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ABSTRACT This paper investigates the landing planar movement control (LPMC) problem of an amphibi-
ous airplane which is susceptible to uncertainties such as the gust, the unmodeled dynamics and the strong
couplings. The uncertainties can bring negative effects for the airplane acting in forms of persistent influences
and sudden changes, damaging system stability and causing rollover. To attenuate the persistent disturbances,
an entirely novel disturbance estimator that can estimate the non-smooth disturbances accurately is designed.
To degrade the impacts from sudden changes, a type of predictive controller is developed such that input
surging can be suppressed. Comparison with the conventional PIDmethod shows that the proposed approach
enables the system good robustness in attenuating both persistent disturbances and sudden changes during
the LPMC.

INDEX TERMS Amphibious airplane, disturbance estimator, predictive control, persistent disturbances,
sudden changes, landing planar movement control.

I. INTRODUCTION
Amphibious airplane, which is capable of take-off and land-
ing in the complicated environments such as grass lands,
water surface, marshlands and uneven grounds, has played
important roles during and shortly after World War II [1]. Its
unique amphibious characteristics greatly expand the appli-
cation range of the fixed-wing airplane, making it a research
hot spot in various countries in recent years. The existing
amphibious airplanes can be divided into two catalogs. The
first is to use a hybrid structure to achieve the amphibious
function, with a hull device realizing take-off and landing on
the water surface and a wheel-type device realizing landing
on the ground [2]–[4]. However, compared with the draw-
backs of large weight of the airframe and exclusive land
runways for the first catalog, the second one achieves the
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amphibious function through an air cushion generated by the
downward jet of the airbag [5], [6] such that the airplane has
the merits of light structure and wide application ranges.

The air cushion landing system (ACLS), which supports
the airframe through a peripheral jet air cushion [5,6], is a
perfect candidate to help the airplanes perform amphibious
take-off/landing on unideal circumstances such as swamp-
land, wetland and sandy land, greatly expanding the landing
environments of the airplanes. However, frictions between
the cushion supporting the airframe and the ground are so
small that the airplane has poor capability when it encounters
external lateral uncertainties (mainly the gust). This would
in turn result in landing planar movement deviation (LPMD)
problems. It is important to point out that, the LPMD in this
paper means the deviation of the airplane from the centerline
of the runway, including yaw angle (YA) deviation (angle
between the airplane nose pointing direction and the runway
centerline) and lateral displacement (LD) deviation (distance
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between gravitational center of the airplane and the runway
centerline). Dangerous situations of the airplane such as
rollover and tipping over would occur if the LPMD is not cor-
rected immediately [7]. Besides, the complicated unmodeled
dynamics, high nonlinearities, and strong couplings between
variables escalate the difficulties of the landing planar move-
ment deviation correction (LPMDC) control [8].

Few literatures have studied the airplane-ACLS and almost
all of them have paid attention to the fundamental theo-
ries [9]–[11], with the important and meaningful LPMDC
problem ignored. To the best of the authors’ knowledge,
the latest literature on the LPMDC control was in 1974 where
the differential thrust of an airplane-ACLS generated by a PID
controller was used to correct the YA and the LD deviations
by considering the gust [12]. Recently, great developments of
the LPMDC problem for airplane-ACLS have been made by
the Russian researchers [13].

On the LPMDC problem, the airplane-ACLS performs
similarly with the airplane equipped with wheel landing
system (WLS). Hence, previous works on YA control of
airplane with WLS are meaningful and referable. For exam-
ple, the proportional-integral-differential (PID) [14]–[17] the
nonlinear feedback control [18], the feedback lineariza-
tion method [19], the sliding mode control [20] and the
back-stepping approach [21]. Besides, in [22]–[24], the non-
linear models of the airplanes were linearized. The con-
trollers were also designed using linear matrix inequity and
gain-scheduled theories. However, they have obvious flaws
such as the requirement of the accurate plant model, unre-
alistic assumptions and poor robustness in full operation
envelop. Besides, none of the above methods considers the
persistent effects and the sudden impacts simultaneously.
In addition, compared with the wheeled type, the forces of
the airplane-ACLS acting by the ground are much smaller,
making it much more sensitive to the uncertainties. Hence,
designing the LPMDC control system to improve the robust-
ness based upon accurate plant model and unrealistic assump-
tions (such as the upper bound of the disturbances) are less
likely.

As analyzed above, two main problems, namely, hard
obtaining of the accurate models and poor system robustness,
need to be addressed. Disturbance observer (DO) is one of
the most effective and promising methods for dealing with
the two problems. During the past decades, the extended
state observer (ESO) [25]–[27] and the nonlinear distur-
bance observer (NDO) [28] are two quite commonly used
DOs, which have shown good capability on estimation of
smooth disturbances, which in turn enhances the system
robustness significantly. However, for the non-smooth dis-
turbances, the two DOs show poor estimation capability at
the non-differentiable points, which would result in output
overshoot. Besides, to degrade the negative influences from
the disturbances, more input energy consumption should be
payed for the dynamical system. Therefore, to prevent the
possible negative effects from the non-smooth disturbances
and improve the system performance, designing a novel

TABLE 1. Comparison result with the conventional ESO.

TABLE 2. Symbols and physical meanings.

disturbance estimator suitable for different types of distur-
bances is necessary.

Motivated by the above analyses, this paper proposes
a novel control scheme with disturbance attenuation and
prediction functions for LPMDC. Firstly, targeting the
under-actuation problem of the control system, a brilliant
output re-definition approach is introduced to transform
the system into a full-actuated one. Secondly, an entirely
novel disturbance estimator (DE) is proposed to deal with
the non-smooth disturbances. Thirdly, we develop a modi-
fied predictive functional controller to deal with the sudden
changes from prescribed references and external distur-
bances. Finally, the proposed control scheme was verified by
numerical simulations.

The rest part of this paper is organized as follow: Section II
summarizes scope and main contributions of this paper.
Section III proposes a novel DE and shows its stability
analysis. Section IV builds build the motion model for the
airplane landing taxiing on the ground. Section V designs
control scheme for the LPMDC. Section VI conducts contrast
simulations to validate superiority of the proposed control
scheme. Finally, some conclusions are drawn in Section VII.
One online estimation algorithm and proofs of three theorems
are presented in appendixes.

II. PAPER SCOPE AND CONTRIBUTION
This paper presents a novel solution on the LPMDC problem,
which is performed on an unmanned aerial vehicle (UAV)
with ACLS (denoted as UAV-ACLS). Main contributions of
this paper are summarized as following.

1. The negative influences from the uncertainties is
regarded as the combination of persistent effects and the sud-
den impacts which can be attenuated separately and respec-
tively by disturbance estimation and predictive control.

2. An entirely novel non-smooth DE proposed by the sec-
ond author is designed to deal with the persistent effects.
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Superiorities of the DE have been illustrated in [29] compared
with the commonly used ESO and NDO. A comparative sim-
ulation is also used in Section 2.4 to highlight the superiori-
ties. The DE has been successfully applied in flight control of
the quad-rotors such as the path following [30] and payloads
transportation [29]–[31].

3. A predictive controller suitable for linear cascade sys-
tems is developed to deal with the sudden changes, which in
turn avoids rudder surging and too large output overshoot.
The predictive control methods have been applied to degrade
the influences from the sudden changes theoretically and
experimentally [32]–[35].

Notations: Denote T is the sampling period; kT 1
= k , k is a

positive integer;1S(k+1) 1= S(k+1)−S(k), S(k) is a scalar
or vector; S(k + n|k) represents the predictive value of S at
time point (k + n)T based upon S(k), n is a positive integer;
Ŝ(k) represents the estimation of S(k) at time point kT .

III. DISTURBANCE ESTIMATION
In this section, the DE proposed by the second author in [29]
is introduced in detail. Some useful definitions are introduced
first. To make clear of the derivation procedures, the dynamic
linearization (DL) theory is reviewed then. Lastly, based on
the DL, formulation of the DE is given.
Definition 1: A function H (x) ∈ Rl is called

Lipschitz-continuous (LC) in a bounded interval [a, b] if there
exists a bounded number K > 0 such that:

‖H (a)− H (b)‖ ≤ K |a− b| (1)

where, ‖∗‖ represents the norm of the vector, |∗| represents
the absolute value.
Definition 2:A system is generalized Lipchitz (GL) if there

exists a bounded number C > 0 such that at the time points
k1 6= k2, k1 > 0, k2 > 0 for U (k1) 6= U (k2), the system
output Y (k) ∈ Rm and U (k) ∈ Rm satisfy:

‖Y (k1 + 1)− Y (k2 + 1)‖ ≤ C ‖U (k1)− U (k2)‖ (2)

A. Review of the Dynamic Linearization Theory
Consider following multiple-input-multiple-output (MIMO)
nonlinear GL system:

61 : Y (k + 1) = f (Y (k), · · ·, Y (k − ly + 1),U (k),

· · ·,U (k − lu + 1)) (3)

where, U (k) ∈ Rm and Y (k) ∈ Rm are measureable
input and output; ly and lu are positive integers; f (∗) =[
f1(∗), · · ·, fm(∗)

]
is a nonlinear LC mapping vector whose

partial derivatives of function fi(∗), i = 1, · · ·,m with respect
to every entry of the

(
ny + 1

)th variable U (k) are continuous.
Lemma 1 [36]: Consider system 61 with ‖1U (k)‖ 6= 0.

There must exist a time-varying matrix 8c(k) ∈ Rm×m

called pseudo Jacobian matrix (PJM), such that system 61
can be transformed into the following compact form dynamic
linearization (CFDL) data model:

1Y (k + 1) = 8c (k) ·1U (k) (4)

Proof of Lemma 1 can also be seen in [36]. Notice that the
PJM 8c(k) contains all the system nonlinearities such that
its analytical solution cannot be obtained. Hence, the online
estimation methods are applied and one of them are given in
Appendix A.

B. DESIGN OF THE DISTURBANCE ESTIMATOR
Consider following MIMO affine GL nonlinear system sub-
ject to disturbances:

62 :
•

Y = F (Y )+ B · U (t)+ D(t) (5)

where, U (t) ∈ Rm and Y ∈ Rm are measurable input
and output, respectively. F(Y ) ∈ Rm is a given mapping
vector, D(t) ∈ Rm includes unknown internal and external
disturbances, and is bounded. B ∈ Rm is a full rank matrix.
Discretizing system 62 using sampling time period T

yields [37], [38]:

6∗2 : Y (k + 1) = Y (k)+ T · [F(k)+ B · U (k)+ D(k)] (6)

In next, we call 6∗2 the plant model.
Follow nominal model is selected:

6m : Ym(k + 1) = Ym(k)+ T · [F(k)+ Bm · U (k)] (7)

where, Bm is an estimation of B. Thus, the disturbance term
is given by:

G(k) = (B− Bm)U (k)+ D(k) (8)

Let ε(k) = Y (k)−Ym(k). The DE for estimatingG(k) is given
in Theorem 1.
Theorem 1 [29]: Consider the MIMO system (6).

By selecting a nominal model (7), then at any sampling time

point kT , there must exist a time-varying variable
∧

8c(k) such
that estimation of the disturbance term (8) can be derived by
follow disturbance estimator:

∧

G(k) =
1ε(k)
T
+
∧

8c(k) ·1U (k) (9)

Proof of Theorem 1 can be seen in Appendix B.

C. STABILITY ANALYSIS
One of the main issues in disturbance estimation is whether or
not the difference between the real value and the estimation
under the derived disturbance estimator/observer is conver-
gent. The stability result is given in Theorem 2. Proof of
Theorem 2 is given in Appendix C.

Theorem 2: For the system (5) or (6), the estimation error
of the disturbance term between the real value (8) and the
estimated value (9) from the proposed DE under the given
nominal model (7) is bounded.

D. ESTIMATION CAPABILITY VALIDATION
In the Introduction, the shortcomings of conventional ESO
and NDO have been introduced. However, to make our work
complete, the superiorities of the DE compared with the ESO
are highlighted numerically even they have been illustrated in
literature [29].
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Firstly, the comparison results are summarized in Table 1.
Where, SISO means single-input-single-output. MISO

means multiple-input -single-output.
Secondly, to validate effectiveness of the DE, following

linear system is taken as example:
•
x = u+ d(t) (10)

where, u represents the input. x represents the state as well as
the output. d(t) represents the disturbance.

d(t) =

{
0, 0 ≤ t < 2
20sign[sin(0.5π t)], 2 ≤ t ≤ 4

(11)

sign (∗) is the symbol function. It is necessary to emphasize
that setting the amplitude of d(t) as 20 is only to make
clear understanding of the validation effects. Besides, tomake
the comparisons more apparent, amplitude limitation of the
outputs is not adopted.

The rest task is to design a control scheme such that the
system can track a given prescribed reference yd . Discretizing
the systemwith sampling time T yields.One simple candidate
controller is given by:

u(k) = ω [yd (k)− x(k)]− d̂(k) (12)

where, ω is a tuning parameter called controller gain, d̂(k) is
the estimation of d at the sampling time point kT .
In next, d̂(k) is given by the DE and ESO respectively,

to validate the superiority of the DE. The discrete recursion
formula of the second order ESO observer can be described
as follows [39].
e (k) = z1 (k)− x (k)
z1 (k + 1) = z1 (k)+ T · [z2 (k)− β1 · e (k)+ u (k)]
z2 (k + 1) = z2 (k)− T · β2 · e (k)

(13)

where, z1 (k) and z2 (k) are observed values of x and d at
the sampling time point kT . Denote d̂(k)z2 (k). β1 and β2 are
tuning parameters which satisfy follow rules[39]:{

η > 0
β1 = 2η, β2 = η2

(14)

Initial conditions are given by: d̂(0) = 0, x(0) = 0. The
sampling period T = 0.001s Parameters of the ESO are tuned
to optimal such that the response times at the non-smooth
points for observing the disturbances are as short as possible.
Take η = 100 in this paper. Contrast results of responses of
unit-step prescribed reference are shown as:

Figure 1 illustrates that, by using the same controller gain,
control performance based upon the DE is significantly supe-
rior to the one based on the ESO since maximum overshoot
of the lateral is up to 60% compared with 7% of the DE.
The reason is that, in right neighborhoods of the non-smooth
points (t = 2s and t = 3s), the proposed DE can estimate
the disturbance accurately, while the ESO cannot, as shown
in Figure 2. Hence, errors between real value and estimation
of the disturbance using the ESO is so large that system input

FIGURE 1. Comparison of system output: ω = 10.

FIGURE 2. Disturbance estimation: ω = 10.

FIGURE 3. System output: different ω.

must surge to suppress the disturbance and guarantee system
stability, which in turn results in the overshoot of system
output, as shown in Figure 1 and Figure 4. Figure 3 and
Figure 4 show that, increasing amplitude of the controller
gain ω is beneficial to reduce output overshoots. However,
this would cause severe input surging, especially in initial
period of the simulation.

IV. SYSTEM MODELING IN TAXIING PHASE
This section aims to build the motion model for the air-
plane landing taxiing on the ground. Before getting into
the idea of system modeling, it is necessary to depict the
whole LPMDC control procedure for easy understanding,
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FIGURE 4. System input: different ω.

as illustrated in Figure 5. According to the orientation of the
nose at the initial time of landing, there are two situations,
namely, pointing to the runway centerline (Figure 5(a)) and
pointing to the boundary line (Figure 5(b)).

It can be seen from Figure 5 that, the latter situation is
more complicated than the former one since in the lateral,
the airplane is much easier to exceed the boundary line.

By referring to Figure 5, the LPMDC control problem for
an airplane can be stated as: design control input, namely,
the propeller thrust error, for the airplane taxiing on the
runway such that the LD is limited within the range [−εy, εy]
with respect to the runway centerline and simultaneously,
YA is limited within the range [−εψ , εψ ] with respect to
OgXg.

A. FORCES AND TORQUES
This paper uses four frames, namely, the inertial frame {G:
OgXgYgZg}, the vehicle frame {B: ObXbYbZb}, the wind
frame {A: OaXaYaZa} and the stability frame {S: OsXsYsZs},
to describe the planar movement of the airplane, as shown in
follow figures. Literature [40] introduces the four frames in
detail.
Detailed analysis on the forces and torques are illustrated

in Figure 6 and Figure 7.
Symbols and their physical meanings used in next are given

by in Table 2.
Expressions of the forces and torques in taxiing phase are

given by:

1) PROPELLER FORCES AND TORQUES
The propeller forces FT in frame {B } are given by:

FT =
[
TL + LR 0 0

]T (15)

Denote the thrust error is δT = TR − TL .
The propeller torquesMT in frame {B} are given by:

MT = [MTx MTy MTz ]T

= [ 0 − (TL + TR) · lyz δT · lxz ]T (16)

2) THE GROUND REACTION FORCES
The bottom of the trunk is a cross-shaped sectional structure,
and the air cushion cavity is divided into four parts (Denoted

by j). Motivated by [41], to facilitate the analysis, the trunk is
divided into eight sections. Each section is divided into many
segments: M segments per straight section and N segments
per curved section. Thus the total number of trunk segments
is 4 (M + N ).
In frame {G }, supporting forces Fn from the ground are

given by:

Fn =
[
0 0 −Fn

]T
=
[
0 0 −(Fnc + Fnt)

]T (17)

where, Fn represents the total supporting forces. Fnt and Fnc
are the trunk contact force and the cushion pressure force,
respectively, which are given by (18), as shown at the bottom
of the next page, where, Pcj is the jth cushion pressure, Pt is
the trunk pressure, Aci is the ith cushion area, Acni is the ith

area of trunk in ground contact.
In frame {B}, the supporting torques MP caused by the

ground are given by (19) and (20) as shown at the bottom
of the next page, where, Mpcx and Mpcy are axial cushion
pressure torques in the frame {B}, Mptx and Mpty are axial
trunk contacting torques in the frame {B}, χx , χy, χz are axial
distances between the gravitational centers of the airplane and
the cushion in the frame {B}, xchi, ychi are axial longitudinal
distances between the centers of pressure and cushion in
the ith segment. xtki, ytki are axial lateral distances between
the centers of trunk contact pressure and cushion in the ith

segment.

3) FRICTIONS
In frame {S}, velocities of the UAV are given by:

V s =
[
us vs ws

]T (21)

Thus, frictions caused by the ground acting on the trunk in
frame {S} can be expressed by:

f =


−

4(M+N )∑
i=1

µPtAcni cos
(
arctan

vs
us

)

−

4(M+N )∑
i=1

µPtAcni sin
(
arctan

vs
us

)
0


(22)

Hence, resultant friction torques in frame {B} are given by:

Mf =



4(M+N )∑
i=1

µPtAcni sin
(
arctan

vs
us

)
χx

4(M+N )∑
i=1

µPtAcni cos
(
arctan

vs
us

)
χy4(M+N )∑

i=1

(
µPtjAcni sin

(
arctan

vs
us

)
+µPtjAcni cos

(
arctan

vs
us

))]
χz


(23)

where,µ represents the friction coefficient. Solution methods
of Pt ,Pcj,Aci,Acni, xchi, xtki, ytki, ychi, χx , χy and χz can be
referred to [6], [41].
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B. SYSTEM MODELING AND PROBLEM FORMATION
The six degree-of-freedom (DOF) system model of the
UAV-ACLS can be described as [40].


•

Px
•

Py
•

H

 = L−1bg

 u
v
w

+
 0
wy
0



•

φ
•

θ
•

ψ

 =
 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ

cos θ
cosφ
cos θ


 pq
r



•
u
•
v
•
w

 =
 0 r −q
−r 0 p
q −p 0


 u
v
w

+ ∑
F

m


•
p
•
q
•
r

 =
 (01p− 02r)q
05pr − 06(p2 − r2)

(07p− 01r)q

+
03 0 04

0 1
/
Jy 0

04 0 08



∑
M +

 MTx

MTy

δT · lxz


︸ ︷︷ ︸

MT

+ Dr

Dr =

 drp(t)drq(t)
drr (t)


(24)

where, wy is the wind velocity vector. dri(t), i = p, q, r
represent the external disturbances. The rotational matrix Lbg

from frame {G} to {B}, L−1bg = LTbg. 01 ∼ 08 and 1
/
Jy are

geometrical parameters which can also be seen in [40].∑
F and

∑
M are given by:


∑
F =

[
Fx Fy Fz

]T
= LbgG+ LbaR+ LbgP+ Lbsf + FT∑
M =

[
Mx My Mz

]T
= Ma +MP +Mf

(25)

where, Lba and Lbs are the transformation matrixes from the
frames {A}, and {S} to the frame {B}, respectively [40]; G =
[0, 0,mg]T . R = [−D,C,−L]T and Ma = [La,Ma,Na]T

represent the aerodynamic forces and torques, respectively.
Their formulations can also be seen in [40].

In landing taxiing, it seems that movement of the airplane
is on the horizontal plane. Actually, due to the existence of
buffers, the airplane performs a quasi-planar motion (QPM).
The altitude H , the roll angle φ, and the pitch angle θ change
slightly such that their stability can be guaranteed by the
buffers. Thus, only Py and ψ control problems need to be
focused. The LPMDC problem that need to be addressed here
are summarized as:

Design input δT for the system shown in formula (24)
to guarantee

∣∣Py∣∣ ≤ εy and |ψ | ≤ εψ in the presence of
disturbances, where εy and εψ are small bounded positive
numbers called admissible errors.

V. CONTROL SCHEME DESIGN
This section aims to design control scheme for the LPMDC.
It is obvious in formula (24) that the system is under-actuated,
which brings difficulties for designing the controller. To deal
with the under-actuation problem, following re-definition is


Fnc =

4(M+N )∑
i=1

4∑
j=1

PcjAci

Fnt =
4(M+N )∑
i=1

PtAcni

,


j = 1 1 ≤ i ≤ M + N
j = 2 M + N < i ≤ 2M + 2N
j = 3 2M + 2N < i ≤ 3M + 3N
j = 4 3M + 3N < i ≤ 4M + 4N

 (18)

MP =
[
Mpcx +Mptx Mpcy +Mpty 0

]T (19)

Mpcx = −

4(M+N )∑
i=1

4∑
j=1

PcjAci
(
ychi − χy

)
Mptx = −

4(M+N )∑
i=1

PtAcni
(
ytki − χy

)
Mpcy =

4(M+N )∑
i=1

4∑
j=1

PcjAci (xchi − χx)

Mpty = −

4(M+N )∑
i=1

PtAcni (xtki − χx)

,


j = 1 1 ≤ i ≤ M + N
j = 2 M + N < i ≤ 2M + 2N
j = 3 2M + 2N < i ≤ 3M + 3N
j = 4 3M + 3N < i ≤ 4M + 4N

 (20)
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FIGURE 5. Sketch of landing planar movement deviation correction control.

FIGURE 6. Top view of the UAV-ACLS.

applied:

ψw = ψ + arcsin

 ξPy√
1+

(
ξPy

)2
 (26)

where, ξ > 0 is an adjustable parameter. Formula (26) has the
following relationship: ψ → 0,Py→ 0⇔ ψw→ 0 [24].
Then the plant model of the UAV-ACLS for the LPMDC

problem becomes:

Formula(24)

•

ψw =
•

ψ︸︷︷︸
rψ

+
ξ
•

Py

1+
(
ξPy

)2︸ ︷︷ ︸
d1(t)

•
rψ = d2(t)+ bm · δT

d2(t) =
d
(
q sinφ
cos θ

)
dt

+ r
d
(
cosφ
cos θ

)
dt

+
cosφ
cos θ

((07p− 02r)q+ 04Mx

+08Mz)+ drr (t)

(27)

where, bm = 08 ·lxz. It is necessary to emphasize that, the dis-
turbance terms drp(t) and drq(t) are included in d2(t). System
(27) indicates that the UAV plant model is transformed into a
single-input-single-output (SISO) one with the input δT and
the output ψw. The task of the control scheme is to drive ψw
to zero by designing δT .

FIGURE 7. Front view of the UAV-ACLS.

A. DESIGN OF THE DISTURBANCE ESTIMATOR
To design the DE, following nominal model is selected:{

ψwm (k + 1) = ψwm (k)+ T · rψm (k)
rψm (k + 1) = rψm (k)+ T · bm · δT (k)

(28)

According to formula (9) and Appendix A, the DEs for
estimating d1 (t) and d2 (t) in formula (27) are given by:

Estimation of d1 (t):

ew(k) = ψw(k)− ψwm(k)

d̂1(k) =
1ew(k)
T
+ 8̂c1(k) ·1rψm (k)

8̂c1(k) = 8̂c1(k − 1)

+
η1 · [1ew(k)− 8̂c1(k − 1) ·1rψm(k − 1)]1rψm(k − 1)

ζ1 +
∣∣1rψm(k − 1)

∣∣2
(29)

Estimation of d2 (t):

er (k) = rψ (k)− rψm(k)

d̂2(k) =
1er (k)
T
+ 8̂c2(k) ·1δT (k)

8̂c2(k) = 8̂c2(k − 1)

+
η2 · [1er (k)− 8̂c2(k − 1) ·1δT (k − 1)]1δT (k − 1)

ζ2 + |1δT (k − 1)|2

(30)

B. DESIGN OF PREDICTIVE FUNCTIONAL CONTROLLER
Let rψ (k) = rψ0(k) − d̂1 (k) and δT (k) = δT0 (k) −
1/
bmd̂2 (k). By using feedback compensation, the system
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shown in formula (27) can be transformed into:{
ψw (k + 1) = ψw (k)+ T

[
rψ0 (k)+1d1 (k)

]
rψ (k + 1) = rψ (k)+ T [bm · δT0 (k)+1d2 (k)]

(31)

where, 1d1 (k) = d1 (k) − d̂1 (k) and 1d2 (k) = d2 (k) −
d̂2 (k) are observation errors with 0 < |1d1| ≤ α1 and 0 <
|1d2| ≤ α2, α1 and α2 are positive bounded numbers.

In next, in the controller design procedures, 1d1 and 1d2
are assume to be zero, while in the stability analysis of
the whole control scheme, the non-zero 1d1 and 1d2 are
considered.

Two subsystems in formula (31) can be expressed by fol-
low general system:

6 : y (k + 1) = y (k)+ T [b · u (k)+1d (k)] (32)

where, y represents state variable as well as output signal. u is
input signal. T represents the sampling period. 0 < |1d | ≤
α, α is a bounded number.

By applying u(k + i) = u(k), i ≥ 2 [45]. If 1d is assumed
to be zero, then we have:

y(k + 1) = y(k)+ Tb · u(k)
y(k + 2) = y(k)+ 2Tb · u(k)

...

y(k + n) = y(k)+ nTb · u(k)

(33)

where, n ≥ 2 is the length of predictive horizon.
Follow cost function is employed:

J (k) =
1
2
[yd (k + n)− y(k + n)]2 (34)

where, yd is the reference signal. By letting ∂J (k)
/
∂u(k) = 0,

the predictive control law is given by:

u(k) =
yd (k + n)− y(k)

nTb
(35)

Thus, the predictive control scheme for the system shown
in formula (31) is given by:

(
rψ0

)
d (k) =

(ψw)d (k + n1)− ψw(k)
n1T

δT0(k) =

(
rψ
)
d (k + n2)− rψ (k)

n2Tbm

(36)

where, n1 and n2 are the lengths of predictive horizon.

C. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM
Stability analysis on the closed-loop system under derived
control law is a very important issue. The main results on the
closed-loop stability analysis is given in Theorem 3 with its
proof given in Appendix D.

Theorem 3: The system 6 (formula (32)) is controlled
using the predictive law (formula (35)) for the regulator
yd (k+1) = y∗ = constant. There must exist an integer n ≥ 2
making the system6 bounded-input-bounded-output (BIBO)
when k →∞ if 0 < |1d | ≤ α.
Schematic of the control scheme with uncertainty attenua-

tion and prediction functions is given as in Figure 8:

FIGURE 8. Schematic of the control scheme.

FIGURE 9. Response of Py .

FIGURE 10. Response of ψ .

VI. NUMERICAL VALIDATION
In this section, two groups of simulations were carried out
to validate the effectiveness of the proposed approach. In the
first group, superiority validation compared with the active
disturbance rejection control (ADRC) and the ESO-enhanced
PFC approach was carried out. In the second group, LPMDC
using the proposed control scheme under different initial
landing conditions was carried out. Gust at t ∈ [15 s, 16 s]
with wy = 3m/s was taken as the sudden change. The
persistent disturbance is drp(t) = 0, drq(t) = 0, drr (t) =
7sign (cos (0.2π t)), 30s ≤ t ≤ 35s. Parameters used here
are given by: µ = 0.003 [46] in formula (22);ξ = 0.025
in formula(26); α = 1, b1 = 10, η1 = 1, ζ1 = 100, η2 =

1, ζ2 = 100,
∧

8c1(0) = diag(0.05, 0.05, 0.05), 8̂c2(0) =
diag(0.05, 0.05, 0.05) in Appendix A, formula (29), and for-
mula (30); The predictive period n1 = 2000, n2 = 2000 (The
simulation frequency is 10000 Hz) in formula (36).
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FIGURE 11. Disturbance estimation in the proposed scheme.

FIGURE 12. Disturbance estimation of d1
(
t
)

in PFC with ESO.

FIGURE 13. Disturbance estimation of d2
(
t
)

in PFC with ESO.

A. SUPERIORITY VALIDATION: COMPARISON WITH ADRC
AND ESO-ENHANCE PFC
The unique difference between the ESO-enhanced PFC and
our approach is the disturbance observer. Parameters of the
controller are exactly the same.

The ADRC takes a PID controller which is given by:
(rw)d = Kψwp ψw + K

ψw
i

∫
ψw + K

ψw
d

•

ψw − d̂1 (t)
e = (rw)d − rw
δT = K rw

p e+ K rw
i

∫
e+ K rw

d
•
e− d̂2 (t)

(37)

FIGURE 14. Disturbance estimation of d1
(
t
)

in ADRC.

FIGURE 15. Disturbance estimation of d2
(
t
)

in ADRC.

FIGURE 16. Thrust error δT .

where d̂1 (t) and d̂2 (t) are the estimated values of d1 (t) and
d2 (t) by ESO. The gain of ESO is η = 100 (refer to formula
(14)). A set of controller parameters close to the optimal value
are given by: Kψwp = 5, Kψwi = 0, Kψwd = 1, K rw

p = 6K rw
i =

0,K rw
d = 1.

Initial conditions are given by: u0 = 25m/s, ψ0 = 5
◦

,
Py0 = 2m, which corresponds to the situation in Figure 5
(b). Simulation results are as follow:

Figure 9 and Figure 10 illustrate that the deviation cor-
rection effect from the proposed scheme is much better than
the one from the ADRC method and the ESO-enhanced PFC
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FIGURE 17. Response of Py and ψ .

FIGURE 18. Thrust error δT .

FIGURE 19. Response of Py and ψ .

method since response curves of the LD and the YA in
the proposed approach are quite close to zero, while curves
in the latter two fluctuate seriously around the equilibrium
state. Figure 16 shows that, at the time points t = 15s and
t = 30s when the gust and the disturbance are encountered
respectively, the input saturation phenomenon occurs in both
the ADRC and the ESO-enhanced PFC control schemes.
The reasons are that, the prediction function can restrain
the input surging (compared with the ADRC); and the pro-
posed DE has a better estimation effect (compared with the
ESO-enhanced PFC). Figure 11 shows that the novel DE
designed can estimate the uncertainties in an accuratemanner.

FIGURE 20. Thrust error δT .

FIGURE 21. Response of Py and ψ .

FIGURE 22. Response of Py and ψ .

Figure 12-Figure 15 show that ESO is less effective in esti-
mating non-smooth disturbance.

B. VALIDATION OF DIFFERENT ORIGINAL CONDITIONS
1) DIFFERENT INITIAL LATERAL DISPLACEMENTS
Initial conditions are: u0 = 25m/s, ψ0 = 5◦, Py0 = 1m,
Py0 = 2m, Py0 = 3m which corresponds to the situation
in Figure 5 (b). Simulation results are as follow:

2) DIFFERENT INITIAL YAW ANGLES
Initial conditions are: u0 = 25m/s, Py0 = 2m, ψ0 = −3◦,
ψ0 = 0◦, ψ0 = 3◦. ψ0 = −3◦ corresponds to the situation
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in Figure 5 (a) while ψ0 = 3◦ corresponds to the one
in Figure 5 (b). Simulation results are as follow:

3) DIFFERENT INITIAL VELOCITIES
Initial conditions are: u0 = 25m/s, u0 = 20m/s, u0 = 15m/s,
Py0 = 2m, ψ0 = 5◦, which corresponds to the situation
in Figure 5 (b). Simulation results are as follow:

Figure 17∼ Figure 22 demonstrate that, even under the dif-
ferent original conditions, the designed novel DE can enhance
the system robustness against the persistent influences from
uncertainties. In addition, the predictive controller can also
help the UAV-ACLS degrade the impacts from the sudden
changes.

VII. CONCLUSION
This paper gives a solution on the control of landing planar
movement deviation correction for the amphibious airplane.
Main conclusions are drawn as:

(1) Influences from the uncertainties are classified into two
catalogs, namely, the persistent and the sudden impact such
that they can be attenuated through the estimation compensa-
tion and the prediction ways, respectively.

(2) The proposed disturbance estimator can observe the
non-smooth persistent disturbances in an accurate manner
such that the proposed control scheme does not require
detailed model information and can guarantee good system
robustness.

(3) The predictive controller can soften the impacts from
the sudden changes and help the airplane avoid input satura-
tion.

(4) Control performance from the proposed control
scheme is much better than the ones from the ADRC and
ESO-Enhance PFC method, which are reflected in two
aspects: much smaller values of the LD/YA and no input
saturation.
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APPENDIX A
ESTIMATION OF THE PJM
See Table 3.

APPENDIX B
PROOF OF THEOREM 1
Subtracting formula (7) from formula (6) yields:

6ε : ε(k + 1) = ε(k)+ T · G(k) (B1)

Moving ε(k) to the left side yields:

6ε : 1ε(k + 1) = T · G(k) (B2)

Then at (k − 1)T , it has:

1ε(k) = T · G(k − 1) (B3)

TABLE 3. Estimation of the PJM.

Subtracting formula (B3) from formula (B2) yields:

1ε(k + 1) = 1ε(k)+ T ·1G(k) (B4)

Applying Lemma 1 to linearize the system (B4) yields:

6ε : 1ε(k + 1) = 1ε(k)+ T ·8c(k) ·1U (k) (B5)

Finally, by making comparison between formulas (B2) and
(B5), the disturbance term can be written as:

G(k) =
1ε(k)
T
+8c(k) ·1U (k) (B6)

Using the algorithm in the Appendix A to estimate the PJM
8c(k) yields:

Ĝ(k) =
1ε(k)
T
+ 8̂c(k) ·1U (k) (B7)

where, 8̂c (k) is a time-varying diagonally dominant matrix.

APPENDIX C
PROOF OF THEOREM 2
Here we only need to prove that the error between8c(k) and
8̂c(k) is bounded.
Denote 8̂c(k) = [φ̂Tc1, . . . , φ̂

T
cm]

T and 8c(k) =

[φTc1, . . . , φ
T
cm]

T .
In resetting principles of the Appendix A, 8̂c(k) is obvi-

ously bounded. Thus, the estimation error is also bounded.
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In other conditions, the estimation law for PJM can be
re-written as:
φ̂ci(k) = φ̂ci(k − 1)

+
η · [1yi(k)− φ̂ci(k − 1) ·1U (k − 1)]1UT (k − 1)

ζ + ‖1U (k − 1)‖2

1yi(k) = φci(k − 1) ·1U (k − 1)
(C1)

where, i = 1, . . . ,m. Denote φ̃ci(k) = φ̂ci(k) − φci(k).
Subtracting the real value φci(k) from both sides of formula
(C1) yields:

φ̃ci(k) = φ̂ci(k − 1)− φci(k)

+
η[1Y (k)− φ̂ci(k − 1) ·1U (k − 1)]1UT (k − 1)

ζ + ‖1U (k − 1)‖2

= φ̃ci(k − 1)+ φci(k − 1)− φci(k)

−
η · φ̃ci(k − 1) ·1U (k − 1)1UT (k − 1)

ζ + ‖1U (k − 1)‖2

= φ̃ci(k − 1) · [I −
η ·1U (k − 1)1UT (k − 1)

ζ + ‖1U (k − 1)‖2
]

+φci(k − 1)− φci(k) (C2)

where, I is an identity matrix with relative dimension.
Taking norm of both sides of formula (C2) and considering
‖8c(k)‖ ≤ bc (implies ‖φci(k)‖ ≤ bc) yield:∥∥φ̃ci(k)∥∥ ≤ ∥∥∥∥φ̃ci(k − 1)[I −

η ·1U (k − 1)1UT (k − 1)

ζ + ‖1U (k − 1)‖2
]

∥∥∥∥
+2bc (C3)

Besides, we have:∥∥∥∥φ̃ci(k − 1) · [I −
η ·1U (k − 1)1UT (k − 1)

ζ + ‖1U (k − 1)‖2
]

∥∥∥∥2
=
∥∥φ̃ci(k − 1)

∥∥2 + [−2+
η · ‖1U (k − 1)‖2

ζ + ‖1U (k − 1)‖2
]

·
η ·
∥∥φ̃ci(k − 1)1U (k − 1)

∥∥2
ζ + ‖1U (k − 1)‖2

(C4)

By considering η ∈ (0, 2] and ζ > 0, we also have:

−2+
η · ‖1U (k − 1)‖2

ζ + ‖1U (k − 1)‖2
< 0 (C5)

Formulas (C4) and (C5) means that there exists 0 < dc < 1
making the following work:∥∥∥∥φ̃ci(k − 1) · [I −

η ·1U (k − 1)1UT (k − 1)

ζ + ‖1U (k − 1)‖2
]

∥∥∥∥
≤ dc

∥∥φ̃ci(k − 1)
∥∥ (C6)

Here we only need to care about the existence of dc instead
of its specific value. Finally, we have:∥∥φ̃ci(k)∥∥ ≤ dc

∥∥φ̃ci(k − 1)
∥∥+ 2bc ≤ d2c

∥∥φ̃ci(k − 2)
∥∥

+2dcbc + 2bc

≤ . . . ≤ dkc
∥∥φ̃ci(0)∥∥+ 2bc(1− dkc )

1− dc
(C7)

Thus, the theorem is proved.

APPENDIX D
PROOF OF THEOREM 3
Denote e(k + 1) = yd (k + 1) − y(k + 1) = y∗ − y(k + 1).
Then bringing formula (35) into formula (32) yields:

|e(k + 1)|

=

∣∣∣(1− 1/
n)e(k)−1d

∣∣∣ ≤ (1− 1/
n) |e(k)| + |1d |

≤ (1− 1/
n) |e(k)| + α ≤ (1− 1/

n)
2
|e(k)| + α(1− 1/

n)

≤ . . . ≤ (1− 1/
n)
k
|e(1)| + α (n− 1)

[
1− (1− 1/

n)
k−2

]
(D1)

When k →∞, it is easy to find that (1−1
/
n)
k |e(1)| → 0 and

|e(k + 1)| ≤ α (n− 1). This means that the output y(k+1) of
the system6 in formula (32) is bounded. Besides, in formula
(35), if k → ∞, we have |u(k)| = 1

nT |bm|
|y∗ − y(k)| =

1
nT |bm|

|e(k)| ≤ α(n−1)
nT |bm|

. This means that the input u(k) of the
system 6 is bounded. Finally, the BIBO of the system 6 is
proved.
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