cache analytical model, which also evaluates coherence misses with similar accuracies of
state-of-the-art approach with only one tenth time overhead. We validate our analytical model against
gem5 simulation results under 13 applications from PARSEC 2.1 benchmark suites. Compared to the results
from gem5 simulations under 8 hardware configurations including dual-core and quad-core architectures,
the average absolute error of the predicted shared L2 cache miss rates is less than 2% for all configurations.
After integrated with the refined upstream model with coherence misses, the overall average absolute error
in 4 hardware configurations is degraded to 4.82% due to the error accumulations. As an application case
of the integrated model, we also evaluate the miss rates of 57 different multi-core and multi-level cache
configurations.

INDEX TERMS Analytical model, multi-core, multi-level cache, data sharing, coherence.

I. INTRODUCTION
Performance evaluation plays an important role in the design
cycle of the next generation processors as it allows architects
to choose the architectural parameters for optimal perfor-
mance and energy consumption trade off. Earlier researchers
use cycle-accurate simulations to evaluate designs for their
high accuracies [1]. However, these simulations are extremely
time-consuming due to the ever-growing complexities and
scales of architecture design spaces and workloads. There-
fore, in the early stage of design cycles, architects prefer to
use analytical models for their higher efficiency. Moreover,
analytical models provide more insights that enable us to
trade off different performance parameters in the architecture
design.

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

To model the cache miss rates, which are critical for the
processor performance evaluations, most analytical models
take the cache configuration parameters and locality metrics
profiled from the memory accessing stream as their inputs,
such as the Stack Distance Histogram (SDH) and the Reuse
Distance Histogram (RDH). Combined with the mechanistic
analyses and probability derivations, these models can
estimate the cache miss rates. However, when applied in
the lower level caches, e.g., L2 or L3 caches, this approach
requires profiling the memory reference streams to the target
cache levels instead of the memory references directly from
the CPUs, which can be normally obtained by a binary
instrumentation tool in a relatively low overhead. In this
case, they need time-consuming simulations of the cache
architecture to profile the memory accessing streams to
the target cache level [2]–[4]. For example, the reference
stream to the L2 cache shared by the multi-core, shown
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FIGURE 1. An example of a multi-core processor with a multi-level cache
hierarchy.

in Fig. 1,1 consists of the streams from each individual
core. To obtain the RDH/SDH of the merged shared cache
reference stream, these previous works have to extract the
individual SDHs/RDHs from each core’s private cache to the
shared L2 cache from detailed simulations, which, to a large
extent, nullifies the evaluation speed benefits of analytical
modeling.

FIGURE 2. The L2 miss rates estimated by StatCC for PARSEC(dual-core;
L1 32KB; L2 2MB; DRAM 4GB; LRU-LRU).

Another factor that needs to consider is the data sharing
among the threads running on different cores, i.e., different
cores accessing L2 cache with same addresses. Some prior
models, for example, StatCC [2], ignore this effect and
evaluate the L2 behaviors merely based on the individual
RDHs, which inevitably causes larger errors in multi-thread
programs with intensive data sharing. Fig. 2 shows the
result of the L2 miss rates of PARSEC 2.1 [5] estimated
by StatCC in a dual-core processor equipped with ALPHA
ISA and the traditional 7-stage out-of-order pipeline. The
cache hardware configuration can be found in the title of the
figure. Since L2 cache are equipped with LRU and Random
replacement policy, StatStack [8] and StatCache [10] are

1Fig. 1 only shows a dual-core scenario. Other multi-core configurations
in this article are equipped with the similar cache architecture. Although
it is common to have a 3-level cache hierarchy in a high-performance
processor, considering the overhead of chip area and power consumption,
a 2-level cache architecture is still popular in embedded systems and mobile
computing. Therefore, for the application scenarios and simplifying our
discussion, we would study a 2-level cache architecture in this article.

used to calculate the miss rates of the L2 cache. Some
data-sharing-intensive benchmarks, such as canneal and vips,
have nearly 10% errors, which far exceeds the 2% average
error in other benchmarks. Although Jiang’s work [3] and
Jasmine’s work [4] quantify the data sharing effects in
the L2 shared cache modeling, like we introduced above,
their models require the L2 individual access streams that
obtained from time-consuming simulations. In our previous
work [9], a data-sharing aware L2 cache model that does not
need full simulations as input has been proposed. However,
neither the details of integrating the proposed model with the
upstream cache mode nor the overall error evaluations after
the integration have been discussed.

Except for the data-sharing effect on the behavior of shared
caches, we should also consider the coherence misses in the
private caches under multi-core environment. A coherence
miss occurs when one core tries to access a private cache
line that has already been invalidated by the coherent protocol
because another core changed the content of its private cache
line with the same corresponding address. Coherence misses
play a unignorable role in the performance evaluations of
a multi-core processor [21], [22]. Unfortunately, like many
prior studies, the upstream cache model [6], [7] used in
this article does not consider coherence misses for it was
originally designed for a single-core environment.

In this article, we propose a data-sharing aware
shared cache miss rates model for multi-core systems
with multi-level cache hierarchies. To eliminate the
time-consuming full simulations, we integrate the proposed
model with the upstream model [6], [7] that put forward by
our previous work, which outputs the individual L2 accessing
RDHs from each core’s private cache, to construct a
multi-core multi-level cache model framework. The details
of model integration and the overall error analysis after the
integration have been introduced and discussed. Moreover,
by using a similar analyzingmethod in the data-sharing aware
model, we refine the upstream model to quantify coherence
misses in each upstream private cache with similar accuracies
and only one tenth time overhead compared to those of state-
of-the-art approach [24].

The overview of the model framework is shown in Fig. 3.
Firstly, Ge’s model [6], [7] is modified and used as the
upstream model to obtain each core’s L2 individual Address
Access Distributions, or AAD defined in section III, and
individual RDHs accessing the L2 shared cache. Secondly,
with considering of the coherence misses, we refine the
private cache misses in the result of the first step. Thirdly,
based on the individual RDHs and AADs from Ge’s model,
we construct locality information of the L2 shared cache
MRDH, which also will be introduced in section III. Lastly,
StatStack [8] and StatCache [10] are applied to calculate the
miss rates based on the L2 shared cache MRDH obtained by
our model.

To our best knowledge, the proposed model framework is
the first multi-level cache model in multi-core environment
with considerations of both data-sharing and coherence,
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FIGURE 3. The overview of the muti-level cache model framework.

which does not need time-costing cycle-accurate simulations
to obtain the lower-level cache traces. The main contributions
of this article can be summarized in the following three
aspects:
• Providing an analytical method to quantify the influence
of data sharing in the shared L2 cache.

• Thanks to its scalability, we combine our model with
the upstream cache analytical model [6], 7] to avoid
the time-consuming multi-level cache simulations that
required by prior approaches. The overall average errors
of the integrated models have also been evaluated and
discussed.

• Quantifying the coherence misses in the private caches,
which enables the upstream cache model [6], [7] be used
in a multi-core scenario with a significant lower time
cost.

The rest of the article is organized as follows: Sections II
introduces the related works. Section III introduces how
our model constructs MRDH from individual RDHs with
the consideration of data sharing. Section IV introduces
how to integrate the shared cache model and the upstream
cache model with the consideration of coherence misses. The
evaluation results of our model are exhibited in section V.
Section VI gives an application case of the proposed
integrated model framework. Section VII concludes this
article.

II. RELATED WORKS
The previous works in cache modeling can be categorized
into three parts. The first part is for the models that
focus on one certain cache-level in a uni-core processor.
Erick Berg et al. [10] presented an analytical model, named
StatCache, to estimate the L1 cache misses with the Random
replacement policy. David Eklov et al. [8] proposed StatStack
which derives SDH from RDH to predict L1LRU cache
misses. Pan et al. [11] utilized the Markov chain to predict
the cache misses under three different replacement policies.
For out-of-order processors, Ji et al. [12] used artificial neural

networks to address the effects of the stack distancemigration
caused by out-of-order executions.

The second part is for the models for multi-level caches
in uni-core processors. Ji et al. [13], [14] constructed a
probability formula set to predict the downstream cache
misses using the L1 cache SDH. To simplify the complexity
of K Ji’s algorithm, M Ling and Ge [6], [7] proposed
the RST table and Hit-RDH, which describe more detailed
information of the software traces, as the inputs to model
the L2 cache RDH. Sabarimuthu and Venkatesh et al.[15]
put forward an analytical model to calculate the L2 cache
miss rate based on the analysis of the influence of cache
inclusion/exclusion policies.

The third part is for the models with multi-level caches
in multi-core processors. Eklov et al. [2] proposed StatCC,
a simple yet efficient model, which estimates the shared cache
miss rates of co-scheduled applications on architectures
similar to Fig. 1. It took the statistical locality characteristics
of the memory reference streams in each core. However,
it ignores the effects of data sharing among different threads,
which causes larger errors when estimating multi-thread
programs with intensive data sharing. Jiang et al. [3] provided
a probabilistic model to find the merged stack distance
profiled from the locality information of two individual
threads. The input of their model is the SDH of each
thread, which is obtained from time-consuming simulations
of the upstream caches. Venkatesh and Sabarimuthu [4] used
Markov chains with combinatories and a basic probability
theory to model the MSDH of multi-thread applications.
Similar to Jiang’s work, the model requires upstream cache
simulations to obtain the inputs. Moreover, Ding et al. [16]
proposed a footprint theory based on the concept of the
memory footprint. The theory also deals with the properties of
footprint composition and proposes optimal co-scheduling by
using shared footprint metric. Derek et al. [25] extended the
traditional reuse distance theory on the multi-core platform to
take invalidation and cache misses into account by capturing
reuse distance consistently. Wu et al. [26] raised up a
model to analyze the changes of reuse distance by catching
the profiling information of concurrent reuse distance in
Loop-based Parallelism. For multicore GPU performance
modeling, reuse distance cannot be directly applied for data
interaction in multi-thread. Nugteren et al. [27] verified that
the reuse distance theory can be used in GPU’s thread by
modeling caches in details approaching to the real-hardware
application. Kiani and Rajabzadeh [28] took a trace-driven
method which employed two reuse distance analysis (RDA)
algorithms namely HLRDA and DRDA to evaluate the
influence of hardware configurations in RDA. However, this
model is just applied to the GPUs with the same hardware
configurations.

Except for cold misses, conflict misses and capacity
misses, there are also coherence misses in multi-core
processors too. However, studies introduced above didn’t
consider the coherence misses, which significantly influence
the performance of cache systems [21], [22]. Berg et al. [23]
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presented a sample-based statistical model called Stat-
CacheMP built from processors with multiple cores to
analyze the data locality only with the Random replacement
policy. To count the coherence misses, it has to monitor
the reuse distance continuously and maintain a writer list
which records the IDs of other cores writing to the monitored
cachelines. If the writer list is not empty, the cachelines can
be seemed as invalid and triggers coherencemisses. However,
these models use PIN [29] tool, which only supports
X86 architectures, to catch traces of memory instructions.
Furthermore, both of these models need to profile and
analyze the memory accessing traces in an extremely
time-consuming manner, which significantly degrades the
evaluation efficiency.

In our previous work [9], we put forward a new model that
considers the insertion effects and split effects of shared data
accessing to quantify the merged L2 RDH, which can be used
to calculate the L2 miss rates. To avoid the time-consuming
cache simulations, it was declared in that article that the
proposed data-sharing aware downstream cachemodel can be
integrated with the upstream cache model [6], [7]. However,
neither the integration details nor the error analysis after the
integration have been introduced and discussed. Meanwhile,
the upstream model in that work does not consider the
coherence misses in a multi-core environment.

In this article, we introduce the data-sharing aware shared
cache model with the details of integrating the upstream
cache model, such as the AAD extraction method. The
error analysis after the integration have also been evaluated
and discussed. We have also refined the upstream model to
quantify the coherence misses in the private caches using a
similar analyzing method in the data-sharing aware shared
cache model with much less time overhead.

III. MODEL MRDH FROM INDIVIDUAL RDHs
Before introducing our model, we first define some basic
terminologies used in our following discussions.
Reuse Distance: The reuse distance is the number of

references between two consecutive references accessing to
the same cache line.
Merged Reuse Distance: The merged reuse distance is

the reuse distance of the references in the merged reference
stream to the shared cache, which is constructed by the
interleaving of the individual reference streams from all cores
in a multi-core system.
Merged Reuse Distance Histogram (MRDH): MRDH

records the numbers of references for every merged reuse
distance in the memory traces in a given profiling interval.
Access Address Distribution (AAD): AAD records the

numbers of references to each cache-line aligned address in
a given profiling interval.

To simplify the discussion, the model construction of
a dual core architecture is taken as an example for the
derivation. As shown in Fig.3, the inputs of the model
are the L2 individual RDHs and individual AAD from
each core, which are obtained by Ge’s model [6], [7].

In this case, we maintain an access address distribution
table AADi[addrx], in which addrx is the cache line aligned
address of the coming reference. The range of x is from
1 to the total number of addresses accessed in the profiling
interval, denoted asN in this article.When a coming reference
x is an L1 miss, which means the reference will be leaked to
the L2 cache, we will accumulate the element AADi[x] by
one. The subscript i represents the reference comes from the
i-th core.

FIGURE 4. The insertion effect and the split effect of accessing stream
interleaving.

As shown in Fig. 4(a), two reference streams from two
cores interleave in the L2 shared cache and construct the
merged stream. The interleaving of the two individual
reference streams may change the reuse distance of the reuse
epoch that constructed by two consecutive references A (i.e.,
the reference to the address A). We divide the changes of
RDHs caused by the interleaving into two categories: 1) As
shown in Fig. 4(b), the reuse distance of the reference A
increases because of the references from the other core, which
is named as the insertion effect; 2) As shown in Fig. 4(c),
when the address of an inserted reference is same as the
endpoint of the reuse epoch, i.e., A in this case, the original
reuse epoch is split into two new reuse epochs, which is called
the split effect.

According to these two effects, we construct the model
in two steps, shown in Fig. 5: 1) Quantifying the insertion
effect caused by the multi-core reference stream interleaving;
2) Quantifying the split effect on reuse epochs to refine the
result of the first step with data sharing.

A. QUANTIFYING THE INSERTION EFFECT
In this step, we use an approach similar to StatCC to quantify
the insertion effect. The reuse distance of the reference
from one core is stretched because of the insertion of
references coming from another core. For example, as shown
in Fig. 4(b), the reuse distance of the reference A in Core 1
is 4(blue dots), while the reference stream of Core 2 inserts
5 references (red dots) into the reuse epoch. Thus, the reuse
distance of the reference A is stretched to 9 with the scale
of 9

/
4. If the ratio of the number of accesses from different

cores in an interval remains relatively uniform and stable,
the scale of the stretch can be regarded as a constant for all
reuse epochs. By multiplying the original reuse distance with
this constant, we can calculate the merged reuse distance after
the streams being interleaved. The derivation is as follows:
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FIGURE 5. The two steps of our work.

For a reuse epoch from Core 1 with a reuse distance
of r1, Core 2 also accesses the shared cache during the
period of the reuse epoch. Supposing that Core 2 generates
r2 references during this period, r1 will be stretched to r̂1 as
shown in Eq. (1).

r̂1 = r1 + r2 (1)

Similar to StatCC, we assume that the shared cache
accesses are uniform in the whole profiling interval, i.e., we
do not consider the effect of program phase transitions.
Therefore, the relative speeds of Core 1 and Core 2 accessing
the shared cache are unchanged in the interval. In the entire
profiling interval, Core 1 accesses the shared cache access1
times, and at the same time Core 2 accesses the shared cache
access2 times, from which we can derive the approximate
relationship as shown in Eq. (2).

access2
access1

=
r2
r1

(2)

The total number of references access1 from Core 1 and
access2 from Core 2 can be calculated by Eq. (3), where
N denotes the number of different addresses during this
profiling interval.

accessi =
∑

x∈[1,N ]

AADi [addrx] (3)

Bring Eq. (2) to Eq. (1), we get the following relationship
as Eq. (4):

r̂1 = r1

(
1+

access2
access1

)
(4)

The analysis of Core 2 is similar, so we get Eq. (5).

r̂2 = r2

(
1+

access1
access2

)
(5)

The stretch of the reuse distance obtained by the insertion
effect can be quantified by Eq. (4) and Eq. (5), which reflect
the procedure (A) in Fig. 5. According to the scale of the

stretch, the insertion effect can be described by Eq. (6):
RDH ′

(
r̂
)
= RDH1 (r1)+ RDH2 (r2)

r1 = r̂
/(

1+
access2
access1

)
r2 = r̂

/(
1+

access1
access2

) (6)

In Eq. (6), r̂ denotes the merged reuse distance. According
to the core that the reference comes from, r̂ can be specified
as r̂1 or r̂2. As shown in Fig. 5 (A), we can calculate the r̂1
and r̂2 by applying Eq. (4) and Eq. (5) to all reuse epochs
of Core 1 and Core 2, respectively. By combining all the
calculation results as shown in Fig. 5 (B), a new RDH can
be obtained, denoted as RDH ′. The result RDH ′ is a locality
metric that quantifies the insertion effect without considering
the split effect, or the influences caused by data sharing.

B. QUANTIFYING THE SPLIT EFFECT
In order to quantify the split effect, we first calculate the
probability of a reuse epoch with r memory references being
split, denoted as Psplit (r).

As we shown in Fig.4(c), the inserted references from the
other core may include one or more references that access the
same address as the endpoints due to data sharing. Once that
happens, the original reuse epoch will be split. In Fig. 4(c),
the reuse epoch is constructed by address A, therefore we
first estimate the probability of epochs constructed by address
A among all the reuse epochs of Core 1.We assume that
Core 1 generates n2 memory references, in which there are
n1 references accessing address A. The probability of the
reuse epochs constructed by address A can be estimated as
n1/n2. Also, a split only occurs when a reference b accessing
A, in which the reference b represents any reference coming
from Core 2 in the reuse epoch. During the same time span,
if Core 2 generates n3 references accessing address A and
the number of the references accessing the same cache set
as address A is n4, the probability of reference b accessing
A can be estimated as n3/n4. It should be noted that we use
the number of references accessing A’s set in the calculation
instead of the total number of references from Core 2 because
only the reference accessing the A’s set will be counted into
the reuse epoch constructed by address A. In conclusion,
the probability of the split in references with address A,
P1same−A, can be calculated as (n1/n2)× (n3/n4).

The total probability of any memory reference coming
from Core 2 accessing same address as the endpoints
is the sum of P1same−addrx , in which addrx denotes any
shared address of the shared cache accessed by Core 1 and
Core 2. Therefore, the derivation in common scenarios can
be represented as Eq. (7).

P1same =
∑

addrxεS

(
P1same−addrx

)
=

∑
addrxεS

(
AAD1 [addrx]

access1
×

AAD2 [addrx]∑
y∈x ′set AAD2 [y]

)
(7)
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In Eq. (7), S represents the shared address set of the shared
cache accessed by Core 1 and Core 2. AAD1 [addrx] /access1
means the ratio of references accessing addrx in all the
L2 shared cache references from Core 1. To split the reuse
epochs of addrx , the coming references from another core
should access the same address, whose probability can be
described as AAD2[addrx ]∑

y∈x′set AAD2[y]
. The numerator AAD2 [addrx] is

the number of the references that accessing the same address
addrx and the denominator

∑
y∈x ′set AAD2 [y] is the number

of the Core 2 references that accessing the same set with
addrx during this profiling interval. The ratio means the
probability of a reference coming from Core 2 accessing
the same address addrx in all references from Core 2 that
accessing the same cache set with addrx .

Similarly, the corresponding probability for Core 2 can also
be calculated in Eq. (8).

P2same =
∑

addrxεS

(
AAD2 [addrx]

access2
×

AAD1 [addrx]∑
y∈x ′set AAD1 [y]

)
(8)

Eq. (7) and (8) describe the probability of any reference
in a reuse epoch accessing the same address as the endpoint
reference. The reuse epoch will be split if there exist one or
more inserted memory references in a reuse epoch accessing
the same address as the endpoint. As every inserted reference
coming from another core has the probability Psame to
accessing same address with the target core, the probability of
the reuse epochs with the reuse distance r being spilt, denoted
as Psplit (r), can be calculated by subtracting the not splitting
probability from 1, represented as Eq. (9). Note that r is the
reuse distance before the stream merging, while the reuse
distance after merging is denoted as r̂ . Therefore, the number
of inserted memory accesses form the other core is r̂ − r .

Psplit (r) = 1− (1− Psame)r̂−r (9)

Eq. (9) can be specified for Core 1 and Core 2 as shown in
Eq. (10): {

Psplit (r1) = 1− (1− P1same)r̂1−r1

Psplit (r2) = 1− (1− P2same)r̂2−r2
(10)

Based on Eq. (10), the number of reuse epochs splitting
on the bar r̂ in RDH ′, denotedasN

(
r̂
)
, can be calculated as

Eq. (11).
N
(
r̂
)
=RDH1 (r1)× Psplit (r1)+RDH2 (r2)× Psplit (r2)

r1 = r̂
/(

1+
access2
access1

)
r2 = r̂

/(
1+

access1
access2

)
(11)

Eq. (12) gives the way to calculate the merged reuse
distance histogram from both cores MRDH(r̂). In this
equation, RDH ′(r̂) is predicted in Step 1 of Fig. 5. Because
of the split effect, the reuse distance of the references may be

decreased, i.e., some references with high reuse distance will
be migrated to the bars with lower reuse distances in Fig. 5.
Thus, N (r̂) means the number of references with the original
reuse distance of r̂ that will be spread to the bars with lower
reuse distances, which illustrated as dash boxes in Fig. 5 (C).
Assuming that the references evenly migrated to the bars with

lower reuse distances,
∞∑

rd=r̂+1

N (rd)
rd in Eq. (12) means the

reference numbers migrated from the bars with higher reuse
distances to the r̂ bar, which are represented as red boxes and
blue boxes shown in Fig. 5 (C).

MRDH
(
r̂
)
= RDH ′

(
r̂
)
− N

(
r̂
)
+

∞∑
rd=r̂+1

N (rd)
rd

(12)

Fig. 6 gives the methodology of extending our model
into a quad-core scenario. In this figure, there are 4 cores
connected to the L2 shared cache. When we predict the
portion of MRDH contributed by Core 1 (target core),
we consider the other three cores as a black box, called
virtual Core_v2 in Fig. 6 and the reference streams from other
three cores are just considered from Core_v2. Therefore,
when we calculate Psame for Core 1, the probability that
the coming reference from other three cores accessing the
same address with the endpoint reference will be described as
AADcore_v2[addrx ]∑
y∈x′set AADcore_v2[y]

. After considering each core as the target
core and accumulating the portions of MRDH contributed by
all the 4 cores,MRDHof the L2 shared cache can be obtained.
Processors with more cores can be predicted in the same way.

FIGURE 6. Extending our model into a quad-core environment.

IV. INTEGRATING WITH THE UPSTREAM CACHE MODEL
The proposed shared cache model can be integrated with
the upstream cache model [7], which provides AAD and
RDH to the shared cache model, to avoid time-consuming
simulations. However, before the integration, there are still
two problems need to solve: 1) Extracting AAD by adding
customized code in the original upstream cache model;
2) Quantifying the coherence misses that ignored by the
original model. We will start from the introduction of the
upstream cachemodel and how to extract needed information.

A. UPSTREAM CACHE MODEL
In this article, we chooseGe’smulti-level cachemodel [6], [7]
as the upstream cache model. The multi-level cache model
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FIGURE 7. The RST table and Normalized RST table (Prs).

proposes two new metrics, namely the Reuse-and-Stack-
Transfer (RST) table and the Hit-RDH table. RST table is
a two-dimensional matrix, which records information of the
RDH and the SDH in a given trace profiling interval in the
L1 cache. As the example shown in Fig. 7, every element
in the RST table contains the relationship between the reuse
distance and the stack distance. The red circle RST [1], [4]
in Fig. 7 represents there are 320 references in this interval
with the reuse distance of 4 and the stack distance of 1.
Moreover, for given references with the reuse distance of i,
we use Eq. (13) to calculate the normalized RST table,
called Prs. This model defines each element Prs [i] [j] as the
probability that the references have the stack distance of j,
which is the proportion of RST [i] [j] in the whole ith row. For
instance, as shown in Fig. 7, the red circle in the normalized
RST table means that in all references with the reuse distance
of 4, 76% references have the stack distance of 1.

Prs [i] [j] =
RST [i] [j]∑i
k=0 RST [i] [k]

(13)

Another metric, Hit-RDH, introduced in the model is also
a two-dimensional matrix. Fig. 8 shows an example of Hit-
RDH. The red circle in Fig. 8 means that in all the reuse
epochs with the reuse distance of 4, the number of reuse
epochs that have 2 references hitting in the L1 cache is
310. In other words, there are 310 reuse epochs whose reuse
distance are 4 and in each of them there are 2 references hit
in the L1 cache. By Eq. (14), we can also get the normalized
Hit-RDH, called PNhit , as shown in Fig. 8. PNhit [i] [j] is the

FIGURE 8. The Hit-RDH and Normalized Hit-RDH (PNhit
).

proportion ofthe HitRDH [i] [j] in the whole ith row.

PNhit [rd] [n] =
HitRDH [rd][n]∑rd
k=0HitRDH [rd][k]

(14)

To construct RST and Hit-RDH tables for a set-associative
cache, we need to maintain two linked-lists to record the
reuse/stack history of each memory access that indexed to
every individual cache set. When a memory reference A
comes, as Fig. 9 shows, the index bits are firstly used to
address the corresponding set linked-lists, while the extracted
tag is pushed to ends of the reuse reference list and the
stack reference list. By using this method, we can get the
reuse distance and the stack distance for each memory
reference. To construct the RST and Hit-RDH tables, we
just need to increase the value by one in the corresponding
element of each table for each coming reference, as shown
in Fig. 9. Similarly, Fig. 9 also shows the process of obtaining
AAD. After calculating the stack distance, we compare the
stack distance with the associativity of the LRU L1 cache.
If the stack distance is no less than associativity, which
indicates a cache miss, we accumulate 1 on the corresponding
memory address in AAD. To make a tradeoff between
space/time overheads and accuracies, we choose to cut of
the profiled L1 reuse/stack distances at 1024 and accumulate
the number of references with larger reuse distances to the
reuse distance bar of 1024, which is also applied in the work
of [11]–[13], [16]. The RST, Hit-RDH and AAD updating
procedures are just attached to the progress of RDH and SDH
profiling. Thus, the extra time overhead of maintaining these
three tables is negligible.

FIGURE 9. The Reference lists used to extract RST and AAD.

Limited by the space, we only introduce the key derivation
of the upstream cache model, interested readers can refer to
the original article [7] to get more detailed information.

After filtering by L1 cache, the changes of L1 cache RDH
can be divided into two parts: 1) Some references are hit in the
L1 cache, so the L2 cache will not be accessed, and the total
number of memory accesses to the L2 cache will be reduced.
Reflected on the RDH, the height on the histogram will be
decreased; 2) For a given reuse epoch in the L1 cache, some
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references between the epoch endpoints may hit in the L1
cache. Thus, when the reuse epoch leaked into the L2 cache
(assuming the two endpoints are all misses), its reuse distance
might be decreased (fewer references remained between the
end points of the reuse epoch) and the reuse epoch should be
counted to a lower L2 reuse distance. Fig. 10. shows these
two steps for estimating L2RDH from L1RDH.

FIGURE 10. Two steps from L1 RDH to L2 RDH.

For a reference accessing to L1 cache, the model use Prs to
estimate its stack distance. According to the definition of Prs,
RDH (i)× Prs [i] [j] represents the number of references that
reuse distance is i and stack distance is j in the RDH. If stack
distance j is less than the associativity, these references will
hit in L1 cache. Otherwise, they will access L2 cache and
become parts of L2RDH. Therefore, the reduced number of
references in RDH can be represented by Eq. (15).

MissRDH (i) = RDH (i)×

1−
L1Assoc−1∑

j=0

Prs [i] [j]

 (15)

By the definition, PNhit [rd] [n] means that in all the reuse
epochs with the reuse distance of rd , the proportion of the
reuse epochs which have n hit references in each of them.
If the reuse distance of a reuse epoch in the L1 cache is
rd while its L2 reuse distance is i, this means there are
rd − i references in this reuse epoch hit in the L1 cache
and the ratio of these references is PNhit [rd] [rd-i]. Eq. (16)
shows the way to get the L2RDH from MissRDH . In this
equation, MissRDH (rd) × PNhit [rd] [rd-i] represent show
manymemory references with L1 reuse distance rd have been
moved, or migrated, to a L2 reuse distance bar i because there
are averagely rd− i references are L1 hits in each of the reuse
epoch. By accumulating all themigrated references from each
higher bar (rd > i) in MissRDH (rd), we can obtain the
adjusted L2RDH (i) as shown in Eq. (16).

L2RDH (i) =
∞∑
rd=i

MissRDH (rd)×PNhit [rd] [rd-i] (16)

B. QUANTIFYING PRIVATE CACHE COHERENCE MISSES
Unfortunately, the introduced upstream cache model is built
in a uni-core architecture without considering coherence

misses in multi-core architectures. To integrate the model
with the shared cache model, we must quantify the upstream
private cache coherence misses.

We first make some assumptions to simplify our
discussion:
• The coherent protocol is a protocol based on write
invalid rather than a write update.

• When there is a coherence miss, the cache controller
will obtain the cache line from other private caches
or from the main memory without accessing the
downstream cache. The reason why this assumption
is needed is that the current write invalid coherent
protocol, such as MESI (Modified, Exclusive, Shared,
Invalid), only guarantee the state of a cache line without
implementation details [18]. To simplify our model,
we make this assumption.

• There are little coherence misses in the shared cache.
Generally, coherence misses occur in the L1 private
cache. The shared cache, e.g., L2 cache, is less affected
by coherence misses than L1 private caches. Moreover,
coherence misses of the shared cache are affected by
write backs, which is hard to quantify by an analytical
model based on RDH.

• Memory accesses are independent and uniformly dis-
tributed on different addresses.

FIGURE 11. An example of coherence miss.

Fig. 11 gives an example of a coherence miss. The shared
cache line A is accessed by the two cores. At time t1, Core 1
accesses the cache line A, its state is set to E(Exclusive)
in private cache of CPU 1. Then at the time t2, another
core CPU 2 writes new data to cache line A and sends an
invalid signal to CPU 1 to invalidate the cache line A in the
private cache of CPU 1, the states of cache line A in private
cache of CPU 1 and CPU 2 are I(Invalid) and M(Modified),
respectively. Therefore, when the CPU 1 accesses the cache
line A again at time t3, the cache line A is still in private cache
of CPU 1 but its state is I(Invalid), which causes a coherence
miss in the private cache of CPU 1.

As shown in Fig. 11, the coherence miss occurs when
a core accesses an invalid cache line in its private cache.
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The invalid state is caused by receiving invalid signals from
other cores. The invalid signal is sent at the moment when
the shared cache is written by other cores to change its
content.Moreover, if the invalid cache line was evicted before
the second reference, the miss is a capacity miss or a conflict
miss instead of a coherence miss. Therefore, two conditions
must be met when a coherence miss occurs: 1) During the
period of two consecutive references from one core to an
address, there are a write operation to the same address from
another core; 2) When the second reference in the first core
accesses the cache line, it is still in the private cache but with
an invalid state.

As the coherence miss occurs after write references to a
shared cache line, we need obtain extra two input parameters,
L1AAD (L1 private cache Access Address Distribution
containingwrite and read accesses) and L1WAAD (L1 private
cache Write Access Address Distribution), to quantify the
coherence miss. The definitions of these two parameters
are similar to AAD described in Section III. The difference
is that L1AAD and L1WAAD is the address distribution
from CPU that accesses its L1 private cache, while AAD
in Section III is the accessing address distribution from
L1 caches to L2 shared cache. Both L1AAD and L1WAAD
can be obtained directly from the CPU traces generated by a
trace generator or a binary instrumentational tool.

As we have known, a coherence miss occurs after the
write reference to the shared cache line. Therefore, the way
of modeling coherence miss is similar to modeling data
sharing. Thus, modeling the probability of coherence miss
also can be divided to two steps: 1) Calculating the probability
Psame−write that any reference comes from another core
accesses same address with the endpoint of the reuse epoch of
the target core; 2) Calculating the probability Psplit−write that
reuse epochs are split by shared write reference coming from
another core. With the experience of modeling data sharing
in Section III, we can analogize to calculate Psame−write in
Eq. (17) according to Psame.

P1same−write
=

∑
addrxεS

(
P1same−write−addrx

)
=

∑
addrxεS

(
L1AAD1 [addrx]

L1access1
×

L1WAAD2 [addrx]∑
y∈x ′set L1AAD2 [y]

)
(17)

In the Eq. (17), S represents the shared data set accessed by
the two cores, addrx is the address of the shared data in the
set S. L1AAD1 [addrx] is the number of references that access
addrx in L1 private cache of Core 1. L1_access1 is the total
number of the reference from Core 1. Therefore, their ratio
L1AAD1[addrx ]
L1_access1

represents the probability that reuse epochs are
constructed by references accessing to addrx in all references
from Core 1. Meanwhile, L1WAAD2[addrx ]∑

y∈x′set L1AAD2[y]
represents the

probability of shared write references to addrx in all
references from Core 2. The numerator L1WAAD2 [addrx] is

the number of writings that access addrx in L1 private cache
of Core 2, while the denominator is the total number of the
references that accessing same set as addrx from Core 1. It is
obvious that Eq. (7) and Eq. (17) are very similar in the form
as well as insight. This is because Eq. (7) quantifies the data
sharing of the shared L2 cache including reading and writing,
while Eq. (17) only quantifies the shared writing of L1 private
cache.

Similar to Eq. (9), the probability P1split−write that reuse
epochs with reuse distance r are split by shared write
references come from another core can be represented by
Eq. (18):

P1split−write (r) = 1− (1− P1same−write)r̂−r (18)

In Eq. (18), r̂ − r is the number of references inserted by
another core between endpoints of the reuse epoch. Assuming
that access frequency from the two cores to its private cache
remains relatively uniform, we can derive Eq. (19):

r̂ − r = r ×
L1_access2
L1_access1

(19)

L1_access1 and L1_assess2 are the access times during
the same execution interval by Core 1 and Core 2 to
their corresponding private caches. Eq. (18) describes the
probability P1split−write that reuse epochs are split by shared
write references coming from another core. Considering
another condition of a coherence miss is the accessed cache
line still remaining in the private cache, the number of
coherence misses can be evaluated by Eq. (20):

Miss1coherence

=

∞∑
r=0

P1split−write (r)
L1assoc1−1∑

sd=0

RST1 [r] [sd]


(20)

In Eq. (20),
∑L1assoc1−1

sd=0 RST [r] [sd] represents the number
of references reuse distance is r and stack distance is less than
the associativity. These references should be hits in the private
cache, but some of them might be coherence misses. For the
references with reuse distance r,P1split−write (r) is the proba-
bility the reuse epochs are split by shared writings. Therefore,
the product of P1split−write (r) and

∑L1_assoc1
sd=0 RST1 [r] [sd]

represents the number of coherence misses with reuse
distance r . Accumulating all reuse distances from 0 to
infinity, we can calculate all the number of coherence misses
of Core 1.2

In the same manner, the number of coherence misses of
Core 2 can be estimated by Eq. (21) as shown at the bottom
of the next page.

Although our derivation is based on a dual-core archi-
tecture, it can be easily extended to other multi-core
architectures, like we have introduced in Fig. 6.

2In this article, we assume the L1 private caches use LRU replacement
policy, which is commonly seen in commercial processors. It is also worth
to note that we cut off the reuse distance extraction at 1024, as we mentioned
in Section IV.A. Therefore, accumulating reuse distances in Eq. (20) and
Eq. (21) actually is from 0 to 1024.
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C. THE INTEGRATION OF DWONSTREAM AND
UPSTREAM CACHE MODELS
Actually, the integration of downstream and upstreammodels
is the data flow between twomodels. In the introduction of the
upstreammodel, we have simply introduced how to obtain the
input parameter of the downstreammodel. In order to explain
more clearly, this section will introduce the input and output
relationships between models in detail.

Fig. 3 shows the data flow of our model framework.We not
only profile RST, Hit-RDH and L1RDH input to the upstream
cache model, but also profile L1AAD and L1WAAD for
the coherence miss model. These inputs are all profiled
from CPU trace without time-consuming simulations. The
upstream model outputs L2RDH to the shared cache model
and obtains AADby updating code in profiling of RST, which
is shown in Fig. 9.

All inputs to the model framework are originally from
the CPU traces, some of the input parameters are directly
obtained from the CPU trace, and other parameters can be
derived through the analytical model. Therefore, the model
does not depend on the timing simulations of the cache
system, which improves the evaluating efficiency of our
approach.

V. EVALUATION
The validation including two parts: validating the shared
cache model independently, validating the integration of the
upstream model and the shared cache model.

A. VALIDATING THE SHARED CACHE MODEL
We validate our shared cache model against gem5 simula-
tions [19] with the PARSEC version 2.1 on a disk image
provided by Computer Architecture and Technology Labo-
ratory, Department of Computer Science of the University of
Texas at Austin [20]. The disk image contains pre-compiled
statically linked Alpha binaries for all the 13 PARSEC
2.1 benchmarks. The simsmall input set of the benchmark
is selected in our experiment to limit the simulation time.
The applications are divided into three phases: an initial serial
phase, a parallel phase, and a final serial phase. Considering
that our model focuses on data sharing, we merely perform
the validation in the parallel phase, which is also called region
of interest(ROI). During this evaluation, the input L2RDHs
of the shared cache model are obtained from detailed

simulations of each core. We compare the L2 cache miss
rates with the gem5 results under 8 hardware configurations
including dual-core and quad-core architectures. Each core
has private L1 caches, and shares L2 cache with the others.
The detailed hardware configurations are shown in TABLE 1.

TABLE 1. Multi-level Cache Hardware Configuration.

Fig. 12. and Fig. 13. show the experimental results of
our model for the 8 hardware configurations, in which the
Y axis represents the L2 cache miss rate. Considering that
our model’s error compared to Gem5 simulations includes
the error caused by StatStack, we add the purple bars,
i.e., Gem5+StatStack, in the figures besides the L2miss rates
derived from StatCC, gem5 simulations and our method. The
L2 miss rates of the purple bars are calculated by StatStack
fed with L2MRDH profiled in gem5 simulations. Owing to
that our work focuses on the construction of L2MRDH, both
our error and StatCC’s error are calculated by comparing
their results to those of ‘Gem5+StatStack’ to eliminate the
influences from StatStack model.

The average absolute errors of our model and StatCC under
dual-core and quad-core architectures are shown in TABLE 2.
According to the figures, we can see that our method is much
more accurate than StatCC under three benchmarks, namely
canneal, fluidanimate and vips. The average absolute errors
of our model and StatCC with these benchmarks are also
shown in TABLE 2.

As we can conclude, although the average absolute error of
our model of all benchmarks in the dual-core configurations



P2same−write =
∑

addrxεS

(
L1AAD2 [addrx]
L2_access1

×
L1WAAD1 [addrx]∑
y∈x ′set L1AAD1 [y]

)
P2split−write (r) = 1− (1− P2same−write)r̂−r

r̂ − r = r ×
L1_access1
L1_access2

Miss2coherence =
∞∑
r=0

[
P2split−write (r)

(
L1_assoc2∑
sd=0

RST2 [r] [sd]

)] (21)
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FIGURE 12. Comparison of L2 miss rates in dual-core architectures.

FIGURE 13. Comparison of L2 miss rates in quad-core architectures.

TABLE 2. Average Absolute Errors of the Evaluation Results From our
Model and STATCC.

is only slightly lower than that of StatCC, the error difference
between these two models under the quad-core environment
has been significantly enlarged. Furthermore, if we only
consider the influences of aforementioned three data-sharing
intensive benchmarks, the accuracy advantage of our model
is apparently obvious and the average errors of our model are
less than one third of those of StatCC.

B. VALIDATING THE INTEGRATION OF UPSTREAM CACHE
MODEL AND DOWNSTREAM CACHE MODEL
The validation of integration of the upstream cachemodel and
the shared cache model includes validating the accuracy of
L1 private cache coherence misses and L2 shared cache miss
rate under 4 cache configurations shown in Table 3.

It should be noted that the ‘‘L1 cache size’’ in TABLE 3
is the size of L1 data cache instead of instruction cache.

TABLE 3. The Four Cache Configurations.

Actually, the size of instruction cache is set as 1MB
and 64 associativity to minimize the influences from the
L1 instruction cache. Considering the worsening locality in
L2 cache, Random replacement policy is also selected to
evaluate our model framework.

Fig. 14 shows the results of the coherence miss model
compared to results from gem5 in 4 dual-core architectures.
Each benchmark has two columns to show the results
from core1 and core2, respectively. The height of each
bar is normalized to the gem5 simulation result of the
corresponding benchmark. We validate the integrated model
framework against gem5 simulations [17] with PARSEC 2.1.
We choose 10 programs in PARSEC to run on four hardware
configurations in a dual-core architecture. The detailed four
cache configurations are shown in TABLE 3, while other
hardware parameters are same as TABLE 1.
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FIGURE 14. The results of our coherence miss model under four Configurations(left column shows the result for core1 and right column shows the result
for core2 in each benchmark. All results are normalized to the results from gem5 simulations).

To distinguish the misses caused by coherence actions,
we break down the total L1 cachemisses into three categories,
namely cold misses, conflict misses and coherence misses.
As we can find in Fig.14, for some benchmarks, such
as freqmine and streamcluster, coherence misses take an
obvious part of the total cache misses.

The normalized L1 cache miss is calculated by Eq. (22):

Normalize L1 cache miss =
misses from our model
misses from gem5

(22)

The error of coherence miss model is calculated by
Eq. (23):

Error of L1 cache miss

=

∣∣∣∣misses from gem5− misses from our model
misses from gem5

∣∣∣∣× 100%

(23)

As shown in Fig. 14, the normalized L1 misses of most
programs before refining (composed by cold misses and
conflict misses) by our coherence miss model is near to 1,
which means these programs have relatively few coherence
misses that shown in purple. Luckily, the results after the
application of our coherence model keep the accuracies. For
programs with many coherence misses, for example freqmine
in Fig. 14(a), cache misses predicted by the conventional
method show significant errors compared to the simulation
results. Fortunately, the refined results by our model are
close to 1, or the simulation results, which demonstrates the
effectiveness of the coherence miss model.

To show the error changes before and after the application
of our coherence model more clearly, we give the comparison
of the average errors of coherence misses between our model
and uniform model in [24] of 4 hardware configurations
in Fig. 15. According to the comparison results, the average
errors of L1 cache misses from our model and uniform
model show a similar precision. While the time overhead
of our model and uniform model shows a big difference.
Though the overall time consumption contains instruction
tracing, profiling and model calculation, the calculation of
cache misses is based on the formulas that the time overhead
of model calculation is much lower than that of others.

FIGURE 15. Average Errors of L1 Cache Misses.

Therefore, this article mainly compares the average time
overhead of instruction tracing and profiling in Fig. 16.
As shown in the figure, our work takes almost one-tenth
of uniform model’s time consuming. Since uniform model
needs to record the RDH/SDH of each shared written address
by searching through all the accessed addresses, our work
only records the RDH/SDH of each core that reduces much
profiling time and memory space.

FIGURE 16. Comparisons of Estimation Time.

We also validate the total errors after the integration of the
upstream and the shared cache models, the result is shown
in Fig. 17. The error is calculated by Eq. (24):

error = |MRmodels −MRgem5| (24)

As shown in the Fig. 17, the largest error of the integrated
model in the four configurations is about 8% and the average
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FIGURE 17. The result of the integrated model framework in four configurations.

error of the four configurations is 4.82%. As the inte-
grated model framework integrates three analytical models
(upstream cache model, shared cache model and StatStack
model), each of which contains some ideal assumptions to
simplify the modeling, this may enlarge the final errors. For
example, all the three models assume that the references are
uniform and independent. It is obvious that the assumption
could not be reality. We believe the error around 4.8% is still
reasonable and acceptable considering the speed advantage
brought by the absence of time-consuming simulations in our
evaluation framework.

Considering the filter effect of L1 caches, if the hit rates
of the first level cache are very high, the number of memory
accesses leaked to L2 cache could be very small. In this case,
very small number of L2 cache misses, e.g., cold misses,
could have a very high miss rate. Therefore, MPKI (Misses
Per Kilo Instructions), defined in Eq. (25), may be a better
metric to measure the performance of L2 cache.

L2 MPKI = 1000×
cache misses

total executed instructions
(25)

As shown in Fig.17 and Fig.18, the L2 MPKIs are not
always consistent with the corresponding L2 cachemiss rates.
For example, the L2 cache miss rates of fluidanimate and
freqmine under configuration 1 and configuration2 are higher
than that of dedup, while their MPKIs are lower than that of
dedup. Fig.18 also compares the results from our model with
the ground truth fromGem5 simulations. The average error of
MPKIs under four configurations is 4.72%, which is similar
to that of the cache miss rate prediction.

VI. APPLICATION OF THE INTEGRATED MODEL
Early in the design cycle, architects often use design space
exploration(DSE) to determine the choice of processor
architecture parameters. For processor architecture design,
there are many dimensions that can be selected on the
hardware, such as the instruction issue width, ROB size,
and the cache capacity. There are many hardware parameters
that can be selected for each dimension. These hardware
parameters will affect the performance of the processor.
For an application that runs on this processor, there is

an optimal parameter combination in the design space to
achieve performance and energy goals. The purpose of
design space exploration is to find such optimized parameter
combinations.

For the cache system this article focuses on, the dimensions
include cache capacity, cache associativity, replacement
strategy, etc. The optimization goals can be missing rates,
power consumption, etc. [19]. By exploring the design space
of the cache systems, we can find the optimized cache
hardware parameters to achieve the optimized design for the
specified target.

Since the design space is usually a combination of param-
eters of different dimensions, the design space increases
exponentially as the dimension increases. If every node in
the design space adopts timing simulations to evaluate its
performance, the exploration of the entire design space will
be extremely time-consuming. Therefore, an analyticalmodel
becomes a better choice with the advantage of speed.

In this section, the integratedmodel is used as an evaluation
tool to explore the design space of cache capacity and
associativity. In the example of design space exploration,
the dual-core processor architecture shown in Fig. 1 is used.
The cache system of the dual-core architecture includes
private L1 cache and shared L2 cache, because the sharing
and competition between cores occurs in the L2 shared cache,
and once the reference to the shared cache is a miss, it needs
to access the off-chip main memory. The time cost of an
off-chip access is 2 to 3 orders of magnitude higher than that
of an on-chip memory access. Therefore, in order to ensure
the service capability of the entire storage system, the design
space exploration will use cache miss of the L2 shared cache
as the optimization goal.

Considering different L1 cache hardware parameters
results in a different total number of references to the
L2 shared cache, it is more reasonable to use the number of
misses as an indicator than the miss rate. We use canneal in
the PARSEC suite as an example to conduct the evaluation
experiment.

The DSE will explore four design choices: L1 cache
capacity, L1 cache associativity, L2 cache capacity and L2
cache associativity. We choose 57 hardware configurations
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FIGURE 18. The result of the L2 MPKI in four configurations.

FIGURE 19. The L2 miss under 57 kinds of configurations.

including partial combinations of L1 cache capacity from
16KB to 256KB and L2 cache capacity from 32KB to
4MB. Except for cache capacity and associativity, all
other hardware configurations are the same as Section V.
Fig. 19 shows the L2 misses that estimated by the proposed
model under 57 cache configurations, in which the abscissa
represents the parameters of the cache configuration. For
example, ‘‘16k-64k-2-8’’ means 16KB L1 cache and 64KB
L2 cachewith L1 and L2 associativity of 2 and 8, respectively.
The ordinate is the number of L2 shared cache misses, which
is estimated by our model in an execution interval with
10 million memory access instructions.

The total cache capacity (the sum of L1 Cache capacity
and L2 Cache capacity) on the abscissa shown in Fig. 19 is
increasing, so the L2 misses have a decreasing trend.
However, the points in this figure are not strictly decreasing
in sequence, which means different parameter combinations
also have a non-negligible effect on the L2 shared cache
misses. According to the results in Fig. 19, if there are no
additional constraints such as power consumption and area
in the processor design within the search range, selecting
the configuration ‘‘128k-4M-2-64’’ can achieve theminimum
number of L2 shared cache miss, the point is marked with
a purple circle in Fig. 19. If there is a constraint that the

cache capacity does not exceed 1M, then ‘‘16k-512k-2-64’’
will be the best parameter selection, marked with a red circle
in Fig. 19. According to different design requirements, the
optimal configuration within the selectable range can be
guided and selected in these configurations. In addition, some
data in Fig. 19 can also bring some guiding significance
for the architect. For example, under the same capacity
of L1 cache and L2 cache, the greater the associativity,
the smaller the number of L2 cache misses. It means that
for the canneal program, under the same capacity constraints,
choosing the larger associativity may result in better L2 cache
performance.

VII. CONCLUSION
In this article, we have proposed a data-sharing aware
shared cache miss rates model for multi-core processors
with multi-level cache hierarchies. The Merged Reuse
Distance Histograms (MRDH), which represents the RDH
of the interleaved access streams from individual cores,
is evaluated based on the L2 RDHs and AAD, or Accessing
Address Distribution, output by an upstream cache model to
avoid the time-consuming full simulations that needed by
conventional methods. By a detailed probability derivation,
the reuse epoch spit effect, which caused by the data sharing
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accesses from different cores, can be quantified and used
to adjust the MRDH, from which the cache miss rates of
the L2 shared cache can be obtained. Moreover, we also
refine the upstream cache models with the consideration
of multi-core private cache coherent effect. The absolute
average errors of 13 benchmarks of the shared cache model
are only 1.2% and 1.3% under dual-core and quad-core
configurations, respectively. While the average errors of the
3 data-sharing intensive benchmarks are merely one third of
those of StatCC. After integrated with the upstream model,
the overall average absolute error is 4.82% in 4 hardware
configurations. As an example of the proposed model’s
application, we also evaluate the L2 cache performance under
57 different cache configurations to select the optional design
points.
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