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ABSTRACT Model updating can improve the accuracy of the multistage gearbox dynamic model (MGDM).
However, owing to the time-consuming calculations and numerous parameters of the MGDM, previous
updating methods are not suitable for updating the MGDM. To solve the above problems, an improved
dynamicmodel updatingmethod that is suitable for updating theMGDM is proposed in this paper. Compared
with previous methods, this updating method presents two improvements: (1) In the iterative calculation
process, the surrogate model is used to replace the time-consuming MGDM, thereby solving the problem
of low computational efficiency; (2) before the updating calculation, Sobol sensitivity analysis is performed
to screen out updating parameters from numerous parameters. This study shows that the accuracy of the
updated MGDM improved significantly compared with the initial model, thereby enabling a more accurate
prediction of the dynamic characteristics of the actual system. This proves the effectiveness of the improved
updating method.

INDEX TERMS Gear, gearbox, dynamic model, updating method, sensitivity analysis, surrogate model.

I. INTRODUCTION
Multistage gearboxes are widely used in vehicles, aviation,
aerospace, marine, and other fields [1]–[3]. In dynamic
design, the establishment of a multistage gearbox dynamic
model (MGDM) that can reflect the dynamic characteristics
of the actual system is the basis for response prediction, sys-
tem optimization, and vibration evaluation. However, owing
to the complexity of the multistage gearbox as well as sim-
plifications and assumptions made in modeling, it is difficult
for the initial MGDM to reflect the dynamic characteristics
of the actual system. Therefore, it is necessary to update the
initial MGDM based on experimental results to improve the
accuracy of the calculation results.

The model updating is based on the experimental results,
and the error between simulation and experimental results
is minimized by adjusting the matrix or parameters appro-
priately to improve the model accuracy [4]. Currently,
model updating methods are primarily categorized into direct
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updating and iterative updating [5]. The updating object of the
direct updating method is typically the model matrix, i.e., the
model can be updated directly by adjusting the mass, stiff-
ness, or damping matrix of the model. Although this method
can improve the model accuracy, it is difficult to determine
the physical sense of the updated model matrix. The updating
object of the iterative updating method is generally the model
parameters. This method not only affords a good updating
effect but also retains the original physical sense after the
updated parameters are determined. However, the iterative
updating method typically requires a large amount of iter-
ative calculations to complete the model updating. When
the previous iterative updating method is directly used to
update the MGDM, its updating efficiency is extremely low.
However, the development of surrogate models can solve the
low updating efficiency problem of the MGDM [6]–[9].

The essence of the iterative updating method is to apply the
optimization algorithm to find the optimal parameters within
the value range of the updating parameters such that the
simulation results are closest to the experimental results [10].
However, when many updating parameters are involved,
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the previous iterative updating method is directly used to
update the MGDM; this not only results in an extremely
low computational efficiency but also renders it easy for the
updating target to fall into a local optimum [11]. Therefore,
the screening of both updating and sensitive parameters are
critical for MGDM updating. Sensitivity analysis can eval-
uate the effect of each parameter on the system output and
is an effective method to screen the updating parameters.
The Sobol method is a sensitivity analysis method based
on variance [12] that can effectively determine the sensitive
parameters and provide an important basis for the screening
of updating parameters for the MGDM.

In summary, improving the calculation efficiency and
screening the updating parameters are important prereq-
uisites and key issues in updating the MGDM. However,
the previous updating methods have failed to solve these
problems; therefore, it is difficult to update the MGDM.
Hence, based on a surrogate model and sensitivity analysis,
an improved dynamic model iterative updating method is
proposed herein. First, the MGDM was established using the
lumped parameter/finite element method. Subsequently, krig-
ing (KRG), a radial basis function (RBF), and a support vector
machine (SVM) were used to construct surrogate models of
the MGDM. KRG was selected as the final surrogate model
for the subsequent Sobol sensitivity analysis and genetic
updating through accuracy comparison. Next, Sobol sensitiv-
ity analysis was performed to screen the updating parameters
of the MGDM. Finally, the genetic algorithm was used to
determine themost suitable parameters within the value range
of the updating parameters to minimize the errors between
simulation and experimental results. The remainder of this
paper is organized as follows: In Section 2, the surrogate
model and Sobol sensitivity analysis theory are introduced.
Section 3 presents the use of the lumped parameter/finite
element method to establish the MGDM. The update of
the MGDM using the proposed updating method is pre-
sented in Section 4. Finally, the conclusion is presented in
Section 5.

II. THEORY
This section introduces the surrogate model and Sobol sensi-
tivity analysis theory employed in this study.

A. SURROGATE MODEL
The surrogate model can accurately reflect the relationship
between the input and output of the MGDM, thereby effec-
tively replacing the MGDM. Compared with the MGDM,
the surrogate model requires less computation, and its predic-
tion accuracy satisfies the analysis requirements. Therefore,
the surrogate model was adopted in this study, replacing
the time-consuming MGDM, to solve the problem of low
computational efficiency.

Currently, surrogate models suitable for the MGDM with
high-dimensional input include KRG, the RBF, and the
SVM. This section introduces the theory of these surrogate
models.

1) KRG
KRG is an unbiased estimation model with minimum esti-
mation variance that has been widely used in engineering
because of its good fitting ability [13], [14]. The predicted
value y(x) of KRG comprises a regression part and a non-
parametric part. It is expressed as

y(x) =
k∑
j=1

βjfj(x)+ z(x), (1)

where x represents the training sample; βj represents the
regression parameters; fj(x) represents the polynomial func-
tion of the training sample; and z(x) represents the random
error, and its covariance is expressed as [13], [14]

cov
[
z(xi), z(xj)

]
= σ 2

N∑
n=1

Rn(dn), (2)

where N represents the number of input variables.
dn =

∣∣∣x in − x jn∣∣∣ the distance between sample points xi and

xj in the nth variable, and σ 2 the variance of z(x).

2) RBF
RBF is used to fit multivariate functions using discrete
data [15]–[17]. Typically, RBF is used as a Gaussian function,
expressed as follows:

R(xi − cp) = exp(−
1

2σ 2

∥∥xi − cp∥∥2), (3)

where xi(i = 1, 2, . . . , l) represents the training sample, l
represents the sample number, cp represents the center value
of the Gaussian function, and σ represents the variance of the
Gaussian function.

Finally, the output of RBF is constructed via linear super-
position, as follows:

yj =
h∑
i=1

ωij exp(−
1

2σ 2

∥∥xp − cp∥∥2), (4)

where ωij(i = 1, 2, . . . , h; j = 1, 2, . . . , t ) represents the
connection weight between the hidden layer node i and output
layer node j, h represents the node number of the hidden
layer, t represents the node number of the output layer, and yj
represents the predicted value of output layer node j.

3) SVM
SVM can establish a regression function between the input
and output of the original model to replace the original
model [18]–[20]. The expression of the mapping relationship
between model input x and output f (x) is as follows:

f (x) = w · φ(x)+ b, (5)

where φ(x) represents the mapping function. w and b are the
parameters to be calculated, which can be obtained using the
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following optimization model [18]–[20]:
min R(w, ξ, ξ∗, ε) = 1

2 ‖w‖
2
+ C(νε + 1

l

l∑
i=1

(ξ + ξ∗))

s.t.


yi − wφ(xi)− b ≤ ε + ξi i = 1, 2, · · · , l
wφ(xi)+ b− yi ≤ ε + ξi
ξ
∗

i , ε ≥ 0,
(6)

where ξ and ξ∗ represent slack variables, ε represents the
training error,C represents the penalty factor, and l represents
the total number of samples.

By introducing the Lagrangian function, Eq. (6) can be
rewritten to calculate the form of the Lagrangian operators
αi and α∗i , namely

maxR(αi, α∗i ) =
l∑
i=1

yi(α∗i − αi)

−
1
2

l∑
i,j=1

(αi − α∗i )(αj − α
∗
j )K (xi, xj)

s.t.



l∑
i=1

(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C/l
l∑
i=1

(αi + α∗i ) ≤ C · v,

(7)

where K (xi, xj) represents the kernel function, expressed as
follows:

K (xi, xj) = exp(−γ
∥∥xi − xj∥∥2), γ ≥ 0, (8)

where γ represents the nuclear parameters.
The expression to calculate the predicted value is

f (x) =
l∑
i=1

(α∗i − αi)K (xi, xj)+ b. (9)

B. SOBOL SENSITIVITY ANALYSIS
The Sobol method is a quantitative sensitivity analysis
method based on variance that can quantitatively evaluate the
effect of each input variable on the system output [21]. The
Sobol method was used in this study to analyze the parameter
sensitivity of the MGDM to screen the updating parameters.
This section introduces the theory of the Sobol method.

It is assumed that the analytical model can be decomposed
into a sum of 2k terms, expressed as follows:

Y = f0 +
k∑
i=1

fi(xi)+
k∑
i<j

fij(xi, xj)+ · · ·

+ fi,2,··· ,k (x1, x2, · · · , xk ), (10)

where 
f0 = E(Y )
fi(xi) = E(Y/xi)− f0
fij(xi, xj) = E(Y/xi, xj)− f0 − fj,

(11)

where f0 represents a constant, fi represents the effect of
variable xi on the system output, and fij represents the effect
of the combined action of variables xi and xj on the system
output.

If the variables are independent of each other, then each
term on the right side of Eq. (10) is orthogonal to each
other, and the covariance is zero. Therefore, the expression
of Eq. (10) after calculating the variance is as follows:

V (Y ) =
k∑
i=1

Vi(xi)+
k∑
i<j

Vij(xi, xj)+ · · ·

+Vi,2,··· ,k (x1, x2, · · · , xk ) (12)

Among them,{
Vi = Varxi (Ex∼i(Y |xi))
Vij = Varxij (Ex∼ij(Y |xi, xj))− Vi − Vj,

(13)

where V (Y ) represents the total variance, Vi represents the
variance of variable xi to the system output, and Vij represents
the variance of the system output due to the simultaneous
action of variables xi and xj.

The local sensitivity Si represents the effect of individual
variable xi on the system output, calculated as follows:

Si =
Vi

V (Y )
(14)

The global sensitivity STi represents the effect of the simul-
taneous action of variable xi and other variables on the system
output, calculated as

STi = 1−
V∼i
V (Y ),

(15)

where V∼i represents the variance produced by parameters
other than variable xi.

III. MGDM
In this study, theMGDMwas established by using the lumped
parameter/finite element method, which considers the struc-
tural flexibility of the shaft and housing as well as internal
excitations such as time-varying meshing stiffness.

A. GEAR LUMPED PARAMETER MODEL
1) PLANETARY GEAR MODEL
Fig. 1 shows the lumped parameter model of a planetary
gear. To facilitate the coupling between the ring and housing,
the ring was assumed to be rigid in this study. pn(n =
1, 2, . . . ,N ), r, c, and s denote planet n, ring, carrier, and
sun respectively; N denotes the planet number. krt, kr, and
kpn denote the ring torsional stiffness, and the radial support
stiffness of the ring and planet n, respectively. crt, cr, and
cpn denote the ring torsional damping, and the radial support
damping of the ring and planet n, respectively. em represents
the mesh error. xi, yi, and θi (i = s, r, c) represent the radial
displacement and angular displacement of the central mem-
ber. ηpn and ξpn represent the tangential and radial displace-
ments of planet n. θpn represents the angular displacement of
planet n.
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FIGURE 1. Lumped parameter model of planetary gear.

The time-varying mesh stiffness km(t) (m = rpn, spn) of
the gear pair can be expressed as

km(t) = k̄m +
10∑
i=1

ai cos(lfmt + γm), (16)

where k̄m denotes the average mesh stiffness, ai denotes the
Fourier series expansion coefficient, l denotes the harmonic
order, fm denotes the mesh frequency, and γm denotes the
mesh phase.

The expression to calculate mesh damping is [22]

cm = 2ςm
√
k̄mmpmi/(mp + mi), (17)

where ςm denotes the mesh damping ratio, andmi denotes the
mass.

The projection vectors of the internal and external gear
pairs along the mesh line direction are as follows: [23]{
Vspn = [sinφ,− cosφ,−rbs,− sinαp, cosαp,−rbp]
Vrpn = [sinαp, cosαp, rbp,− sinφ,− cosφ,−rbr],

(18)

where rbk (k = s, p, r) denotes the base circle radius, φ
denotes the angle between the X -axis andmesh line direction,
and αp denotes the mesh angle.
Hence, the mass matrixMm, stiffness matrix Km, damping

matrix Cm, and excitation vector Fm of the internal and
external gear pairs can be obtained as follows:

Km(t) = km(t)VT
mVm

Cm = cmVT
mVm

Fm(t) = [km(t)em(t)+ cmėm(t)]VT
m

Mm = diag[mi,mi, Ii,mp,mp, Ip],

(19)

where Ii denotes themoment of inertia; em(t) and ėm(t) denote
the equivalent displacement and velocity vectors of the mesh
error, respectively.

2) HELICAL GEAR MODEL
Fig. 2 shows the lumped parameter model of a helical gear
pair, where subscripts 5 and 6 denote the driving and driven
gears, respectively. rbj (j = 5, 6) denotes the base circle
radius; θjx denotes the angular displacement; θjy and θjz
denote the gear swing angles; k56, c56, and α56 denote the
time-varying mesh stiffness, mesh damping, and mesh angle,
respectively; and φ56 denotes the shaft position angle.
The dynamic transmission error of a helical gear pair along

the mesh line direction is expressed as

δ56(t) = V56q56 − e56(t), (20)

where q56 denotes the displacement vector; e56 denotes the
mesh error; and V56 denotes the projection vector of the
helical gear pair along the mesh line direction, expressed
as [24]

V56 = [cosβ sinϕ, ε sinβ, ε cosβ cosϕ,

−εrb5sinβsinϕ, εrb5cosβ,−εrb5sinβcosϕ,

− cosβ sinϕ,−ε sinβ,−ε cosβ cosϕ,

−εrb6sinβsinϕ, εrb6cosβ,−εrb6sinβcosϕ], (21)

where β denotes the base circle helix angle; ε denotes the sign
function; and ϕ denotes the angle between themesh plane and
the y-axis, where ϕ = α56 + εφ56.
Hence, the mass matrixM56, stiffness matrixK56, damping

matrix C56, and excitation vector F56 of the helical gear pair
can be obtained as follows:

K56(t) = k56(t)VT
56V56

C56 = c56VT
56V56

F56(t) = [k56(t)e56(t)+ c56ė56(t)]VT
56

M56 = diag[m5,m5,m5, I5x , I5y, I5z,
m6,m6,m6, I6x , I6y, I6z]

(22)

3) SPIRAL BEVEL GEAR MODEL
Fig. 3 shows the lumped parameter model of a spiral bevel
gear pair, where subscripts p and g denote the driving and
driven gears, respectively. θp and θg denote the gear angular
displacements; δn, βn, and αn denote the pitch cone angle,
and the midpoint helix angle and pressure angle of the driving
gear, respectively; kn, cn, and en denote the time-varyingmesh
stiffness, mesh damping, and mesh error, respectively.

The dynamic transmission error of a spiral bevel gear pair
along the mesh line direction is

δpg(t) = Vnqn − en(t), (23)

where qn denotes the displacement vector; Vn denotes the
projection vector of the spiral bevel gear pair along the mesh
line direction. Based on the force analysis in Fig. 4, Vn can
be expressed as follows [25]:

Vn = [(sinαn cos δn + cosαn sinβn sin δn),
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FIGURE 2. Lumped parameter model of helical gear pair.

FIGURE 3. Lumped parameter model of spiral bevel gear pair.

−(sinαn sin δn − cosαn sinβn cos δn),

cosαn cosβn, rbp cosαn sinβn,

−(sinαn cos δn + cosαn sinβn sin δn),

(sinαn sin δn − cosαn sinβn cos δn),

− cosαn cosβn,−rbg cosαn sinβn], (24)

Hence, the mass matrixMpg, stiffness matrixKpg, damping
matrix Cpg, and excitation vector Fpg of the spiral bevel gear
pair can be obtained as follows:

Kpg(t) = kn(t)VT
nVn

Cpg = cnVT
nVn

Mpg = diag[mp,mp,mp, Ip,mg,mg,mg, Ig]
Fpg(t) = [kn(t)en(t)+ cnėn(t)]VT

n

(25)

B. FINITE ELEMENT MODEL OF SHAFT AND HOUSING
To consider structural flexibility, a shaft finite element model
was constructed using Beam188 elements in the finite ele-
ment simulation platform, as shown in Fig. 5. Subsequently,
the reduction method was used to reduce the degrees of

FIGURE 4. Force analysis of spiral bevel gear.

FIGURE 5. Finite element model of transmission shaft.

freedom of the shaft finite element model, and a condensed
finite element model of the shaft was obtained.

Furthermore, a housing finite element model was estab-
lished based on the finite element simulation platform
(see Fig. 6). The material used was aluminum alloy,
whose density, elastic modulus, and Poisson’s ratio were
2.7 × 103 kg/m3, 7.1 × 1010 N/m2, and 0.33, respectively.
The Solid92 solid element was used to mesh the housing
structure. Themodel comprised 569028 elements and 969948
nodes. Subsequently, the degrees of freedom of the hous-
ing finite element model were reduced using the reduction
method, and the condensed finite element model of housing
was obtained.

C. BEARING MODEL
In the system model, the transmission shaft was coupled with
the housing through the bearing. The stiffness matrix Kb of
the bearing is expressed as [23]

Kb = diag[kx, ky, kz, kθx , kθy, 0], (26)

where kx, ky, and kz represent the support stiffness along the
generalized coordinate axis direction; kθx and kθy represent
the swing stiffness of the bearing.

The bearing damping is calculated as follows:

Cb = ζbKb, (27)

where ζbk represents the bearing damping ratio.
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FIGURE 6. MGDM.

D. SYSTEM DYNAMICS MODEL
The coupling relationship between the transmission system
and flexible housing is shown in Eq. (28). The shaft neckmain
node qn and housing bearing seat main node qh were coupled
via the bearing stiffness matrix Kb.[
Mn 0
0 Mh

] [
q̈n
q̈h

]
+

[
Cn + Cb −Cb
−Cb Ch + Cb

] [
q̈n
q̈h

]
+

[
Kn + Kb −Kb
−Kb Kh + Kb

] [
qn
qh

]
= 0, (28)

whereKh,Ch, andMh denote the stiffness, damping, andmass
matrix of the housing bearing seat, respectively. Kn, Cn, and
Mn denote the stiffness, damping, and mass matrix of the
shaft neck, respectively.

Fig. 6 shows the MGDM, where OXYZ is the sys-
tem generalized coordinate; its X -axis is parallel to input
shaft 2 of the high-speed stage, the Z -axis coincides with
carrier shaft 1, and the Y -axis is perpendicular to the
OXZ plane.

M q̈+ (Ca + Cb + C t)q̇+ (Ka + Kb + K t)q = T , (29)

where Ka, Kt, and Kb denote the mesh stiffness, torsional
stiffness, and radial stiffness matrix of the system, respec-
tively. Ca, Ct, and Cb denote the mesh damping, tor-
sional damping, and radial damping matrix of the system,
respectively; q represents the generalized coordinate vector;
M represents the mass matrix; and T represents the load
vector.

18532 VOLUME 9, 2021



H. Xu et al.: Improved Dynamic Model Updating Method for Multistage Gearbox

IV. MODEL UPDATING
This section describes the manner in which the proposed
updatingmethodwas used to update theMGDM inMATLAB
software. Subsequently, the simulation results before and
after updating are compared with the experimental results to
verify the effectiveness of the method.

A. CONSTRUCTION AND SELECTION OF SURROGATE
MODEL
In this section, the optimal Latin hypercube sampling
method [26] was first used to extract the sample data uni-
formly. Subsequently, KRG, the RBF, and the SVM as
described in Section 2.1 were used to construct the surrogate
model of the MGDM. Finally, the prediction accuracy of
these surrogate models was verified based on the error square,
R2, and the KRG with the highest accuracy was selected as
the final surrogate model for subsequent Sobol sensitivity
analysis and genetic updating.

Based on the vibration standard, when the excitation fre-
quency is greater than 1000 Hz, the vibration acceleration
of the gearbox should be tested. Because the excitation fre-
quency of the multistage gearbox in this study is primarily
high (≥1000 Hz) and the vibration intensity is proportional
to the acceleration in the high-frequency range, the spatial
vibration acceleration root mean square (SVARMS) of each
measuring point was selected as the evaluation index, calcu-
lated as follows:

Pn =

√√√√[
N∑
i=1

(
√
x2ni + y

2
ni + z

2
ni)

2]/N , (30)

where N represents the number of data points; xni, yni, and
zni (n = 1, 2, . . . , 5) represent the vibration acceleration
of measuring point n along the generalized coordinate axis
direction.

After determining the geometric parameters and mate-
rials, the initial values of the mesh stiffness (MS), radial
bearing stiffness (RBS), and axial bearing stiffness (ABS)
were obtained using the finite element method (see Table 1).
In Table 1, the unit of stiffness is N/m. To ensure the phys-
ical sense of the stiffness parameters in the updating pro-
cess, its updating range was set at [−3%, 3%]. As it is
difficult to determine the damping parameter [24], its initial
value was estimated empirically using Eq. (17). Accord-
ing to Yi et al., [22] the range of the mesh damping
ratio (MDR) is [0.03, 0.17], and the range of the bearing
damping ratio (BDR) is [2e-5, 5e-3].

Training and validation samples are the basis for estab-
lishing and verifying the surrogate model. The optimal Latin
hypercube sampling method [26] is an effective method
for obtaining training and validation samples. The method
exhibits good stability and can yield uniformly distributed
sample points. Therefore, the optimal Latin hypercube sam-
pling method was adopted in this study to extract 400 sets
of training samples and 40 sets of validation samples within
the value range of the updating parameters. Subsequently,

TABLE 1. Initial value and value range of model parameters.

FIGURE 7. Prediction accuracy comparison of evaluation indicators
P1–P5 of three surrogate models.

each set of samples was input to the MGDM to calculate the
corresponding evaluation index value (see Eq. 30).

To eliminate the order of magnitude difference and
ensure the accuracy of the surrogate model, the min–max
method was used to normalize the sample data, expressed as
follows:

xk = (xk − xmin)/(xmax − xmin) (31)
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FIGURE 8. Sensitivity of 26 model parameters to five evaluation indexes P1–P5 in MGDM.

where xmin and xmax denote the minimum and maximum
numbers in the sample data column vector, respectively.

Next, the KRG, the RBF, and the SVM were adopted to
establish the surrogate model of the MGDM. Subsequently,
R2 (see Eq. 32) was used to quantify the prediction accuracy
of these surrogate models to select the surrogate model with
the highest accuracy.

R2 = 1−
m∑
j=1

(Pj − P̂j)2
m∑
j=1

(Pj − P̄j)2, (32)

where m represents the number of validation samples, Pj
represents the actual value obtained from the MGDM, Pj
represents the predicted value obtained from the surrogate
model, and P̄j represents the mean value of the actual value.

In Fig. 7, an R2 value closer to 1 indicates a higher
prediction accuracy of the surrogate model. Compared with
prediction accuracies of the RBF and SVM, that of KRG was
higher (see Fig. 7), and the R2 of its five evaluation indexes,
P1–P5, were greater than 0.97. This indicates that KRG is the
most suitable surrogate model to replace the MGDM.

In summary, among the KRG, RBF, and SVM surrogate
models established in this section, the prediction accuracy
of KRG was the highest, rendering it suitable for effectively
replacing the time-consuming MGDM. Therefore, KRG was
used as the final surrogate model for subsequent Sobol sensi-
tivity analysis and genetic updating.

B. UPDATING PARAMETER SCREENING BASED ON
SOBOL SENSITIVITY ANALYSIS
To screen the updating parameters and improve the calcu-
lation efficiency, the selected KRG surrogate model was
combined with the Sobol method to analyze the parameter
sensitivity of the MGDM.

In Sobol sensitivity analysis, the local sensitivity reflects
the effect of individual parameters on the system output. The
global sensitivity not only reflects the effect of individual
parameters but also reflects the effects of a parameter acting
simultaneously with other parameters on the system output.
Fig. 8 shows the local and global sensitivities of the 26 model
parameters to five evaluation indexes Pn (n = 1, 2, . . . , 5) in
the MGDM. As shown in Fig. 8, seven parameters exhibited
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FIGURE 9. Comparison of simulation and experimental results from MGDM before and after updating under different torques.

greater sensitivity among the 26 parameters, i.e., x2, x6, x8,
x12, x14, x17, and x23.
In conclusion, the sensitivity analysis method can be used

to screen the updating parameters from the numerous param-
eters of the MGDM, thereby providing a foundation for the
subsequent model updating.

C. MODEL UPDATING BASED ON GENETIC ALGORITHM
To improve the calculation efficiency, the KRG surrogate
model was combined with the genetic algorithm [27]–[29] to
determine parameter values that minimize the error between
the simulation and experimental results within the value range
of the updating parameters to improve the accuracy of the
MGDM.

The goal of model updating is to minimize the error
between the simulation and experimental results by con-
stantly adjusting the updating parameters. Therefore,
the updating objective F(x) can be defined as

min F(x) =
1
5

5∑
n=1

∣∣∣∣Ptestn − P
model
n

Ptestn

∣∣∣∣ ,
s.t (x)LB ≤ (x) ≤ (x)LB

(33)

where x represents the updating parameter vector, x = [x2,
x6, x8, x12, x14, x17, x23]; xLB and xUB denote the upper and
lower limits of the updating parameters, respectively; Ptestn
and Pmodeln denote the experimental and simulation evaluation
index values of the nth measuring point, respectively; Pmodeln
is provided by the KRG surrogate model; and Ptestn is based
directly on the experimental results.

After establishing the updating objective, the genetic algo-
rithm was used to search the optimal parameter values across
the entire value range of the updating parameters to minimize
the updating objective. In the updating process, the popu-
lation size was 100, and the evolutionary algebra was 150.
The initial and updated values of the updating parameters are
shown in Table 2. The updating rate ζ of themodel parameters
is expressed as ζ = |(x-x0)/x0|; where x0 and x denote
the initial and updated values of the updating parameters,

TABLE 2. Initial and updated value of updating parameters.

respectively. As shown in Table 2, the damping parame-
ters changed significantly before and after updating. This is
because the damping initial value was difficult to determine
and the value range was large, not because the geometric
parameters and material properties have changed. In other
words, the most suitable damping parameter values were
obtained through model updating, which improved the accu-
racy of the calculation results of the MGDM.

The accuracy of the MGDM was evaluated by calculating
the relative error between the simulation and experimental
evaluation indexes, as follows:

En =
Ptestn − P

model
n

Ptestn
× 100% (34)

The initial and updated values of the updating parame-
ters in Table 2 were input to the MGDM to calculate the
simulation results of five evaluation indexes before and after
updating; subsequently, the results were compared with the
experimental results (see Table 3). As shown in Table 3,
compared with the initial model, the updated MGDM can
predict the dynamic characteristics of the actual system more
accurately, and the model accuracy improved significantly.
This indicates that the proposed updating method can sig-
nificantly improve the accuracy of the MGDM under a spe-
cific torque; however, further investigations are required to
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TABLE 3. Comparison of simulation and experimental results from MGDM before and after updating at 6000 Nm torque.

confirm whether the model accuracy can also be improved
under other torques.

A comparison of the simulation and experimental results
before and after updating under different torques of
1000–6000 Nm is shown in Fig. 9. As shown, the vibration of
the multistage gearbox increased with the torque. Compared
with the initial model, the accuracy of the updated MGDM
improved significantly. This verifies that the proposed updat-
ing method can effectively improve the accuracy of the cal-
culation results of the MGDM; as such, the updated MGDM
can be applied more accurately to the subsequent dynamic
design.

In conclusion, the proposed updating method can signifi-
cantly improve the accuracy of the MGDM, and the updated
MGDM can more accurately predict the dynamic character-
istics of the actual system, thereby providing an effective
analysis model for the subsequent dynamic design.

V. CONCLUSION
Time-consuming calculations and numerous parameters ren-
der it difficult to update the MGDM using previous updating
methods. Therefore, an improved updating method suitable
for the MGDM based on a surrogate model and sensitivity
analysis was proposed. The purpose of using the surrogate
model is to solve the problem of low computational efficiency
by replacing the time-consuming MGDM. The function of
the sensitivity analysis is to screen effective updating param-
eters from numerous parameters. Subsequently, the genetic
algorithm is used to search for the most suitable parameters
within the value range of the updating parameters, such that
the simulation result is similar to the experimental result. The
results showed that the improved updating method proposed
herein can effectively improve the accuracy of the calculation
results of the MGDM. The accuracy of the calculation results
of the updatedMGDM improved significantly comparedwith
that of the initial model, thereby providing a more accurate
prediction of the dynamic characteristics of the actual system
as well as an effective analytical model for the dynamic
design of the multistage gearbox in the subsequent step.
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