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ABSTRACT The clustered shortest-path tree problem (CluSPTP) is an extension of the classical
single-source shortest-path problem, in which, given a graph with the set of nodes partitioned into a
predefined, mutually exclusive and exhaustive set of clusters, we are looking for a shortest-path spanning
tree from a given source to all the other nodes of the graph, with the property that each cluster should induce
a connected subtree. CluSPTP belongs to the class of generalized combinatorial optimization problems,
and, in general, is proved to be a non-deterministic polynomial time hard (NP-hard) problem. In this paper,
we propose a novel genetic algorithm (GA), which is designed to fit the challenges of the investigated
problem. The main features of our GA are: the use of an innovative representation scheme that allows us
to define meaningful genetic operators and the use of a hybrid initial population. Extensive computational
results are reported and discussed for two sets of instances: euclidean and non-euclidean. The performance
of the proposed algorithm was evaluated on six types of benchmark euclidean instances available in the
literature and on six types of non-euclidean instances obtained from the corresponding euclidean ones. The
obtained results show an improvement with respect to existing methods from the literature, both in terms of
the quality of the achieved solutions and the computation times necessary to obtain them. They demonstrate
that our genetic algorithm outperforms all the existing methods from the literature, providing for all the
existing benchmark instances the optimal solutions in all 30 independent trials.

INDEX TERMS Single-source shortest-path problem, clustered shortest-path tree problem, genetic algo-
rithms.

I. INTRODUCTION
In this paper, we consider the clustered shortest-path
tree problem, which generalizes the classical single-source
shortest-path problem, and looks for a spanning tree of a
given graph with the property that each sub-graph induced
by a cluster is connected, and the total cost of the paths from
a given source node to all the other nodes of the graph is
minimized.

Why is it important to investigate the CluSPTP? CluSPTP
is a variant of the classical shortest path problem (SPP), and
unlike the problem that it generalizes, it is a complex com-
binatorial optimization problem, and it belongs to the class
of NP-hard problems. CluSPTP is worth to be studied due to
its theoretical properties and many interesting and important
applications, especially in communication networks, agricul-
ture irrigation, distribution problems, etc.We can observe that
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SPP is a special case of CluSPTP in the case when all the
clusters are singletons.

The current literature is rather scarce. The problem was
introduced by D’Emidio et al. [6] justified by some prac-
tical applications in communication networks. The same
authors, in an extended version of their paper [7], investigated
the computational hardness, and provided some approxi-
mation results for both cases of the problem: unweighted
and weighted. Binh et al. [1] and Thanh et al. [22] pre-
sented two multifactorial evolutionary algorithms that use
different ways to encode feasible solutions of the CluSPTP:
one based on the Cayley code and the other one using an
edge set representation. Thanh et al. [23] described a ran-
dom heuristic search algorithm that combines a random-
ized greedy algorithm with a shortest path tree algorithm.
Recently, Binh et al. [2] proposed a solution approach based
on the reduction of the solution space of a genetic algorithm
by decomposing the CluSPTP into two smaller sub-problems
which are solved separately, Cosma et al. [3] presented four
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particular cases in which CluSPTP is solvable in polynomial
time, proposed a genetic algorithm for solving the general
case, and reported as well some preliminary computational
results, and Hahn et al. [12] described an evolutionary algo-
rithm and a multifactorial evolutionary algorithm for solving
the CluSPTP. We should point out that all the proposed solu-
tion approaches, except the GA proposed by Cosma et al. [3],
eventhough they present different strategies to explore and
exploit the solution space of the CluSPTP, they are only tested
on Euclidean instances, which can be solved optimally by the
exact algorithm described by Cosma et al. [3].
The clustered shortest-path tree problem belongs to the

class of generalized combinatorial optimization problems.
This category of problems naturally generalizes the classical
combinatorial optimization problem and aims to model some
aggregation phenomena occurring between similar entities.
It has the following primary features: the nodes of the under-
lying graph are partitioned into a certain number of clusters
and, when considering the feasibility constraints of the initial
problem, these are expressed in relation to the clusters rather
than as individual nodes. The generalized combinatorial opti-
mization problems are more difficult compared to corre-
sponding problems in non-clustered settings, and have been
intensively studied in the last years due to their theoretical
properties and practical applications. For further reference on
this class of problems we refer to [8], [16]. A closely related
problem to CluSPTP was introduced by Myung et al. [15],
and was called the Generalized Minimum Spanning Tree
Problem, whose objective is to find a minimum cost tree
spanning a subset of nodes that includes exactly one node
from each cluster. For recent advances and more information
concerning the generalized minimum spanning tree problem
and its variants, we refer to Pop et al. [18], [20]. Some other
generalized combinatorial optimization problems that have
been investigated, are: the generalized traveling salesman
problem and its variants [10], [17], the generalized vehicle
routing problem and its variants [11], [19], the selective
graph coloring problem [4], [9], the selective vehicle routing
problem [21], other related problems [25], [26] etc.

The purpose of this paper is to propose a novel solu-
tion approach that fits the challenges of CluSPTP. Our
developed genetic algorithm has certain features, that dif-
ferentiate it from the other existing methods from the
literature:
• the use of a compact representation scheme, that concen-
trates the essential solution information and enables the
efficient exploration of the entire solutions space, with
large populations of chromosomes.

• the use of efficient mutation and crossover operators
that do not generate invalid offspring that would require
subsequent adjustments.

• the use of a hybrid initial population that contains both
random and constructed chromosomes. For boosting the
quality of the solutions, the constructed initial popula-
tion is merged with the current population at the right
stage of evolution.

As will be shown in the computational experiments
section, our proposed solution approach provides the opti-
mal solutions within a very short computational time for all
the existing benchmark instances from the literature, out-
performing the best developed algorithms for solving the
CluSPTP in terms of both solution quality and CPU time
required.

In addition to the existing benchmark instances which
all are euclidean and defined on complete graphs, we have
described a collection of 248 non-euclidean instances divided
into six classes, and we have reported the achieved results
using our novel solution approach.

The present paper is organized as follows: Section II pro-
vides a formal definition of the clustered shortest-path tree
problem and information about its complexity and particu-
lar cases when the problem is solvable in polynomial time.
In Section III, we describe the genetic algorithm that has some
novel features, and it exploits the structure and properties
of the investigated problem. The next section, Section IV
contains the extensive computational results achieved for
two sets of instances: euclidean and non-euclidean, and pro-
vides a comparative analysis of the performance of our pro-
posed genetic algorithm against the best existing solution
approaches from the literature, while in Section V, we present
some concluding results, as well as further research
directions.

II. DEFINITION OF THE CLUSTERED SHORTEST-PATH
TREE PROBLEM
We consider G = (V ,E, c) an undirected, connected, and
weighted graph characterized by the set of nodes V =

{v1, v2, . . . , vn}, the set of edges E = {e1, . . . , em}, where

E ⊆ {(vi, vj)| vi, vj ∈ V , i < j, i, j ∈ {1, 2, . . . , n}}, (1)

and the cost function c : V → R+, which assigns to every
edge e = (u, v) ∈ E of the graph, a positive number c(e) =
ce = c(u,v) ∈ R+, called the cost of the edge e.

The shortest path problem (SPP) in non-clustered settings
was intensively investigated, and it is defined as the problem
of finding a rooted spanning tree such that the total cost of the
paths from the root to all other nodes in the graph isminimum.
SPP can be solved optimally inO(m+n log n) using the Dijk-
stra’s algorithm [5]. Dijkstra’s original algorithm found the
shortest path between two given nodes, but a more common
variant fixes a single node as the source node and finds the
shortest paths from the source to all other nodes in the graph,
producing a shortest-path tree. The cost of the shortest path
between vi and vj in a spanning tree T is denoted by dT (vi, vj),
and the total cost of the paths from a given source node s to
all the other nodes of the graph is calculated as the sum of the
shortest paths,

∑
v∈V

dT (s, v).

In order to define the clustered shortest-path tree problem,
we consider a partition of the entire set of nodes V , which
means that the set V is divided into k subsets, C1, . . . ,Ck for
which:
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FIGURE 1. An example of CluSPTP and a feasible solution of the problem.

1. V = C1 ∪ C2 ∪ . . . ∪ Ck ;
2. Ci ∩ Cj = ∅ for all i 6= j ∈ {1, . . . , k}.
The subsets of nodes Ci, i ∈ {1, . . . , k} are called clusters.

The number of nodes in each cluster Ci is denoted by ni, ni =
|Ci|, i ∈ {1, 2, . . . , k}, and we have n1 + . . .+ nk = n.
There are two categories of edges in the set E of graph G:

edges connecting nodes from the same cluster, e = (u, v) ∈
E, u, v ∈ Ci, i ∈ {1, . . . , k}, called intra-cluster edges,
and edges connecting nodes belonging to different clusters,
e = (u, v) ∈ E, u ∈ Ci, v ∈ Cj with i 6= j and i, j ∈
{1, . . . , k}, called inter-cluster edges. We denote by E1 the set
of intra-cluster edges and by E2 the set of inter-cluster edges,
obviously we have that E1 ∪ E2 = E and E1 ∩ E2 = ∅.
If S is a subset of nodes, S ⊆ V , then by G[S] we will

denote the subgraph induced by S. As in the case of the SPP
in non-clustered settings, given a source node s ∈ V , we will
use the same notation

∑
v∈V

dT (s, v) for the total cost of the

paths from the given source node s to all the other nodes of
the graph.

Then the clustered shortest-path tree problem is the prob-
lem of finding a minimum cost spanning tree T for the graph
G partitioned into clusters, with the following properties:
1. T spans all the nodes of the graph G;
2. For each clusterCi, i ∈ {1, . . . , k}, the induced subgraph

T [Ci] is connected;
such that the total cost of the paths from a given source node
s ∈ V to all the other nodes of the graph is minimized, i.e.∑

v∈V

dT (s, v)→ min . (2)

In Figure 1, we illustrated an example of the CluSPTP
defined on an undirected, connected, weighted graph with
n = 23 nodes partitioned in k = 6 clusters, with the source
node s = 4 ∈ C1 (marked with red color) and a feasible
solution of the problem.

We observe that the feasible solution is a tree spanning all
the nodes of the graph with the property that the induced

subgraph T [Ci] is connected for each cluster. In addition,
in the figure illustrating the feasible solution of the problem
we highlighted the source node of each cluster by blue color.

D’Emidio et al. [7] showed that in general the CluSPTP is
NP-hard and in addition provided the following approxima-
bility results:
1. CluSPTP is hard to approximate within a factor of n1−ε

for any constant ε ∈ (0, 1], unless P = NP;
2. There exists a polynomial-time n-approximation algo-

rithm for CluSPTP;
3. CluSPTP is fixed-parameter tractable.

Cosma et al. [3] presented four special cases of the
CluSPTP which are solvable in polynomial time. An impor-
tant case that was used to test all the developed solution
approaches is the situation when the CluSPTP is defined
on complete and euclidean graphs. We briefly describe an
algorithm that solves optimally the CluSPTP in polynomial
time in this case.

Because the graph is euclidean, the triangle inequality
holds, and the shortest path between two nodes in the graphG
is always the edge that connects them, therefore dG(v, u) =
c(v,u), where c(v,u) is the cost of the edge e = (v, u) ∈ E ,
we consider c(v,v) = 0, v ∈ V . The optimal solution
for such a graph is a rooted tree that connects directly the
root (source) node of the graph to the root node of each
cluster in the graph, and all the nodes within each cluster
are directly linked to the root node of the cluster, such that
the total cost of the paths from a given source node to all the
other nodes of the graph is minimized. The optimal solution
can be obtained using a greedy algorithm to determine the
source node for each cluster. If s ∈ Cr is the root of the
spanning tree and si is the root of Ci, i ∈ {1, 2, . . . , k} \ {r},
the cost of reaching the nodes in Ci from s in the spanning
tree is:

CTi =
∑
v∈Ci

dT (s, v) = c(s,si) · ni +
∑
v∈Ci

c(si,v). (3)
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The optimal solution OptC is obtained by minimizing the

total cost
k∑
i=1

CTi,

OptC =
k∑
i=1

min
u∈Ci

 ni · c(s,u) +
∑
v∈Ci

c(u,v)

 (4)

and can be efficiently found using a greedy algorithm. If the
source node s ∈ Cr is given, the algorithm can be described
as follows:
a) OptC = CTr ;
b) For each i ∈ {1, 2, . . . , k} \ {r}

b1) choose si ∈ Ci that minimizes CTi;
b2) calculate OptC = OptC + CTi.

If the source node s is not given, only the root cluster Cr ,
we choose the minimum value of OptC obtained considering
every node v ∈ Cr as a source node.

III. DESCRIPTION OF THE PROPOSED GENETIC
ALGORITHM
In this section, we describe our novel genetic algorithm (GA).
Genetic algorithms were first introduced by Holland [13]
and are search heuristic methods inspired from the theory
of natural evolution developed by Charles Darwin based on
natural genetics and natural selection. GAs have the ability
to deliver a ‘‘good-enough’’ solution ‘‘fast-enough’’, making
them very attractive in solving optimization problems.

The proposed optimization algorithm has the specific com-
ponents of a genetic algorithm, with the following elements
of originality, which have proved effective in the case of
the investigated problem. The initial population consists of
two parts: a constructed part and a random part. The con-
structed chromosomes are calculated based on the greedy
algorithm presented in Section II. The constructed chromo-
somes have the advantage of very good fitness, while the
random ones have the advantage of diversity. The selection
operator chooses the best chromosomes that will form the
current population. This operator will process only once each
of the two components of the original population. The random
part of the initial population will be processed at the initial-
ization of the algorithm, but the constructed part will only
be processed when the offspring have become good enough
so that their fitness will approach that of the constructed
chromosomes. If the constructed population is processed too
soon by the selection operator, the constructed chromosomes
become dominant, the diversity of random chromosomes is
lost, the algorithm converges too quickly, and there is a
good chance of missing the optimal solution. The crossover
operator selects two parents from the current population and
uses their properties to create an offspring. The parent selec-
tion mechanism is a combination between elitist and random
selection strategies. A uniform crossover strategy is used for
creating the offspring genes. The mutation operator applies
weak mutations with 100% probability.

The structure of the proposed genetic algorithm is given
in Figure 2, and its description is provided next.

FIGURE 2. The flowchart of the proposed genetic algorithm for solving
the CluSPTP.

A. THE CHROMOSOME STRUCTURE
It is well-known that a good representation scheme has an
important effect on the performance of the GA, and it should
define meaningful genetic operators in order to minimize the
computational effort within these procedures.

In order to meet this requirement, we use an efficient
representation in which the genes of a chromosome contain
a complete set of inter-cluster edges, one for each pair of
clusters. Therefore, for an instance with k clusters, the total
number of genes that define a chromosome is k × (k − 1)/2.
The gene corresponding to a given pair of clusters Ci, Cj will
be denoted by gij for all i > j and i, j ∈ {1, .., k}. The gene gij
corresponds to an edge between clusters Ci and Cj, if there is
at least an edge (u, v) ∈ E, u ∈ Ci v ∈ Cj with i > j,
otherwise the gene gij is void.

The genes of a chromosome will be stored in a triangular
array with k − 1 lines, in which the element gij belonging to
the line i and column j in the array is the gene that connects the
clusters Ci and Cj where i ∈ {2, . . . , k} and j ∈ {1, . . . , i−1}.
In the proposed genetic algorithm, we define a chromo-

some A as a set of
k(k − 1)

2
genes corresponding to a set of

inter-cluster edges as follows:

A = {gij | i ∈ {2, . . . , k}, j ∈ {1, . . . , i− 1}}. (5)
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FIGURE 3. The structure of a chromosome gene array.

FIGURE 4. A chromosome gene array for the instance presented
in Figure 1.

FIGURE 5. The subgraph defined by the chromosome A illustrated
in Figure 4.

A chromosome A ⊆ E2 defines a subgraph GA =
(V ,A ∪ E1) of G with the inter-cluster edges corresponding
to the set of genes in A. This subgraph corresponds to a
CluSTSP subproblem, in which the graphG is replaced by its
subgraph GA.

For the example presented in Figure 1, a chromosome gene
array A is represented in Figure 4, and the corresponding sub-
graph defined by the chromosome is illustrated in Figure 5.

There exist several feasible solutions of the CluSTSP asso-
ciated to a given chromosome in the corresponding subgraph
GA. Next we will describe an efficient heuristic algorithm that
determines a feasible solution of CluSTSP problem.

B. DETERMINING A FEASIBLE SOLUTION OF THE CluSTSP
CORRESPONDING TO A GIVEN CHROMOSOME
We describe an efficient heuristic algorithm that determines
a feasible solution of the CluSTSP associated to the subgraph
GA corresponding to the chromosome A. The algorithm con-
sists of five steps and uses the fact that any two clusters are
connected by at most an edge based on the representation of
the chromosomes in our GA.

FIGURE 6. The macro-level layout SA of the subgraph defined by the
chromosome A presented in Figure 4.

FIGURE 7. The spanning tree TSA
of the macro-level layout SA illustrated

in Figure 6.

STEP 1:Amacro-level layout SA induced by the subgraph
GA is constructed. The macro-level layout is a graph with
k nodes, Vmacro = {C1, . . . ,Ck}, each node obtained after
replacing all the vertices of a cluster Ci with a supernode
representing it, and the set of edges which contains k(k−1)/2
that constitute the chromosome A, SA = (Vmacro,A). The
source node of the macro-level layout is the node corre-
sponding to the source cluster Cr that contains the source
node s of the instance. We will call this cluster the source
cluster. The macro-level layout of the subgraph defined by
the chromosome A presented in Figure 4 is shown in Figure 6.

STEP 2:We apply the Shortest Path First (SPF) algorithm
on the macro-level graph SA. The SPF produces a spanning
tree TSA that contains the optimal inter-cluster routes. The
spanning tree T in the case of the macro-level layout SA
shown in Figure 6 is presented in Figure 7.

The spanning tree associated to the macro-level graph SA is
stored in a parent array P with k elements. The parent of the
source cluster Cr is P[r] = 0 and for every other cluster Ci,
i ∈ {1, 2, . . . , k} \ {r} the parent is P[i] = j, where Cj is the
parent of Ci in the spanning tree of the macro-level graph.
In the case of the spanning tree illustrated in Figure 7 the
parent array is shown in Figure 8.
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FIGURE 8. The parent array for the tree illustrated in in Figure 7.

FIGURE 9. Inter-cluster tree of the subgraph illustrated in Figure 4.

STEP 3: The source nodes for each of the k clusters are
determined, using the parent array P of the macro-level tree
and the genes array, as follows:
• The source node s of the source cluster Cr is the source
node of the instance.

• The source node of cluster Cy is determined consid-
ering its parent Cx , x = P[y] in the parent array of
the macro-level tree. The source node of cluster Cy
is the extremity in Cy of the edge represented by the
gene gab in the chromosome gene array, where a =
max{x, y}, b = min{x, y}.

The resulting subgraph from step 3 in our algorithm in
the case of the example presented in Figure 4, is shown
in Figure 9. All inter-cluster edges of the instance graph
have been removed except those in the macro-level tree
TSA in Figure 7. The source node in each cluster is
highlighted.

STEP 4: The spanning tree Ti inside each cluster of the
graph Ci, i ∈ {1, 2, . . . , n}, is determined. The spanning
tree Ti is obtained by running the SPF algorithm within the
cluster Ci. By connecting the cluster spanning trees with
the edges of the skeleton tree, a spanning tree for the entire
instance is generated. Considering different genes in the chro-
mosome, we obtain different instance spanning trees, but each
instance spanning tree satisfies the feasibility conditions of
the CluSPTP.

For the instance presented in Figure 1, the feasible solution
of the CluSPTP generated using the chromosome gene array
from Figure 4 is shown in Figure 10.

STEP 5: the total cost of the solution, TotC , is determined,
using the following relation on the instance spanning tree:

TotC =
k∑
i=1

( ni · dT (s, si)+ cli ) (6)

FIGURE 10. The feasible solution of the CluSPTP corresponding to the
instance from Figure 1 generated using the chromosome illustrated
in Figure 4.

FIGURE 11. The values of the operands from the total cost formula of the
solution presented in Figure 10.

where ni = |Ci| is the number of nodes in cluster Ci, si is the
source node in cluster Ci and cli is the cost of all the routes
from source node si inside clusterCi, named the total internal
cost of cluster Ci. We have that

cli =
∑
v∈Ci

dT (si, v) (7)

For the instance illustrated in Figure 10, the values of
the operands in the formula of the total cost are shown in
Figure 11.

Using the formula for computing the total cost, we obtain
that the cost of the feasible solution of the CluSPTP illustrated
in Figure 10 is TotC = 358.

C. EFFICIENCY ISSUES
Since the optimization process may require the evaluation
of a large number of chromosomes, the algorithm should
avoid repeating the same operations. The proposed solution
is to run the SPF algorithm within each cluster Ci, for each
possible source node si ∈ Ci, in the initialization phase of the
algorithm, and to keep the results in a bi-dimensional array at
cluster level. This operation performed in the case of cluster
C3 of the instance illustrated in Figure 1 with the different
source nodes highlighted, is shown in Figure 12.

The costs of the routes from each node u ∈ Ci to the
source node si ∈ Ci of the cluster they belong to, can be
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FIGURE 12. Spanning trees in the case of cluster C3 of the instance
illustrated Figure 1.

FIGURE 13. Cost array associated to the cluster C3 in the case of the
instance presented in Figure 1.

evaluated only once, in the initialization phase, and stored in
a bi-dimensional array of costs at cluster level. For the cost
from the source node si to itself, we store the total internal
costs of the cluster Ci, determined for the case when the
source node is si. The costs array in the case of cluster C3
of the instance illustrated in Figure 1 is shown in Figure 13.

D. FITNESS FUNCTION
The fitness of each new created chromosome throughout the
optimization process is evaluated by determining the cost
of the CluSPTP solution corresponding to the chromosome,
as shown in Section III.B. The cost of the CluSPTP solution
that gives the fitness of a chromosome is given by relation
(6). For example, the feasible solution of the CluSPTP cor-
responding to the instance from Figure 1 generated using the
chromosome illustrated in Figure 4, given by relation (6) is:
TotC = 5×0+14+4×7+18+5×11+41+4×15+28+
3 × 21 + 11 + 2 × 17 + 6 = 358, the values of ni, dT (s, si)
and cli are given in Figure 11.

E. INITIAL POPULATION
Choosing the initial population is a very important step of the
GA because it directly affects the quality of the results. In the
literature there are described two procedures for generating
the initial population, both having their own advantages and
disadvantages. The first procedure is random generation and
the second is based on heuristics. Random generation has
the advantage of better covering the solutions space, but the
convergence of the genetic algorithm is slower. The second
procedure has the advantage of faster convergence, but it does
not cover the entire solutions space. The initial population in
our GA is composed of two parts: a constructed part and a
random part.

The first chromosome in the constructed part of the initial
population is created using the greedy algorithm described
in Section II. This algorithm determines the source node si
for each cluster Ci, i ∈ {1, 2, . . . , k}. The genes array of
the first constructed chromosome are initialized based this
information, as follows: the gij element on line i and column
j, i > j corresponding to the pair of clusters Ci, Cj is the edge
connecting the nodes si and sj. If there is no such edge in G,
then gij is void. If the graph represented by the constructed
chromosome contains isolated clusters, then the chromo-
some is rejected and no other constructed chromosomes are
generated.

Otherwise the constructed part of the initial population
is completed with a set of modified variants of the first
constructed chromosome, built as follows:

a) Consider the root nodes si, i ∈ {1, 2, . . . , k}
already determined when building the first constructed
chromosome.

b) Randomly choose nc clusters, different from the source
cluster, where nc is a random integer, nc ∈ [1, k − 1];

c) Change the root node or each of the chosen clusters with
another node selected randomly from the same cluster;

d) Build the genes of the chromosome as described above.

The genes arrays of the chromosomes in the random part
of the initial population are created element-by-element as
follows: the element on line i and column j, i > j is a
randomly chosen edge from the instance, edge that connects
a node in cluster Ci with a node in cluster Cj. If the instance
does not contain such an edge, then this gene will be void.
This generating mechanism has the advantage that it creates
only valid chromosomes that can be used to create valid
solutions of the CluSPTP.

The initial population is processed by the selection mech-
anism, resulting the current population. Because the con-
structed chromosomes are much better than the random ones,
in order to avoid the premature convergence of the algorithm,
the selection operator ignores them until one of the following
conditions is met:

• The best offspring created by the crossover operator has
better fitness than the best constructed chromosome.

• Chromosome evolution stagnated during the last
generations.

F. SELECTION
The selection mechanism merges the newly created popula-
tion with the current population, removes the duplicates, then
sorts the resulting population by fitness value. Then the best
D chromosomes are selected for the new current population.
All the other chromosomes are discarded.

G. CROSSOVER
The crossover mechanism selects from the current population
two parents P1 and P2, which are used to create an offspring.
The first parent is always chosen randomly from the best 20%
chromosomes in the current population, and the second parent
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FIGURE 14. Example of two parrent chromosomes P1 and P2.

FIGURE 15. The resulting offspring after applying the crossover operator and its corresponding feasible solution of the CluSPTP.

is chosen randomly from the entire population. The genes of
the offspring are selected either fromP1 or fromP2 with equal
probabilities.

The operation of the crossover operator is illustrated in
Figures 14-15. Figure 14 shows two parent chromosomes,
and in Figure 15 is illustrated the resulting offspring after
applying the crossover genetic operator and its corresponding
feasible solution of the CluSPTP. The cost of the feasible
solution of the CluSPTP corresponding to the offspring
resulted after applying the crossover operator, presented
in Figure 15, is TotC = 372.

The new generation of chromosomes is processed by the
selection mechanism, resulting a new current population.

H. MUTATION
The mutation operator randomly selects one of the chromo-
some genes and replaces it with another edge that connects
nodes from the same two clusters as the original gene. If the
original gene is void or there is a single edge between the two
clusters, then themutation operator ends and the chromosome
remains unchanged.

The operation of the mutation operator is illustrated in
Figure 16. In the left part is shown the resulting offspring after
applying the mutation operator on the offspring illustrated
in Figure 15, and in the right part is shown its corresponding
feasible solution of the CluSPTP.

The cost of the feasible solution of the CluSPTP corre-
sponding to the offspring resulted after applying the mutation
operator, presented in Figure 16, is TotC = 349.
Typically, in genetic algorithms, the mutation operator per-

forms significant changes to the chromosome data, but it is
appliedwith a low probability.We propose a different strategy
in which the mutation operator performs small changes to
the chromosomes, and there is a good probability that these
changes do not affect in any way the built CluSPTP solutions.
For this reason, we apply the mutation operator to each new
chromosome created by the crossover mechanism. This way,
the diversity of the generated chromosomes is improved.

I. GENETIC PARAMETERS
The genetic parameters have an important impact on the
performance of the GAs. That is why in our developed GA
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FIGURE 16. The resulting offspring after applying the mutation operator and its corresponding feasible solution of the CluSPTP.

FIGURE 17. Convergence study for two instance with 100 and 150 clusters.

the values of the parameters have been chosen based on pre-
liminary computational experiments and statistical analysis.
The parameters have been chosen as follows:

The dimension of the current population D was selected
to be 3500 in order to provide sufficient diversity and to
allow the exploration of the entire solutions space. The size
of the current population affects both the convergence of
the algorithm and the quality of the solutions. Decreas-
ing the size of the current population sppeds up conver-
gence, but the quality of the solutions worsense, because
the search space is explored less thoroughly. Increasing
the size of the current population has oposite effects. In
Figure 17, we show some partial results of the convergence
study that we performed in order to choose the dimension
of the current population. The plots show the evolution
of the best solution cost in time for different population
dimensions.

The other parameters of the genetic algorithm were chosen
based on experiments, as follows: The number of constructed
chromosomes in the initial population is at most D / 100 and
the number of random chromosomes is 3 × D. Chromo-
some evolution is considered to be stagnant when the best
solution was not improved over the last 15 generations of
chromosomes. The algorithm is stopped when the best known

solution was not improved over the last 30 generations of
chromosomes. Because we apply weak mutations, the muta-
tion probability is 1. The number of crossover operations per-
formed for completing each new generation of chromosomes
is 3× D.

IV. COMPUTATIONAL EXPERIMENTS
This section contains the extensive computational results
achieved by our novel solution approach. In order to asses
the performance of the proposed genetic algorithm, we tested
our solution approach on two sets of instances: one that
contains euclidean instances and the other one containing
non-euclidean instances. We point out that all the existing
benchmark instances from the literature are euclidean and
defined on complete graphs and therefore are solved opti-
mally by the first constructed chromosome created according
to the proposed algorithm.

For testing the performance of our proposed GA, we com-
pared it to the existing state-of-the-art algorithms for solving
the CluSPTP:
• the evolutionary algorithm developed by Binh et al. [2]
and denoted NEA;

• the multifactorial evolutionary algorithm proposed by
Thanh et al. [24] and denoted N-MFEA.
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FIGURE 18. Bestfound solutions accuracy: a) Our proposed algorithm, b) NEA, c) N-MFEA.

Our proposed genetic algorithm was implemented in Java
and has been tested on a PC with Intel Core i3-8100 @
3.6GHz, 8GB RAM,Windows 10 Education 64 bit operating
system. In our GA, for each instance, we carried out the same
number of experiments Binh et al. [2] and Thanh et al. [24]
did, namely 30 independent trials.

A. COMPUTATIONAL RESULTS ON EUCLIDEAN
INSTANCES
In the case of euclidean instances defined on complete
graphs, we tested the performance of our proposed GA
on a set of 248 benchmark instances contained in the
MOM-lib provided by Mestria et al. [14] in the case of
the Clustered Traveling Salesman Problem and used by
Binh et al. [2] and Thanh et al. [24] in their computational
experiments. The MOM-lib contains six kinds of instances
which were obtained using different algorithms, see for
more details [14], and classified into two groups according
to the dimension: small instances containing nodes rang-
ing beetwen 30 and 120 vertices grouped within a number
of clusters ranging from 2 to 42, and large instances con-
taining nodes ranging beween 108 and 3000 divided into
a number of clusters ranging from 4 to 200. The source
node was selected randomly for each of the considered
instances.

Our proposed genetic algorithm delivered the optimal solu-
tions in less than 1 millisecond for all the 248 benchmark
euclidean instances. Details and comparison with existing
solutions from lierature are presented in tabels 10-18 from
Appendix A.

In Figures 18 and 19, we present a statistical analysis of
our proposed genetic algorithm results in comparison to the
state-of-the-art existing solution approaches from the litera-
ture: the evolutionary algorithm developed by Binh et al. [2]
and the multifactorial evolutionary algorithm proposed by
Thanh et al. [24]. The best found solution gaps are presented
in Figure 18, and the average solution gaps are presented
in Figure 19. A separate box and whisker plot was rep-
resented for each instance type and for each of the three
algorithms: our proposed genetic algorithm represented by
a, NEA algorithm [2] represented by b and N-MFEA algo-
rithm [24] represented by c. It can be easily observed that
our algorithm finds each time the optimal solution, that
is why, the box and whisker plots are reduced to single
lines in both representations. In the case of the NEA and
M-FEA algorithms, the accuracy of the solutions is far
from constant. The results seem to be better in the case
of small instances, but there are exceptions even for those
types. The gaps are greater in the case of the large instance
types. The results for large instances of Type 5 look bet-
ter then the rest, but this probably is explained by the
fact that only the first smaller instances of this type were
tested.

Taking into account the results displayed in Appendix A,
Tables 10-18 and the presented statistical analysis, we can
conclude that our novel genetic algorithm outperforms the
state-of-the-art existing solution approaches from the litera-
ture: the evolutionary algorithm developed by Binh et al. [2]
and the multifactorial evolutionary algorithm proposed by
Thanh et al. [24], both in terms of the quality of the
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FIGURE 19. Average solutions accuracy: a) Our proposed algorithm, b) NEA, c) N-MFEA.

TABLE 1. Experimental results in the case of small non-euclidean instances of Type 1.

achieved solutions and the corresponding computational
times, providing in all 248 euclidean instances the optimal
solutions in all 30 runs.

B. COMPUTATIONAL RESULTS ON NON-EUCLIDEAN
INSTANCES
In general the CluSPTP is NP-hard, but as we have already
seen in the particular case when the underlying graph is

complete and euclidean, the problem is solvable in poly-
nomial time, that is why we transformed the 248 euclidean
instances contained in the MOM-lib into non-euclidean
instances. The transformation is done as follows:
a) for each edge e of G

if ce 6= 0
r ← random value ∈ [−0.5 · ce, 0.5 · ce]
ce← max{bce + rc, 1}
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TABLE 2. Experimental results in the case of large non-euclidean instances of Type 1.

TABLE 3. Experimental results in the case of large non-euclidean instances of Type 2.

TABLE 4. Experimental results in the case of large non-euclidean instances of Type 3.

b) for each cluster Cx
nx ← random integer ∈ [ 1, |Cx | · (|Cx | − 1)/2 ]
randomly choose nx intra-cluster edges from Cx
for each chosen edge e
if ce 6= 0
r ← random value ∈ [0, 0.75 · ce]
ce← max{bce − rc, 1}

All the non-euclidean instances used in the experiments are
available at https://sites.google.com/view/tstp-instances.

In Tables 1 - 9, we report the solutions achieved by
our GA for solving 248 non-euclidean instances of differ-
ent types of the CluSPTP. Tables 3–9 have the following
structure: the first four columns indicate the number of the
instance, its name and information about its size, the next
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TABLE 5. Experimental results in the case of non-euclidean instances of Type 4.

TABLE 6. Experimental results in the case of small non-euclidean instances of Type 5.
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TABLE 7. Experimental results in the case of large non-euclidean instances of Type 5.

two columns contain the best found (BF) and average (Avg)
solutions obtained by our proposed GA, then we provide
the average running times (ART ) necessary in order to
achieve the corresponding solutions, reported in seconds,
and the last column contains the percentage gap calculated
as follows: gap = 100 × (Avg − BF)/BF . Avg is the
average of the solutions calculated in the 30 runs of each
instance. The symbol ‘‘=’’ means that the algorithm found
the same solution in each of the 30 runs, i.e. BF = Avg
and gap = 0.

Tables 1 and 2 have in the middle four additional columns,
containing the computational results of the Genetic Algo-
rithm for solving the CluSPTP (GA-CSPTP) proposed by
Cosma et al. [3]. It can be easilly observed that our algo-
rithm outperforms the GA-CSPTP algorithm, in terms of
solution qualities and gaps. For some instances (especialyy
the smaller ones), Cosma et al. reported smaller computa-
tional times. This is explicable by the fact that they used
smaller populations of chromosomes in their experiments,
and the GA-CSPTP algorithm does not have a hybrid initial
population.

Analyzing the computational results achieved by our
genetic algorithm and reported in Tables 1-9 in the case
of the 248 non-euclidean instances of different sizes and
types we can observe that: in 119 out of 248 instances we
obtained the same solutions in all 30 runs and, when the
algorithm does not provide the same solutions in all the
runs, the percentage gap is at most 1% for 98 instances, and
for the remaining 31 instances the percentage gap ranges
between 1.01% and 5.34%, facts that confirm the accuracy
and robustness of the proposed solution approach. The neces-
sary average computational times reported in seconds in order
to achieve the corresponding solutions are bellow 10 seconds
in 140 out of 248 instances, between 10 and 60 seconds
for 51 instances, and for the other instances it is at most
22800 seconds.

Overall, the comparison between the proposed solution
approach and the best existing algorithms for solving the
CluSPTP can be summarized as follows:
1. In the case of euclidean instances our novel genetic

algorithm outperforms the best existing solution appro-
aches from the literature: the evolutionary algorithm
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TABLE 8. Experimental results in the case of small non-euclidean instances of Type 6.

developed by Binh et al. [2] and the multifactorial
evolutionary algorithm proposed by Thanh et al. [24],
in terms of the quality of the achieved solutions and the
corresponding computational times, providing in all the
euclidean instances the optimal solutions in all 30 runs.

2. In the case of of non-euclidean instances our GA
achieved in 119 out 248 instances the same best solution
in all the 30 runs, in 98 out of 248 the percentage is
at most 1%, and for the other instances the percentage
gap is at most 5.34%, which confirms the robustness of
our proposed solution approach. The necessary average
computational times reported in seconds in order to
achieve the corresponding solutions are bellow 60 sec-
onds in 191 out of 248 instances, and for the other
instances it is at most 22800 seconds.

V. CONCLUSION
This paper investigates an extended variant of the classi-
cal single-source shortest-path problem, called the clustered
shortest-path tree problem (CluSPTP), motivated by some
important applications in communication networks, agricul-
ture irrigation, and distribution problems.

We have developed a novel genetic algorithm for solv-
ing the CluSPTP. Our proposed solution approach fits the

challenges of the investigated problem and it has certain
important characteristics: the use of an innovative represen-
tation scheme that enables us to construct easily feasible
solutions of the CluSPTP and to explore efficiently the entire
solution space of the problem, and the use of a seeded
initial population that, in addition to the randomly selected
individuals, contains feasible solutions generated by means
of a heuristic algorithm.

An extensive computational experience on a set of 248
benchmark euclidean instances existing in the literature
shows that our genetic algorithm obtained the optimal solu-
tions in all 30 runs within 1 millisecond for all the instances,
outperforming the best developed algorithms for solving
CluSPTP in terms of both solution quality and length
of computing-time required. Moreover, we provided a set
of 248 non-euclidean instances and the reported achieved
results confirm the accuracy and robustness of our pro-
posed solution approach. Therefore, our proposed genetic
algorithm may be considered as a new state-of-the-art
heuristic.

Future work involves developing local search proce-
dures that can help the algorithm to achieve better solu-
tions in lower computing time in the case of non-euclidean
instances.
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TABLE 9. Experimental results in the case of large non-euclidean instances of Type 6.

TABLE 10. Experimental results in the case of small euclidean instances of Type 1.

APPENDIX
DETAILED RESULTS FOR EUCLIDEAN INSTANCES
Tables 10 – 18 display the optimal solutions achieved by
our GA for solving the considered euclidean instances
of the CluSPTP and, in addition, the results reported
by Binh et al. [2] and Thanh et al. [24] for solving the

problem with their evolutionary algorithm, respectively the
multifactorial evolutionary algorithm. The Tables 10, 11,
and 13 – 18 have the following structure: the first two
columns indicate the number of the instance and its size,
the third and fourth columns show the number of clusters (k)
and the number of nodes (n). The next three columns contain
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TABLE 11. Experimental results in the case of large euclidean instances of Type 1.

the best found (BF) and average (Avg) solutions obtained
by the evolutionary algorithm developed by Binh et al. [2]
and the necessary average computational times reported in
minutes in order to achieve the corresponding solutions.
The next two columns contain the best found (BF) and
average (Avg) solutions obtained by the algorithm developed
by Thanh et al. [24]. Thanh et al. [24] did not provide any
information regarding the computational times. The next
column contains the optimal solutions (OPT ) obtained by
our proposed GA, that finds each of those solutions in less
than 1 millisecond running time. The running time represents
the time interval measured from the start of the algorithm,
until the first apparition of the best solution. The next two
columns contain the percentage gaps between the best found
solutions (BFG) respectively the average solutions (AvgG)
found by the NEA algorithm and the optimal solutions found
by our proposed algorithm. The gaps were calculated as
follows: BFG = 100 × (BF − OPT )/OPT , AvgG =
100× (Avg−OPT )/OPT . The last two columns contain the
gaps between the best found solutions (BFG) respectively the
average solutions (AvgG) found by the N-MFEA algorithm
and our achieved solutions. The ‘‘−’’ symbol means that the
corresponding results were not provided by Binh et al. [2]
or Thanh et al. [24]. Table 12 contains the results corre-
sponding to the instances of Type 2, that have not been
tested in the computational experiments of Binh et al. [2]
and Thanh et al. [24]. The optimal solutions are marked with
bold font.

Analyzing the computational results displayed in Table 10,
one can notice that our proposed genetic algorithm delivered

TABLE 12. Experimental results in the case of euclidean instances of
Type 2.

the optimal solutions in less than 1millisecond for all the con-
sidered small euclidean instances of Type 1. The evolutionary
algorithm developed by Binh et al. [2] provided the optimal
solutions in 5 out of 27 instances within at most 0.08 minutes
and the multifactorial evolutionary algorithm proposed by
Thanh et al. [24] provided the optimal solutions in 12 out
of 27 instances. The gaps between the best provided solution
and the optimal solution ranges between 0 and 3.16% in the
case of the NEA algorithm, and between 0 and 12.29% in
the case of the N-MFEA algorithm. Our novel GA provided
the optimal solution in all the 30 runs, while in the case
of the evolutionary algorithm developed by Binh et al. [2]
for all the instances the average solutions are different from
the best solutions provided. In the case the multifactorial
evolutionary algorithm proposed by Thanh et al. [24], in 8
out of 27 instances, the average solutions are equal to the
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TABLE 13. Experimental results in the case of euclidean instances of Type 3.

TABLE 14. Experimental results in the case of euclidean instances of Type 4.

corresponding best solutions, while in the remaining ones
they are different.

When taking a closer look at the computational results
shown in Table 11, we can observe that our proposed genetic

algorithm delivered the optimal solutions in less than 1 mil-
lisecond for all the 28 large euclidean instances of Type
1. Binh et al. [2] provided the solutions only for the first
15 instances, and all the best solutions are different from the
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TABLE 15. Experimental results in the case of small euclidean instances of Type 5.

TABLE 16. Experimental results in the case of large euclidean instances of Type 5.

optimal ones. The gap between the best provided solution
and the optimal solution ranges between 2.63% and 7.20%.
The computational times range between 0.02 minutes and
0.10 minutes. Thanh et al. [24] also provided solutions only

for the first 15 instances, and 14 of the best solutions are
different from the optimal ones. The gap between the best
provided solution and the optimal solution ranges between
0 and 8.51%.
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TABLE 17. Experimental results in the case of small euclidean instances of Type 6.

We can observe that in the case of all the euclidean
instances of Type 2, our genetic algorithm delivered in all
30 runs the optimal solution in less than 1 millisecond.

Analyzing the results displayed in Table 13, we can observe
that our proposed genetic algorithm delivered the optimal
solutions in less than 1 millisecond for all the 14 euclidean
instances of Type 3. Binh et al. [2] provided the solutions only
for the first 5 instances and all the best solutions are different
from the optimal ones. The gap between the best provided
solution. and the optimal solution ranges between 0.49%
and 1.2%. The computational time for all the instances is
0.02 minutes. Thanh et al. [24] provided as well the solutions
only for the first 5 instances, and all the best solutions are
different from the optimal ones. The gap between the best
provided solution and the optimal solution ranges between
0.01% and 0.15%.

Analyzing the results displayed in Table 14, we can observe
that our proposed genetic algorithm delivered the optimal
solutions in less than 1 millisecond for all the 41 euclidean
instances of Type 4. Binh et al. [2] provided the solutions
only for the first 10 instances, and for 6 of these instances
they achieved optimal solutions. The computational times are
shorter than 0.02 minutes. The gap between the best provided
solutions and the optimal ones ranges between 0 and 1.43%.
Thanh et al. [24] provided as well the solutions only for the

first 10 instances, and for 7 of these instances they achieved
optimal solutions. The gap between the best provided solu-
tions and the optimal ones ranges between 0 and 10.63%,
which is huge for the relatively small instances they used
in their experiments. Our genetic algorithm delivered in all
30 runs the optimal solutions.

When taking a closer look at the computational results
shown in Table 15, we can observe that our proposed genetic
algorithm delivered the optimal solutions in less than 1 mil-
lisecond for all the 21 small euclidean instances of Type 5.
Binh et al. [2] achieved the optimal solution for 10 out of
the 21 instances. The gap between the best provided solution
and the optimal solution ranges between 0 and 2.59%. The
computational times are shorter than 0.02 minutes. Thanh
et al. [24] obtained the optimal solutions for 17 out of the
21 instances. The gap between the best provided solution
and the optimal solution ranges between 0 and 0.03%. Our
novel genetic algorithm provided the optimal solutions in
all 30 runs, while in the case of the evolutionary algorithm
developed by Binh et al. [2] only for the first instance the
average solution is equal to the best solution in rest they are
different, and in the case the multifactorial evolutionary algo-
rithm proposed by Thanh et al. [24] in 10 out of 21 instances
the average solutions are equal to the corresponding best
solutions and in rest they are different.
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TABLE 18. Experimental results in the case of large euclidean instances of Type 6.

Analyzing the computational results displayed in Table 16,
we can observe that our proposed genetic algorithm delivered
the optimal solutions in less than 1 millisecond for all the
40 large euclidean instances of Type 5. Binh et al. [2] pro-
vided the solutions only for 15 instances, and all the best solu-
tions are different from the optimal ones. The gap between
the best provided solution and the optimal solution ranges
between 0.81% and 7.92%. The computational times range
between 0.02 minutes and 0.05 minutes. Thanh et al. [24]
provided solutions only for 12 instances, and only for the
first instance the achieved best solution is qual to the opti-
mal solution. The gap between the best provided solution
and the optimal solution ranges between 0 and 1.3%. Our
novel genetic algorithm provided the optimal solutions in
all 30 runs, while in the case of the evolutionary algorithm
developed by Binh et al. [2] and the multifactorial evolu-
tionary algorithm proposed by Thanh et al. [24] for all the
considered instances the average solutions are different from
the corresponding best solutions.

When taking a closer look at the computational results
shown in Table 17, we can observe that our proposed genetic
algorithm delivered the optimal solutions in less than 1 mil-
lisecond for all the 37 small euclidean instances of Type 6.
Binh et al. [2] provided solutions for 36 out of 37 instances
and achieved the optimal solution for 7 of them. The gap
between the best provided solution and the optimal solution
ranges between 0 and 4.19%. The computational times are
shorter than 0.07 minutes. Thanh et al. [24] provided solu-
tions for 35 out of 37 instances and obtained the optimal
solution for 15 of them. The gap between the best provided
solution and the optimal solution ranges between 0 and

3.20%. Our novel genetic algorithm provided the optimal
solutions in all 30 runs, while in the case of the evolutionary
algorithm developed by Binh et al. [2] only for two instances
the average solutions are equal with the best solutions. In the
case the multifactorial evolutionary algorithm proposed by
Thanh et al. [24] in 7 out of 37 instances the average solutions
are equal to the corresponding best solutions.

Analyzing the computational results displayed in Table 18,
we can observe that our proposed genetic algorithm deliv-
ered the optimal solutions in less than 1 millisecond for all
the 30 large euclidean instances of Type 6. Binh et al. [2]
provided the solutions only for 14 instances out of 30, and
all the best solutions are different from the optimal ones.
The gap between the best provided solution and the optimal
solution ranges between 1.08% and 6.11%. The computa-
tional times range between 0.02 minutes and 0.15 minutes.
Thanh et al. [24] provided solutions only for 13 instances
out of 30, and all the best solutions are different from the
optimal ones. The gap between the best provided solution
and the optimal solution ranges between 0.01% and 6.91%.
Our novel genetic algorithm provided the optimal solutions
in all 30 runs, while in the case of the evolutionary algorithm
developed by Binh et al. [2] and the multifactorial evolu-
tionary algorithm proposed by Thanh et al. [24] in all the
considered instances the average solutions are different from
the corresponding best solutions.

Regarding the efficiency of the proposed algorithm, it is
rather difficult to make a fair comparison with the competing
algorithms, as the experiments were carried out on different
computers and the algorithms were implemented in different
languages. Thanh et al. [24] reported computational results
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only for 141 out of 248 euclidean benchmark instances
of small and medium size and did not provide any infor-
mation about computational times. Binh et al. [2] used in
the experiments a computer with Intel Core i7 - 4790 -
3.60 GHz, 16 GB RAM, which is slightly better than the
one we used, and reported computational results only for
141 out of 248 euclidean benchmark instances of small
and medium size. In the case of the considered euclidean
instances, the execution times reported by Binh et al. [2] are
under 0.15 minutes. For these instances our algorithm finds
the optimal solution each time in less than 1millisecond. That
is 9000 times faster.
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