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ABSTRACT A novel and efficient end-to-end learning model for automatic modulation classification is
proposed for wireless spectrum monitoring applications, which automatically learns from the time domain
in-phase and quadrature data without requiring the design of hand-crafted expert features. With the intuition
of convolutional layers with pooling serving as the role of front-end feature distillation and dimensionality
reduction, sequential convolutional recurrent neural networks are developed to take complementary advan-
tage of parallel computing capability of convolutional neural networks and temporal sensitivity of recurrent
neural networks. Experimental results demonstrate that the proposed architecture delivers overall superior
performance in signal to noise ratio range above -10 dB, and achieves significantly improved classification
accuracy from 80% to 92.1% at high signal to noise ratio range, while drastically reduces the average training
and prediction time by approximately 74% and 67%, respectively. Response patterns learned by the proposed
architecture are visualized to better understand the physics of the model. Furthermore, a comparative study is
performed to investigate the impacts of various sequential convolutional recurrent neural network structure
settings on classification performance. A representative sequential convolutional recurrent neural network
architecture with the two-layer convolutional neural network and subsequent two-layer long short-term
memory neural network is developed to suggest the option for fast automatic modulation classification.

INDEX TERMS Automatic modulation classification, convolutional neural networks, cognitive radio, deep
learning, recurrent neural networks, spectrum monitoring.

I. INTRODUCTION
Wireless spectrummonitoring over time, space and frequency
is important for effective use of the scarce spectral resources
in various commercial areas [1]–[5]. As an integral part of
wireless spectrummonitoring systems, automatic modulation
classification (AMC) is used to recognize modulation types
without prior knowledge of the received signals and channel
parameters [6]–[8]. AMC has been proven to be an essen-
tial capability for transmitter identification, wireless spec-
trum anomaly detection and radio environment awareness. It
improves radio spectrum utilization and opens the possibility
of intelligent decision for context-aware autonomouswireless
spectrum monitoring systems.

The existing AMC approaches discussed in litera-
ture can be roughly brought down into the following
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two categories: (i) likelihood-based approaches; and (ii)
feature-based approaches [9], [10]. For the first category,
the likelihood-based approaches utilize hypothesis testing
theory and form a judgment criterion by analyzing statisti-
cal characteristics of signals [11], [12]. In likelihood-based
approaches, modulation classification is framed as Bayesian
estimation to optimize the probability of classification. How-
ever, approaches of this type are not robust in the pres-
ence of unknown channel conditions and suffer from heavy
computational load on their practical implementations. Tra-
ditional feature-based approaches mainly focus on expert
feature extraction and classification criteria [13]–[18]. They
utilize expert features such as higher order cyclic moments
for modulation classification. It is easy and simple for these
approaches to be implemented in practical systems. How-
ever, hand-crafting expert features and hard-coding rules for
modulation classification make it difficult to scale to new
modulation types in non-cooperative scenarios.
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Recently, researchers in wireless communications have
started to apply deep neural networks to cognitive radio
tasks with some success [19]–[33]. The authors in [19], [24]
demonstrated that convolutional neural networks (CNNs)
trained on time domain in-phase and quadrature (IQ) data
significantly outperform conventional expert feature-based
approaches. The authors in [20], [23] utilized recurrent neural
networks (RNNs) for learning temporal representations to
achieve higher classification accuracy than that of the CNNs
introduced in [19]. In [21], the authors directly adopted con-
volutional long short-term deep neural networks (CLDNNs)
from voice processing domain. The authors in [34] developed
a data-driven fusion method to obtain better classification
accuracy using the combination of the two CNNs trained on
different datasets. Ramjee et al. [32] performed a comparative
study of various typical deep neural networks and reduced
the training complexity by reducing the input dimensionality
with subsampling techniques.

In autonomous wireless spectrum monitoring systems,
online learning is fundamental for accommodating new
emerging modulation types and complex environmental cir-
cumstances. Nevertheless, those RNNmodels delivering high
classification accuracy suffer from computational complex-
ity and long training time. In this work, we develop a
novel and efficient sequential convolutional recurrent neural
network (SCRNN) architecture combining parallel comput-
ing capability of CNNs with temporal sensitivity of RNNs.
Experimental results demonstrate that our approach out-
performs the state-of-the-art on classification performance,
while significantly improves the rate of convergence com-
pared with the CNN and RNN alone architectures.

The rest of the paper is organized as follows. In Section II,
an overview of the modulation benchmark dataset is intro-
duced, and the two baseline models are briefly explained.
The proposed model and the parameters used for training
along with other implementation details are clearly stated in
Section III. Section IV details the classification results and
discusses the advantages of the proposed model. Conclusions
and future work are presented in Section V.

II. DATASET AND BASELINES
A. DATASET
In a wireless spectrummonitoring system, the received signal
can be typically represented as:

r(t) = s(t) ∗ h(t)+ n(t) (1)

where s(t) denotes the noise free complex baseband enve-
lope of the received signal, and h(t) refers to the time vary-
ing impulse response of the transmitted wireless channel.
n(t) represents the additive white Gaussian noise (AWGN)
reflecting thermal noise. The complex received signal
r(t) is commonly sampled in IQ format due to its
simplicity.

A typical modulation dataset RadioML2016.10a generated
by GNU Radio is used as the benchmark dataset for training

TABLE 1. Benchmark dataset parameters.

and evaluating the performance of the proposed architecture,
similar as the MNIST dataset in the vision domain [35]. The
dataset follows the signal representation as given in equa-
tion 1. Detailed parameter description of the dataset is shown
in Table 1. Radio channel effects are relatively well character-
ized in the dataset. Chanel imperfections such as multi-path
fading, random walk drifting of carrier frequency oscillator
and sample time clocks, AWGN, along with unknown scale,
translation, and dilation transformation are introduced into
the signal in the dataset for reflecting the real electromagnetic
environment [35]. The dataset is labeled with both signal to
noise ratio range (SNR) ground truth and modulation types.

B. BASELINES
The two models are chosen as the baselines for further com-
parisons due to their results showing the significant improve-
ments upon expert feature-based approaches. Any further
improvements should be considered state-of-the-art.

One is the CNN architecture proposed by
O’shea et al. [19]. As shown in Fig. 1(a), the baseline model
is a 4-layer network made up of two convolutional layers and
two dense layers. Each hidden layer utilizes rectified linear
unit (ReLU) activation functions and dropout of 50% except
for a softmax activation function on the one-hot output layer.
Adam optimizer and categorical cross entropy loss function
are applied to the base model.

The other baseline model is proposed by
Rajendran et al. [23], shown in Fig. 1(b). The model is
comprised of two 128-unit long short-term memory (LSTM)
layers and an 11-unit dense layer with a softmax activation.
The first LSTM layer returns the full sequences while the sec-
ond one just returns the last state. The dropout is also adopted
to reduce overfitting. Adam optimizer and categorical cross
entropy loss function are applied to the model. Note that this
model learns from the time domain information of the mod-
ulation schemes using amplitude-phase format, instead of
IQ format.
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FIGURE 1. Schematic diagram of the (a) convolutional neural
network (CNN) baseline model, (b) long short-term memory (LSTM)
baseline model, and (c) proposed sequential convolutional recurrent
neural network (SCRNN) model.

III. SEQUENTIAL CONVOLUTIONAL RECURRENT NEURAL
NETWORKS
A. MOTIVATION
Generally, the received radio signals sampled at discrete time
steps are of time domain sequences. In [23], a two-layer
LSTM architecture is proposed and achieves a good clas-
sification accuracy of 86% at high SNRs. However, these
models using RNNs suffer from much slower training time
than that of the CNNs, due to their computational complexity
and unparallel computing capability. Thus, a new novel and
efficient SCRNN architecture is proposed with the combi-
nation of the speed and lightness of CNNs and the tempo-
ral sensitivity of RNNs. Furthermore, as a variant of RNN,
LSTM is adopted instead of simple RNN in the proposed
architecture to remember long-term dependencies and avoid
the gradient vanishing problem. In SCRNN architectures,
the convolutional layers with pooling acting as the role of
front-end feature distillation and dimensionality reduction
turn the long input sequences into much shorter represen-
tations of high-level features, which then become the input
for subsequent LSTM layers to learn long-term temporal
coherence of modulations.

B. MODEL DESCRIPTION
Fig. 1(c) provides the illustration of the proposed SCRNN
architecture. As schematically shown in Fig. 1(c), the first
and second convolutional layers each contain 128 5-tap filters
except for the first one followed by a max-pooling layer
with a pooling size of 3. The layer 3 and layer 4 are LSTM
layers composed of 128 units each, and both return the full
sequences. The last dense layer contains 11-class neurons
representing the modulation schemes.

ReLU activation functions are applied to the convolutional
and LSTM layers. The last dense layer utilizes a softmax

activation to achieve modulation classification. Dropout reg-
ularization combined with max norm has been proven to be
of better performance for preventing overfitting. Categorical
cross entropy is adopted as the loss function, which can be
written as:

L = −
1
N

N∑
i=1

yi · log(ŷi) (2)

where yi represents the ground truth in the form of one-hot
encoding, and ŷi refers to the prediction. N denotes the train-
ing batch size. Adam optimizer with a learning rate of 0.001 is
utilized due to its computational efficiency.

C. IMPLEMENTATION DETAILS
The total 220000 samples in the RadioML2016.10a dataset
are split into two, one training set of 198000 (90%) samples
and the other test set of 22000 (10%) samples. The dataset is
split equally among all consideredmodulation types using the
stratified sampling strategy. Instead of extracting the ampli-
tude and phase features of the signals manually in advance
[23], we adopted IQ components as input directly. A batch
size of 128 is used on each training epoch and the early stop
strategy is adopted.

All training and prediction are implemented in Keras
library [36] on the backend of TensorFlow [37]. The Nvidia
Cuda enabled Tesla K80 is used to speed up the calculation.

IV. RESULTS AND DISCUSSION
The classification performance of the models on the bench-
mark dataset is discussed in this section. We inspect and
compare the classification accuracy and rate of convergence
between the baseline models and the proposed SCRNN
model. In addition, the varying kernel sizes, kernel types
and layer depths are further investigated to find the optimal
SCRNN architecture.

The classification accuracy of all the models are presented
in Fig. 2. It can be seen that the proposed SCRNN model
delivers a significantly improved accuracy of 92.1% at high
SNRs. The CNN and LSTMmodel as baselines are compared
to the proposed SCRNN model. It shows that the SCRNN
model consistently achieves higher accuracy than the other

FIGURE 2. Classification accuracy comparison of the proposed SCRNN
model with others on the benchmark dataset.
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TABLE 2. Training and prediction time comparison between the two
baseline models and the SCRNN model.

two baselines in the SNR range from −10 dB to 18 dB, and
significantly outperforms the CNN baseline model by 12%
and the LSTM baseline model by 6% improvement at high
SNRs. Additionally, it is observed that the proposed SCRNN
model achieves exceeding performance than that of the CNN
and LSTM baseline models in the SNR range from−10 dB to
0 dB, where the two baseline models behave nearly the same.
It implies that the convolutional layers of the SCRNNs serv-
ing as the role of feature distillation boost the learning ability
of the temporal features under low SNR circumstances. The
traditional support vector machine (SVM) approach showing
relatively poor classification performance is also summarized
in Fig. 2 for comparison. Note that all models are fed with the
same training and test data of IQ format for this comparison
except for the LSTM model with amplitude-phase format,
and the standardization instead of L2 normalization in [19]
is adopted to scale the input for all models.

Fig. 3 shows the training history including the (a) training
loss and (b) validation loss compared between the baseline
models and the proposed SCRNN model. According to the
training history, the LSTM baseline model achieves the sec-
ond less loss value but remains the lowest rate of convergence;
the CNN baseline model obtains faster rate of convergence
but yields the largest loss value, while the proposed SCRNN
model retains the fastest rate of convergence and achieves the
least loss value among the three. The average training and
prediction time together with the network size of the three
models are compared in Table 2. It can be seen that though the
introduction of the convolutional layers in the SCRNN leads
to nearly double the network size, the average training and
prediction time of the proposed SCRNNmodel are drastically
reduced to only 280 seconds per epoch and 661µs per sample

FIGURE 3. Training history including the (a) training loss and
(b) validation loss between the baseline models and the proposed SCRNN
model.

respectively, compared to 800 seconds per epoch and 2000µs
per sample of the LSTM model. These are fairly consistent
with the insight that the convolutional layers with pooling
before RNN serve as the role of feature distillation and dimen-
sionality reduction, analogous to front-end matched filters,
synchronizer and sampler for temporal features in typical
wireless systems. Thus, the improved quality of the input for
the SCRNN model makes it significantly reduce the training
time and achieve the fastest prediction time.

To gain intuition on what convolution layers are learning
in SCRNN architectures, the response patterns of the 128 fil-
ters learned by the first convolutional layer are illustrated
in Fig. 4, showing that some filters encode expert-like pat-
terns (i.e. BPSK-like pattern in row 1 column 6) and others
even encode more complicated patterns. It further confirms
that the convolutional layers of the SCRNNs act as the role
of front-end feature distillation with coherent features refined
and redundant features filtered out, enabling the improved
rate of convergence.

FIGURE 4. Response patterns of the 128 filters learned by the first
convolutional layer of the SCRNN.

To gain more insight into the SCRNN architecture, we fur-
ther investigate the effects of various SCRNN structure set-
tings varying CNN kernel sizes, CNN layer depths, CNN
kernel numbers, RNN types and RNN layer depths on classi-
fication performance.

As shown in Fig. 5(a), varying the CNN kernel sizes of the
SCRNN has minimal impact on classification performance.
The architecture with kernel size of 5 produces slightly better
classification accuracy than others in SNR range from 0 dB
to 18 dB, while the architecture with kernel size of 3 leads
to marginally higher classification accuracy in SNR range
from -10 dB to -6 dB. The kernel size of 5 is used for the
remaining experiments.

Increasing of the CNN layer depths with pooling reduces
the input dimensionality for subsequent LSTM layers in the
SCRNN architecture, and hence reduces the training time.
Fig. 5(b) proves that the input dimensionality reduction shows
very limited effects on classification performance. However,
the performance of the LSTM baseline model starts to decay
significantly when reducing the input dimensionality [32].
It is implied that the SCRNN architecture is much more
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FIGURE 5. Classification performance of different SCRNN structure
configurations for varying (a) CNN kernel sizes, (b) CNN layer depths,
(c) CNN kernel numbers, (d) RNN types and layer depths.

FIGURE 6. Confusion matrices for the optimized SCRNN architecture on
the benchmark dataset at various SNRs.

robust to dimensionality reduction. Thus, it makes possible
for deploying online learning model on autonomous wireless
spectrum monitoring systems.

Fig. 5(c) provides that the 64-kernel and 128-kernel struc-
tures deliver the very similar performance, while the per-
formance of 256-kernel structure starts to drop due to the
overfitting. Fig. 5(d) shows the different settings of the RNN

types and layer depths in the SCRNN architecture. It can be
observed that the performance of the LSTM type is apparently
superior to that of the gated recurrent unit (GRU) and the
simple RNN type. Experimental results of varying LSTM
layer depths suggest that the 2-layer LSTM of the SCRNN
achieves the best classification accuracy. Therefore, the opti-
mal SCRNN architecture with the 2-layer CNN and subse-
quent 2-layer LSTM is recommended for online learning.

To evaluate how classification performance varies with
SNRs, confusion matrices of the optimal SCRNN model
at various SNRs are investigated. For a confusion matrix,
each column represents the predicted modulation type and
each row represents the real modulation type. The numerical
value on each grid denotes the prediction probability of the
corresponding modulation type.

As illustrated in Fig. 6, the diagonals become gradually
sharper with increasing SNR, yet two primary confusions
exist even at high SNRs. One is among the analog modula-
tions. This is mainly due to the silent period existing in the
analog audio signal [19]. The other is between QAM16 and
QAM64 as the former is a subset of the latter.

V. CONCLUSION
In this paper, a novel and efficient SCRNN architecture for
AMC has been developed. Compared with the CNN and
LSTM baseline models, the proposed architecture takes full
advantage of the complementarity of CNNs and RNNs. Thus,
it makes the classification accuracy deliver the state-of-the-art
performance, improved from 80% to 92.1% at high SNRs.
The average training and prediction time of the proposed
architecture are significantly reduced by approximately 74%
and 67% respectively, paving the way for deployment of
online learning models on autonomous wireless spectrum
monitoring systems. Response patterns learned by the pro-
posed architecture have been investigated to better understand
what feature pattern each filter in the convolutional layers
is receptive to. Additionally, a comparative study of various
structure settings of SCRNNs has been performed, and a
representative SCRNNarchitecture with the 2-layer CNN and
subsequent 2-layer LSTM was developed to recommend for
fast AMC. Future work will focus on validation on radio
signals with varying symbol rates and bandwidths. Second,
unsupervised or deep reinforcement learning approaches for
AMC should be investigated due to the lack of necessary
signal labels in real wireless spectrum monitoring systems.
Finally, stream learning without requiring to retrain the entire
network from scratch is also a worthy direction for future
research.
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