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ABSTRACT The traditional visual SLAM systems take the monocular or stereo camera as input sensor, with
complex map initialization and map point triangulation steps needed for 3D map reconstruction, which are
easy to fail, computationally complex and can cause noisy measurements. The emergence of RGB-D camera
which provides RGB image together with depth information breaks this situation.While a number of RGB-D
SLAM systems have been proposed in recent years, the current classification research on RGB-D SLAM
is very lacking, and their advantages and shortcomings remain unclear regarding different applications and
perturbations, such as illumination transformation, noise and rolling shutter effect of sensors. In this paper,
we mainly introduced the basic concept and structure of the RGB-D SLAM system, and then introduced
the differences between the various RGB-D SLAM systems in the three aspects of tracking, mapping, and
loop detection, and we make a classification study on different RGB-D SLAM algorithms according to the
three aspect. Furthermore, we discuss some advanced topics and open problems of RGB-D SLAM, hoping
that it will help for future exploring. In the end, we conducted a large number of evaluation experiments on
multiple RGB-D SLAM systems, and analyzed their advantages and disadvantages, as well as performance
differences in different application scenarios, and provided references for researchers and developers.

INDEX TERMS Computer vision, evaluation, RGB-D SLAM, robotics, survey.

I. INTRODUCTION
SLAM (Simultaneous Localization and Mapping) is a tech-
nique developed for solving the problem of self-localization
and mapping in an unknown environment. Since it was pro-
posed in the 1980s for the first time, it has made great
progress and has been widely used in robot navigation,
autonomous driving, augmented reality and virtual reality.
For the merits of size, cost and power consumption, SLAM
systems using image data captured by cameras as input is
becoming more and more popular, which is also called visual
SLAM(vSLAM).

Most vSLAM methods have been traditionally based on
low-level feature matching and multiple view geometry. This
introduces several limitations to monocular vSLAM. For
example, a large-baseline motion is needed to generate suf-
ficient parallax for reliable depth estimation; and the scale
is unobservable. This can be partially alleviated by including
additional sensors (e.g., stereo cameras, inertial measurement
units (IMUs), sonar) or the prior knowledge of the system
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or the scene. Another challenge is the dense reconstruction
of low texture areas. Although recent approaches using deep
learning have shown impressive results in this direction, more
research is needed regarding their cost and dependence on the
training data [1].

RGB-D cameras, which can provide both colored image
and depth image at the same time, are becoming more and
more used for indoor scene reconstruction and can be used to
solve the challenges mentioned above. The camera intrinsic
parameters calibrated beforehand provide the scale factor for
reconstruction and camera tracking. And RGB-D camera can
provide depth information for all areas in the field of view
with or without textures, making dense reconstruction easy
to be done and removing the need for map initialization. It is
no wonder that research of mapping and localization using
an RGB-D camera has flourished in the last decade. Figure 1
shows the reconstruction results of several state-of-the-art
RGB-D SLAM systems. Nowadays, RGB-D cameras have
become the most popular sensors for indoor applications in
robotics and AR/VR. In the future, it will be promising to use
a single RGB-D camera or with other sensors to complete the
SLAM task with better-designed algorithms.
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FIGURE 1. Reconstructions of state-of-the-art RGB-D SLAM systems.

In this paper, we review real-time RGB-D SLAM
algorithms, which remarkably evolve forward from 2011.
We conclude the common designation of most RGB-D
SLAM systems and give the basic architecture of an RGB-D
SLAM. And we introduce each part of the RGB-D SLAM
with relevant works andmake some evaluation to help readers
understand the advantages and disadvantages of them and
finally know how to design an RGB-D SLAM. The remainder
of the paper is organized as follows: Section II and III give an
overview of the most common RGB-D SLAM pipeline and
the notation and preliminaries of the following formulations.
Section IV, V, VI introduces camera tracking, local mapping
and loop closing algorithms with specific examples sepa-
rately. Section VII discusses relevant advanced topics and
open problems that were not covered in the previous sections.
Section VIII gives some evaluation of tracking accuracy,
mean tracking time, reconstruction accuracy, etc. of 7 differ-
ent SLAM systems under 3 different datasets. Section IX lists
the open source code and datasets we used. Section X gives a
brief conclusion of the paper.

II. BASIC ARCHITECTURE OF RGB-D SLAM
After several decades’ development, the pipeline of RGB-D
SLAM or vSLAM(more generally) are basically fixed. Mod-
ern vSLAM systems are mostly designed using the idea of
PTAM [6], which divides the task of SLAM into camera
tracking and local mapping, completed by separate threads.

FIGURE 2. Basic architecture of RGB-D SLAM. Ik : kth RGB-D image,
I ′k : kth preprocessed RGB-D image, ξk : kth camera pose, ML: local map,
MG: global map.

After PTAM has been proposed, some works [7], [8] added
other threads tackling loop closing, global BA, etc. As a
result, most state of the art vSLAM systems are built on top of
multi-threads and can be divided into two parts: front end and
back end. The front end is responsible for providing real-time
camera poses while the back end is responsible for slowly
map update and optimization.

The basic architecture of RGB-D SLAM is described as
Fig 2 and our article will expand based on this architecture.
In the front end, RGB-D image Ik and global map MG are
used for image preprocess and pose estimation. In the back
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end, Local Mapping thread utilizes camera pose ξk , prepro-
cessed RGB-D image I ′k and global mapMG to perform map
update and local optimization; Loop Closing thread makes
use of the local map ML to accomplish loop detection, loop
correction and global optimization. What’s more, the front
end of the SLAM without back end optimization can be
called RGB-DOdometry, whichwewill not differentiate with
RGB-D SLAM in the following of the work.

III. NOTATION AND PRELIMINARIES
We denote the RGB-D image as I : � 7→ R4, and � ⊂ R2

is the image plane with width w and height h. We denote
the pixel coordinates as a 2D vector p = (u, v)T and
the corresponding homogeneous coordinates as a 3D vector
p̂ = (λu, λv, λ). The two coordinates can be transformed by
dehomogenization operator π2D and homogenization opera-
tor π−12D , where p = π2D(p̂) = (û/λ, v̂/λ) and p̂ = π−12D (p) =
(u, v, 1)T . The color value and depth value of a pixel is
denoted as I (u, v) = (r, g, b)T and D(u, v) = d respectively.
The Euclidean coordinate and corresponding homogeneous
coordinate of a 3D point k in frame i can be denoted as
Pik = (X ik ,Y

i
k ,Z

i
k )
T and P̂ik = (λX ik , λY

i
k , λZ

i
k , λ)

T . These
two coordinates can be transformed by dehomogenization
operator π3D and homogenization operator π−13D , where Pik =
π3D(P̂ik ) = (X̂i

k/λ, Ŷ
i
k/λ, Ẑ

i
k/λ) and P̂ik = π−13D (Pik ) =

(X ik ,Y
i
k ,Z

i
k , 1)

T .

The transformation matrix Tji =
[
Rji tji
0 1

]
∈ SE(3) trans-

forms a 3D point Pik in frame i to Pjik in reference frame j,
where Rji ∈ SO(3), tji ∈ R3. The transformation formulation
is represented as follow:

Pjik = π3D(TjiP̂
i
k ) = π3D(Tjiπ

−1
3D (Pik )) (1)

Using lie algebra, we represent Tji by its minimal representa-
tion Tji = expSE(3)(ξji) with ξji ∈ R6. And equation 1 can be
write as:

Pjik = π3D(expSE(3)(ξji)π
−1
3D (Pik )) (2)

According to the pinhole model of the camera for projec-
tion, a 3D point Pik is projected onto 2D point pik in frame
i:

pik = π2D(p̂
i
k ) = π2D(KPik ) (3)

where K =

fx 0 u0
0 fy v0
0 0 1

 is the calibration matrix containing

the coordinates of the principal point (u0, v0)T and the focal
lengths (fx , fy).

Given the 2D point pik and its corresponding depth value
d ik , the 3D point Pik can be calculated by back-projection:

Pik = K−1p̂ik = K−1d ikπ
−1
2D (pik ) (4)

Given the 2D point pik in frame i, its reprojection pjik in
frame j can be represented as:

pjik = π2D(KPjik ) (5)

According to equation 2, equation 5 can be written as:

pjik = π2D(K (π3D(expSE(3)(ξji)π
−1
3D (Pik ))) (6)

According to equation 4, equation 6 can be written as:

pjik = π2D(K (π3D(expSE(3)(ξji)π
−1
3D (K−1d ikπ

−1
2D (pik ))))

(7)

IV. CAMERA TRACKING
In this section, we detailed the camera tracking methods used
for estimating 6 Dof motion. Camera tracking usually pre-
processes the image before pose estimation, such as extract-
ing features. According to the residual minimized for pose
estimation, camera tracking can be divided into three kinds:
direct methods, indirect (feature-based) methods and hybrid
methods. Direct methods estimate camera motion-based on
minimizing photometric error over corresponding pixels in
two frames, while indirect methods estimate camera motion
based on minimizing geometric error over matching features.
And hybrid methods minimize a combination of the afore-
mentioned errors to align two frames. Compared to indirect
methods based on features, direct methods use photomet-
ric value over chosen pixels, without the need for complex
feature extraction and matching, thus being more robust in
low texture environments. Recent results show that direct
methods present a higher accuracy than those based on geo-
metric alignment [9], [10]. However, direct methods have
their limits, like not being robust to moving objects because
pixels in small baseline will cause many mismatches, limited
accuracy in wide baselines cases because of the small basin of
convergence and being sensitive to calibration errors, rolling
shutter or unsynchronisation between the color and depth
images [1]. Hybrid methods combine these two methods to
achieve better accuracy and avoid demerits of both methods.

A. DIRECT METHODS
Based on photometric error, direct methods assume that cor-
responding points on two images have the same photometric
value. The relative pose between two images is calculated by
minimizing the pixel intensity difference. The photometric
error of the same point pik between frame i and j can be
represented as follows:

rkpho(ξji) = Ii(pik )− Ij(p
ji
k ) (8)

where I (·) represents the photometric value of a point on the
image plane.
The complete cost function Epho(ξji) is the weighted

squared sum of the photometric error of all points and we
minimize the cost function to get the camera pose:

ξ∗ji = argmin
ξji

Epho(ξji) = argmin
ξji

∑
k

ω(rkpho)(r
k
pho(ξji))

2

(9)

with some weight function ω, e.g., robust weight function
such as Huber’s [11].
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1) KinectFusion
Newcombe et al. proposed KinectFusion in 2011 [12].
KinectFusion preprocesses the raw input depth image by a
bilateral filter to reduce noise. What’s more, KinectFusion
builds a dense vertex map and normal map pyramid from the
preprocessed depth image for coarse to fine pose estimation.
Kinectfusion does not need to track frame-to-frame to esti-
mate the cameramotion, but uses frame-to-model mechanism
to align the current frame with the global model, without the
need for explicit loop closing. The vertex map and normal
map of each frame are used to build a global model repre-
sented by a volumetric, truncated signed distance function
(TSDF). When tracking the live depth frame, the global
model raycasts the signed distance function into the estimated
frame to provide a synthetic frame against which the live
depth frame is aligned.With the synthetic frame and its vertex
map and normal map provided, KinectFusion establishes a
global point-plane energy under the L2 norm and minimizes
it to get the camera pose, as:

E
(
Tg,k

)
=

∑
u∈U

�k (u)6=null

∥∥∥∥(Tg,k V̇k (u)− V̂g
k−1(û)

)>
N̂g
k−1(û)

∥∥∥∥
2
!

(10)

where Tg,k denotes the desired camera pose estimation, V̇k is
the vertex map of the current frame, V̂g

k−1 and N̂
g
k−1 relatively

correspond to the prediction vertex map and normal map of
the previous frame.

2) RGBDTAM
Alejo Concha and Javier Civera proposed a direct
RGBD-SLAM system with state-of-the-art accuracy and
robustness at a los cost named RGBDTAM [13] in 2017.
RGBDTAM minimizes a weighted sum of photometric error
and the error between inverse depth. RGBDTAM only mini-
mizes photometric error of points belonging to Canny edges
represented as below:

rkpho(ξji) = ωp
(Ii(pik )− aIj(p

ji
k )+ b)

2

σ 2
pho

(11)

where a and b are the global illumination change factors (i.e.
the gain and brightness of the current frame with respect
to the current keyframe). ωp is the Geman-McClure robust
cost function, used to remove the influence of occlusions and
dynamic objects and σpho is the mean variance of rkpho. The
inverse depth error can be represented as:

rkd (ξji) = ωp
((eTz P

ji
k )
−1
− D−1(pjik ))

2

σ 2
g

(12)

where ωp is still the Geman-McClure robust cost function.
eTz = [0, 0, 1]T is a 3D vector.D(·) represents the correspond-
ing depth value of 2D point pk and σg is the mean variance
of rkd .

3) ID-RGBDO
While most direct methods take as many pixels as possible
to ensure the accuracy, Alejandro Fontán et al. proposed
ID-RGBDO in 2020 [14], which takes only 24 points for
tracking and can achieve an accuracy similar to the state of
the art (some times out perform it). Based on an informa-
tion matrix, ID-RGBDO selects only the most informative
points in the local Bundle Adjustment and pose tracking
optimizations. Based on the multivariate Gaussians theory
widely used in SLAM context, this work said that to get most
informative points is to minimize the differential entropy of
the Gaussian distribution which is comformed by the camera
pose. As shown in equation 13, the differential entropy H
is positively correlated to the determinant of the covariance
matrix 6ξji .

H (ξji) =
1
2
log((2πe)k |6ξji |) (13)

So the task is transformed to maximize the determinant of the
information matrix 3ξji :

3ξji = 6
−1
ξji
=

∑
p∈P

1p6ξji (14)

With equation 14 the variation of determinant of 3ξji can be
expressed as follow, which depends on the residual covari-
ance σ 2

r , the p-th row of the Jacobian Jξji,Pi (Jacobian of
residual rkpho(ξji) with respect to Lie-algebra increments ξji)

and the current adjoint information matrix 6adj
x :

1p|6x | = σ
−2
r jx,p6adj

x jTx,p (15)

Based on the conclusions above, ID-RGBDO firstly chooses
a set of points from high-gradient areas and then follows an
algorithm that selects points maximizing the determinant of
the information matrix.

B. INDIRECT METHODS
Unlike direct methods which directly estimate the camera
motion by minimizing the photometric error of whole or
partial pixels, indirect methods, or feature-based methods
firstly extract and match features from different images and
track the camera using geometric error of the features. The
geometric error used to align two images is usually the dis-
tance between the two corresponding sets of 2D features or
3D features. There are three kinds of geometric error that is
usually used: 2D Point-to-Point error, 3D Point-to-Point error
and 3D Point-to-Plane error [1], as shown in Fig 3.

• 2D Point-to-Point error: A geometric reprojection error
is the most used 2D error in VO and VSLAM. As shown
in Fig 3 (a), given a point feature pik in the reference
frame and its matching point pjk in the current frame,
the distance between pik ’s reprojection pjik and pjk is
defined as the reprojection error:

rk2D(ξji) = ||p
j
k − pjik || (16)
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FIGURE 3. Different types of geometric error: (a) Given a 2d point in the reference frame and its matching point in the next
frame, a 2d-2d error is the image distance between the point’s reprojection and its matching point in the next frame. (b) A
3d-3d error is the Euclidean distance between the two matched points’s corresponding 3d points. (c) A 3d-plane error is the
Euclidean distance between the tangent plane at the back-projected reference point in frame i and the back-projected
reprojection of the point in frame j.

The complete cost function E2D(ξji) is the weighted
squared sum of the 2D Point-to-Point error of all points
and we minimize the cost function to get the camera
pose:

ξ∗ji = argmin
ξji

E2D(ξji)

= argmin
ξji

∑
k

ω(rk2D)(r
k
2D(ξji))

2 (17)

with some weight function ω.
• 3DPoint-to-Point error: Instead of using 2D reprojection
error to estimate the camera motion, we can also calcu-
late the distance between back-projected points directly.
With the RGB-D image and pinhole camera model
already known, we can reconstruct the point cloud. For
dense point clouds, the 3D error could be the distance
between closest points, while for sparse point clouds the
3D error should be the distance between matched 3D
points. As shown in Fig 3 (b), given two corresponding
3D points in the frame i and frame j, the error between
them can be defined as:

rk3D(ξji) = ||P
j
k − Pjik || (18)

The complete cost function E3D(ξji) is the weighted
squared sum of the 3D Point-to-Point error of all points
and we minimize the cost function to get the camera
pose:

ξ∗ji = argmin
ξji

E3D(ξji)

= argmin
ξji

∑
k

ω(rk3D)(r
k
3D(ξji))

2 (19)

with some weight function ω.
• 3DPoint-to-Plane error: As shown in Fig 3 (c), the point-
to-plane distance, that minimizes the distance along the
target point normal, is commonly used in dense RGB-D
point cloud alignment [1]. The error can be defined as:

rk3DP(ξji) = ||n
i
k (P

j
k − Pjik )|| (20)

The complete cost function E3DP(ξji) is the weighted
squared sum of the 3D Point-to-Plane error of all points
and we minimize the cost function to get the camera
pose:

ξ∗ji = argmin
ξji

E3DP(ξji)

= argmin
ξji

∑
k

ω(rk3DP)(r
k
3DP(ξji))

2 (21)
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with some weight function ω. According to [15], com-
pared to Point-to-Point error, Point-to-Plane error is
more robust and its convergence speed is faster in
practice.

1) RGB-D SLAM
Felix Endres et al. proposed RGB-D SLAM system
in 2012 and tested it on a publicly available RGB-D
dataset [16]. This method firstly extracts features
(SIFT/SURF/ORB [17]) from color image and matches fea-
tures from different images. With the depth value known
in the depth image, one can back project the 2D matching
points to 3d and get 3D Point-to-Point matches. RGB-D
SLAM then uses Random Sample Consensus (RANSAC)
to compute the rigid transformation in SE(3) filtering out
outliers. Then RGB-D SLAM uses the inliers to compute
a refined transformation, which forms an edge of the pose
graph in the backend. To optimize the pose graph, RGB-D
SLAM also performs a minimization of a non-liner error
function like most mainstream SLAM systems. The error
function can be represented as:

F(x) =
∑
〈i,j〉∈C

e
(
xi, xj, zij

)>
�ije

(
xi, xj, zij

)
(22)

x∗ = argmin
x

F(x) (23)

where x =
(
x>1 , . . . , x

>
n
)>

is a vector of pose representa-
tions, zij and �ij respectively correspond to the mean and
information matrix of a constraint relating the pose xj, and
e
(
xi, xj, zij

)
is the vector error function.

2) ORB-SLAM2
Raúl Mur-Artal et al. proposed ORB-SLAM2 in 2017 [3]
based on 2D Point-to-Point error. Compared to ORB-SLAM
[8], ORB-SLAM2 adds support for stereo cameras and
RGB-D cameras. For the speed and rotation invariance,
ORB-SLAM2 chooses ORB as the 2D features for all
SLAM tasks: tracking, mapping, relocalization and loop
closing. If tracking was successful for the previous frame,
ORB-SLAM2 uses a constant velocity motion model to
predict the camera pose and perform a guided search of
the map points observed in the last frame. If not enough
matches were found (i.e., motion model is clearly violated),
ORB-SLAM2 uses a wider search of the map points around
their position in the last frame. The pose is then opti-
mized with the found 2D correspondences using BA(bundle
adjustment). With fittest strategy that selects the points and
keyframes of the reconstruction and excellent algorithms
maintaining a covisibility graph and an Essential Graph.

The 2D Point-to-Point error in ORB-SLAM2 can be repre-
sented by the 2D reprojection error of map points to relative
matched keypoints as:

ei,j = xi,j − πi(Tiw,Xw,j) (24)

where ei,j represent the reprojection error of a map point j
in a keyframe i, xi,j is the matched keypoint, Xw,j ∈ R3 is

3D locations of map point j, Tiw ∈ SE(3) is the pose of
keyframe i, and πi is the projection function.
To get the camera pose, there is a cost function to be

minimized, as:

C =
∑
i,j

(ρh(eTi,j�
−1
i,j ei,j)) (25)

where ρh is the Huber robust cost function, and �i,j is the
covariance matrix associated with the scale as which the
keypoint was detected.

3) PLANE-EDGE-SLAM
Qinxuan Sun et al. proposed Plane-Edge-SLAM in 2020 [18]
based on the seamless fusion of the plane and edge features.
Compared with most SLAM systems based on point fea-
tures(SIFT, SURF, ORB etc.), this system take the advantage
of the robustness and accuracy of the edge and plane features
when locating in low-texture regions and structural indoor
environments. With the constraint provided by the fusion of
these features, the tracking estimation remain well-posed in
all circumstances, as illustrated by the article.

Specifically, the tracking of the system is estimated by
a plane-edge-fusion-based alignment method, which is an
ICP-like scan alignment. The residual errors of the plane
and edge primitives are defined in different spaces, so the
weights in the total cost function need to be different. The
cost function for the plane-edge based motion estimation
is designed as below, in which Wp is used to balance the
contribution of two kinds of features in the optimization:

F(ξ ) =
Nπ∑
i=1

eTπ i�π ieπ i +Wp

Np∑
k=1

wpkeTpk�pkepk (26)

where ξ =
[
tT ,ωT

]T represents the 6 Dof camera motion,
Nπ and Np are numbers of the plane and edge-point pairs
respectively, eπ i and epk are the residual vectors that measure
howwell the planes and edge-points aligned,�π i and�pk are
the information matrix of the two residual vectors relatively.
The weights wpk is the essential part of the framework, which
is used to provide enough constraints to determine all the
components of camera motion.

C. HYBRID METHODS
Hybrid methods combine direct methods and indirect method
by minimizing both photometric error and geometric error to
get the camera pose. Compared to indirect methods, direct
methods can leverage raw photometric information from a
designated area in the image, without the need for costly
per-frame feature extraction and matching. As a result, direct
methods are proved to be more robust in low-texture scenes.
However, direct methods have their demerits, such as being
less robust to moving objects which is caused by small
baselines matching. Hybrid methods or semi-direct methods,
inherit the advantages of both methods including the robust-
ness of direct VO and map-reusing capability of indirect
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methods [19]. The cost function of hybrid methods can be
represented as:

Ehyb = ωphoEpho + ωgeoEgeo (27)

where ωpho and ωgeo are the weight factors.

1) CPA-SLAM
Lingni Ma et al. proposed CPA-SLAM in 2016 [20]. In this
method, except for direct image alignment, a global plane
model is built aiding the pose estimation. CPA-SLAM applies
an agglomerative hierarchical clustering algorithm to seg-
ment planes from the RGB-D image and uses a numerical
rule of data association to form a global map made up of dif-
ferent planes. In the estimation of camera pose, CPA-SLAM
establishes photometric residual, point-to-plane residual and
plane-to-plane residual, which will be jointly minimized by
an EM framework. The benefit of this work is that extra
frame-to-plane alignment makes use of the dense image
information available in keyframes for accurate short-term
tracking and the global plane model is used to reduce
drift.

2) BundleFusion
Angela Dai et al. proposed BundleFusion [4] in 2017.
BundleFusion performs a hierarchical local-to-global pose
optimization to achieve real-time performance. On the first
hierarchy level, every consecutive n frames form a chunk
inside which poses of each frame are resolved. On the second
hierarchy level, all chunks are correlated with respect to each
other and globally optimized [4]. When optimizing the cam-
era pose, BundleFusion uses a sparse-then-dense strategy:
A set of sparse features (SIFT [21]) are extracted andmatched
to obtain a coarse alignment by minimizing the 3D Point-
to-Point error; the coarse poses are then refined by dense pho-
tometric error and geometric error(3D Point-to-Plane error).
These two error are shown below:

Ephoto (X )

=

∑
(i,j)∈E

|Ii|∑
k=0

∥∥∥Ii (π (di,k))− Ij (π (T −1j Tidi,k
))∥∥∥2

2
(28)

Egeo (X )

=

∑
(i,j)∈E

|Di|∑
k=0

[
nTi,k

(
di,k−T −1i Tjπ−1

(
Dj

(
π
(
T −1j Tidi,k

))))]2
(29)

where Ti and Tj are the rigid camera transforms of i-th and
j-th frame, π is the perspective projection, and di,k is the 3D
position associated with the k-th pixel of the i-th depth frame,
ni,k is the normal of the k-th pixel of the i-th input frame.

3) KDP-SLAM
Ming Hsiao et al. proposed KDP-SLAM [22] in 2017.
KDP-SLAM uses planar constraint to reduce drift and

key-frame based hierarchical odometry to estimate the cam-
era poses. KDP-SLAM utilizes fast dense odometry method
to estimate the pose of every frame relative to that of the most
recent reference frame roughly and precise transformations
are estimated only for specially selected frames: keyframes,
reference frames, and fusion frames [22]. This strategy
removes the need for GPU acceleration, while maintaining
high accuracy. For both rough and precise pose estimation,
KDP-SLAM combines photometric error and geometric error
to estimate the camera pose. KDP-SLAM combines a novel
iterative projected plane (IPP) method (as the geometric com-
ponent) and a pyramid dense RGB-D odometry method using
Laplacian images (as the photometric component) to estimate
the rough odometry. Similarly, KDP-SLAM combines IPP
with a semi-dense RGB-D odometry (SRO) method, as the
geometric and photometric components, respectively, to esti-
mate the precise odometry [22].

4) SEMI-DIRECT TRACKING AND MAPPING
Ke Liu et al. proposed a method called semi-direct tracking
and mapping [19] in 2019. This method firstly uses the direct
method to estimate the initial pose and the photometric error
is defined as the weight SSD over the 8-point neighborhood
pixels as proposed in [9]. The optimization is performed
using an iteratively reweighted Gauss-Newton algorithm in
a coarse-to-fine scheme [19]. After the rigid body transfor-
mation is calculated, this method refines camera pose by
minimizing the geometric error with respect to the local
feature map using motion only BA. When calculating the
geometric error, this method uses ORB features with two
descriptors: ORB feature descriptor and a novel descriptor
described by depth information, the Hamming distance of
which is the measure of 2D Point-to-Point error. With the
use of depth information in feature matching, this method is
able to filter out wrong matches that are only visually similar.
What’s more, the use of depth information gets this method
rid of motion model in tracking, instead of which brute force
matching between local map points and feature points in the
current frame is used for tracking.

D. ARCHITECTURE DIFFERENCES
In the previous subsections, we classified different
RGB-D SLAM systems into direct-method-based, indirect-
method-based and hybrid-method-based systems according
to their tracking methods, and explained their algorithm
structure and optimization approach. Here, we mainly com-
pare and analyze the important differences of the algorithm
architectures between direct-method-based and indirect-
method-based systems.

Here, we make a comparison and discuss the difference
between two typical architecture of a direct-method-based
and an indirect-method-based SLAM system. For the direct
method, we choose the structure of KinectFusion [12]
as a typical representative, because this structure is the
basic framework of many subsequent direct method RGB-D
SLAM, which is not only simple but universal. For the
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FIGURE 4. Architecture of ORB-SLAM2 [3].

FIGURE 5. The tracking module of ORB-SLAM2 [3].

indirect method, we select ORB-SLAM2 [3] as the compar-
ison object, since it is the most classic and representative
indirect-method-based RGB-D SLAM, and it is also the uni-
versal basis of many subsequent systems.

Figure 4 and Figure 6 show the overall architectures of
ORB-SLAM2 and KinectFusion respectively, and we also
drew the basic framework of their respective tracking mod-
ules based on their papers, as shown in Figure 5 and Figure 7.
From the overall architectures of these two systems we can
see that, both of them include the process of tracking(pose
estimation) and mapping(reconstruction), although the more
traditional method KinectFusion does not have a loop detec-
tion process, but this is not common to all direct-based
systems.

From the overall architectures and tracking modules of
these two representative systems, we can summary the differ-
ences between direct-based and indirect-based architectures
mainly exist in three aspects:

• Data preprocess: From the Figure 4 and Figure 6, we can
see that, for the indirect method, at the beginning of

FIGURE 6. Architecture of KinectFusion [12].

the tracking module, it is necessary to perform fea-
ture extraction operations on each frame. For the direct
method, it is generally necessary to calculate the surface
vertex and normalmaps according to each RGB-D frame
before the tracking process(which is also the initial pro-
cess of many direct methods).

• Pose optimization: As shown in Figure 5 and Figure 7,
both of these two representative architectures optimize
the pose by minimizing a projection error, while both
the optimization function and optimization process are
different. As mentioned in the previous introduction
section, KinectFusion minimizes a global point-to-plane
ICP energy to get the camera pose, which is defined in
equation 10, while ORB-SLAM2minimizes a 2D point-
to-point reprojection error of map points to relative
matched keypoints, which is illustrated in equation 24.
We can say that the biggest difference between the direct
method and the indirect method lies in the definition of
pose optimization, which is directly related to whether
the system perform the feature matching process.

• Data association: From the Figure 5 and Figure 7, we can
see that, data association and pose estimation are cou-
pled in the direct method, while decoupling in the indi-
rect method. The advantage of decoupling is that the data
association can be processedmore integrally. The advan-
tage of decoupling is that it can only use image infor-
mation to solve the data association problem when the
pose is uncertain. Therefore, the direct method should be
better at solving continuous image positioning, and the
indirect method is more suitable for loop detection and
relocation. In addition, the sparse direct method is more
suitable for occasions with high real-time performance
and limited computing resources.

V. LOCAL MAPPING
Local Mapping is responsible for building a local map and
jointly optimizing camera pose and local map. According to
the elements forming the map, we divides local mapping into
two kinds: Point-Based methods and Volumetric methods.
Point-based methods construct raw point clouds while Volu-
metric methods construct voxel volumes of the environment.

A. POINT-BASED METHODS
1) DVO-SLAM
Christian Kerl et al. proposed DVO-SLAM in 2013 [23].
DVO-SLAM combines dense visual odometry based on a
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FIGURE 7. The pose estimation(tracking) module of KinectFusion [12].

joint photometric and geometric error minimization and
Pose SLAM. In Pose SLAM the map is represented as a
graph in which the vertices represent absolute sensor pose
of keyframes and the edges represent relative transforma-
tions between them. DVO-SLAM introduces a new keyframe
selection strategy based on differential entropy: if the entropy
ratio of the current frame is below a pre-defined threshold,
the previous frame is selected as a new keyframe and inserted
into the map. In DVO-SLAM, local map optimization is not
performed and global pose graph optimization is performed
instead to reduce accumulated drifts.

2) ORB-SLAM2
ORB-SLAM2 maintains a map made up of MapPoints,
KeyFrames, Covisibility Graph and Spanning Tree. Cov-
isibility information between keyframes is used in several
tasks of ORB-SLAM2 and is represented as an undirected
weighted graph. Each node of the Covisibility Graph is a
keyframe, and the edge between two keyframes shows that
these two frames share observations of the same map points
(at least 15). The number of commonmap points is the weight
θ of the edge. ORB-SLAM2 performs a pose graph opti-
mization to correct the loop error and using the whole covis-
ibility graph for that will be very time-consuming. So ORB-
SLAM2 uses the subgraph of covisibility graph for loop clos-
ing, which is made up of the spanning tree, the subset of edges
from the covisibility graph with high covisibility (θmin =
100), and the loop closure edges. ORB-SLAM2 creates new
map points by triangulating ORB from connected keyframes
κc in the covisibility graph. ORB-SLAM2 performs local BA
to optimize the currently processed keyframe Ki, the local
keyframe set KL connected to it in the covisibility graph
κc, and the map point set PL seen by those keyframes. All
other keyframe set KF that see those map points but are not
connected to Ki are included in the optimization but remain
fixed. The optimization function can be written as:

{PL ,KL} = argmin
Xi,Rl ,tl

∑
k∈KL∪KF

∑
j∈Xk

ρ
(
Ekj
)

Ekj =
∥∥∥xj(·) − π(·) (RkXj

+ tk
)∥∥∥2

6
(30)

where Xi,Rl, tl represent the parameters to be optimized:
the position of map point, the rotation matrix and translation
vector of keyframe pose. As introduced in section IV, ρ(·) is
the Huber robust cost function.

3) BAD-SLAM
Thomas Schöps proposed BAD-SLAM in 2019 [5].
BAD-SLAM uses dense surfels and keyframes to represent
the map, reducing the amount of data for optimization(local
BA). A surfel s is an oriented disc defined by a 3D center
point ps, a surface normal vector ns, a radius rs, and a scalar
visual descriptor ds. BAD-SLAM chooses surfels as scene
representation for the reason that they can be efficiently fused
and updated by BA, and can be quickly deformed to adapt
to loop closures. BAD-SLAM establishes the first dense BA
approach for RGB-D SLAM that runs in real-time for smaller
scenes. The cost function for BA is made up of geometric and
photometric terms. The geometric term is defined as point-
to-plane error and the photometric term is calculated only in
gradient areas.

rgeom =
(
TkGns

)T (
π−1D,k

(
π̂D,k

(
TkGps

))
− TkGps

)
(31)

where π̂D,k maps the 3D local coordinates of a keyframe k
to the corresponding depth map, (π−1D,k maps a depth pixel to
its 3D point in the keyframe’s local coordinates, and TkG is
the transformation that maps the center point ps and normal
vector ns to the local coordinates of k .
What’s more, BAD-SLAM proves that direct RGB-D

SLAM systems are highly sensitive to rolling shutter, RGB
and depth sensor synchronization, and calibration errors.
BAD-SLAM proposes a novel, well-calibrated benchmark
using synchronized global shutter RGB and depth cameras
and finds that it is superior to all existing methods in this
benchmark, including the best ORB-SLAM2 method so far.

4) ElasticFusion
Thomas Whelan et al. proposed ElasticFusion in 2015 [24].
ElasticFusion represents environment as an unordered list of
surfelsM, where each surfelMs has the following attributes:
a position p ∈ R3, normal n ∈ R3, color c ∈ N3, weight
ω ∈ R, radius r ∈ R, initialisation timestamp t0 and last
updated timestamp t . ElasticFusion follows the method pro-
posed by [25] for performing surfel initialization and depth
map fusion but differs in a way that ElasticFusion defines a
timewindow threshold δt which dividesM into surfels which
are active and inactive and only surfels which are marked as
activemodel surfels are used for depthmap fusion. According
to the distance from the viewing ray, the angle from the surfel
normal and confidence count, ElasticFusion associate new
surfel with the global surfel map M. When merging two
surfels, ElasticFusion uses a weighted average strategy and
introduces an explicit sample confidence applying a Gaussian
weight on the current depth measurement, which leads to
higher quality denoising.
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FIGURE 8. Two-dimensional example of an implicit surface represented
by TSDF. Shown are example signed distance values stored at voxels
within the truncation distance of the observed surface, with rays cast
from the observing sensor. Figures taken from [26].

In order to ensure the consistency of the local and global
surfaces in the map, ElasticFusion apply a deformation graph
to the surface based on the embedded deformation technol-
ogy. Each surfel Ms identifies a set of influencing nodes
in the graph. The deformed position of a surfel is given
by:

M̂s
p =

∑
n∈I(Ms,G)

wn
(
Ms) [GnR (Ms

p − Gng
)
+ Gng + Gnt

]
(32)

where Gng ,GnR and Gnt relatively correspond to the positon,
rotation matrix and translation vector of each node, and the
deformation normal of the surface is given by:

M̂s
n =

∑
n∈I(Ms,G)

wn
(
Ms)Gn−1>R Ms

n (33)

Here wn (Ms) is defined by:

wn
(
Ms)

=

(
1−

∥∥∥Ms
p − Gng

∥∥∥
2
/dmax

)2
(34)

where dmax is the Euclidean distance to the k+1 nearest node
of Ms.

B. VOLUMETRIC METHODS
Most volumetric methods adopt volumetric representation of
scenes implicitly such as TSDF(truncated signed distance
function) [12], as shown in Fig 8. In TSDF, each grid contains
the truncated distance to the nearest surface and a weight for
the distance measurement.

1) KINTINUOUS
Thomas Whelan et al. proposed Kintinuous in 2012 [26].
Kintinuous is developed based on KinectFusion and
expanded three capabilities: the capability to reconstruct
unfixed scenes, the capability to use photometric information
to estimate camera pose and the capability to close the loop.
KinectFusion build a map of the scene implicitly by merg-
ing RGB-D scans into TSDF. In the case of KinectFusion,
the TSDF is stored as a three-dimensional voxel grid in
GPU memory and its size is fixed, which means that the
scene mapping is limited around the space where TSDF
is initialized. To overcome this problem, Kintinuous uses
volume shifting, which virtually translates the camera pose
to bring the camera’s position to within a new boundary and
updates the global position of the TSDF.

2) VOXEL HASING
Matthias Nießner et al. proposed voxel hashing in 2013
[27]. Volumetric approaches have demonstrated compelling
results at real-time, but meanwhile, these methods rely on
memory inefficient regular voxel grids which restrict scale.
This has led to either moving volume variants [26], [28],
which stream voxel data out-of-core as the sensor moves,
but still constrain the size of the active volume, or hierar-
chical data structures that subdivide space more effectively,
but do not parallelize efficiently given added computational
complexity [29]–[31]. Based on a simple memory and speed
efficient spatial hashing technique that compresses space,
voxel hashing allows for real-time fusion without not the need
for either a memory-constrained voxel grid or a hierarchi-
cal data structure of heavy computational overheads. Voxel
hashing firstly allocates voxel blocks according to camera
view frustum, then calculates TSDF for every voxel. After
that, voxel hashing collects garbage, finding out all voxel
blocks that have a zero maximum weight or have a minimum
TSDF larger than a threshold and removing them. Finally,
voxel hashing integrates voxel blocks and extract surfaces by
raycasting.

3) BundleFusion
In BundleFusion, scene geometry is represented by an
implicit truncated signed distance(TSDF) reconstructed by
incrementally fusing all input RGB-D data. TSDF is defined
over a volumetric grid of voxels and BundleFusion adopt
sparse volumetric voxel hashing approach proposed by
Nießner [27] to store and process TSDF data. Compared
to original voxel hashing method, BundleFusion allows for
RGB-D frames to be both integrated into the TSDF as well
as de-integrated for camera pose updates. For integration each
voxel is updated by

D′(v) =
D(v)W(v)+ wi(v)di(v)

W(v)+ wi(v)
W′(v) = W(v)+ wi(v) (35)

where D(v) denotes the signed distance of voxel, W(v) the
voxel weight, di(v) the projective distance, wi(v) the integra-
tion weight for a sample of the depth frame Di.

For de-integration, each voxel is updated by

D′(v) =
D(v)W(v)− wi(v)di(v)

W(v)− wi(v)
W′(v) = W(v)− wi(v) (36)

VI. LOOP CLOSING
Loop Closing is responsible for finding and correcting the
loop. For loop detection, the simplest way is to perform a
linear search over all existing keyframes, i.e., a new keyframe
is matched against all others. This is impossible as the amount
of keyframes increases quickly as the camera moves. There-
fore, it is important to restrict the search space into the
most likely loop candidates. A common method is using the
bag of words, which extracts visual feature descriptors from
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images and trains an efficient data structure for fast candidate
matching. There are also other approaches using metrical or
probabilistic nearest neighbour search to find loop candidates
[23]. After a loop is found, global optimization is performed.

A. DVO-SLAM
DVO-SLAM searches loop closure candidates in a sphere
with a predefined radius around the keyframe position.
DVO-SLAM computes for every candidate the relative trans-
formation between the two keyframes and the associated
covariance matrix on a coarse resolution. After that, to val-
idate a candidate DVO-SLAM employes a similar entropy
ratio test as for keyframe selection. If the candidate passes the
test, the relative transformation between the two keyframes
and the associated covariance matrix are computed using
higher resolutions and the same entropy ratio test is per-
formed again. Keyframes pass the final test is seen as the
loop and are inserted into the pose graph. After loop closure
is detected, DVO-SLAM uses g2o framework to perform a
pose graph optimization, distrubuting the accumulated error
over edges in the loop. What’s more, at the end of the dataset,
DVO-SLAM search for additional loop closure constraints
for every keyframe and optimize the whole graph again.

B. KINTINUOUS
Kintinuous maintains a pose graph and uses Speeded
Up Robust Feature (SURF) descriptors with the bag-of-
words-based DBoW [32] loop detector for place recognition.
For optimal performance, Kintinuous adds part of the frames
to the place recognition system, the movement distance
between which should go beyond a certain threshold. For
every frame, a set of SURF keypoints, associated descriptors
Ui ∈ �×R64 and the depth image for that frame are cached
in memory for future queries. Once a loop closure constraint
is accepted, Kintinuous performs two optimization steps,
firstly on the pose graph and secondly on the dense vertex
map. The pose graph optimization provides the measurement
constraints for the dense map deformation optimization in
place of user specified constraints that were necessary in the
original embedded deformation approach [26]. Pose graph
optimization is performed using the iSAM framework [33].

C. ORB-SLAM2
In ORB-SLAM2, loop closing is performed in two steps: first,
a loop is detected and validated using bag-of-words-based
DBoW [32] loop detector, and second, the loop is corrected
optimizing a pose graph. Compared to monocular ORB-
SLAM, where scale drift may occur [8], the stereo/depth
information makes scale observable and the geometric vali-
dation and pose-graph optimization no longer require dealing
with scale drift and are based on rigid body transformations
instead of similarities. The way to achieve pose-graph opti-
mization is to minimize the cost function as:

C =
∑
i,j

(eTi,j3i,jei,j) (37)

where 3i,j is the information matrix in an edge of the pose-
graph, ei,j is the error of the edge, as:

ei,j = logsim(3)

(
SijSjwS−1iw

)
(38)

where Sij is the relative Sim(3) transformation between both
keyframes. The logsim(3) transforms to the tangent space.

After pose graph optimization, ORB-SLAM2 performs
a full BA optimization in a separate thread to achieve the
optimal solution.

D. ElasticFusion
ElasticFusion performs local loop closing and global loop
closing for small loops and global loops. For local loop clo-
sure detection, ElasticFusion dividesmapM into two disjoint
sets: active set2 and inactive set9, according to their collec-
tion time. Then ElasticFusion registers the predicted surface
renderings of 2 and 9 from the latest pose estimate Pt and
gets the relative transformation matrixH ∈ SE3 from2 to9.
ElasticFusion will check the quality of this registration and
decide whether or not to carry out a deformation, which will
optimize the camera pose and the map. If the quality of the
registration is high enough, ElasticFusion will produce a set
of surface constraintQ as the deformation graph optimisation
to align the surfels, where Q is defined as:

Qp
=

(
(HPt)p

(
u,Da

t
)
;Ptp

(
u,Da

t
)
; T i

t (u); t
)

(39)

where Da
t is the estimation of depth map of the latest pose,

T i
t (u) represents the estimated transformation of every pixel.
As for global loop closure, ElasticFusion utilises

an improved randomised fern encoding approach for
appearance-based place recognition with the difference that
instead of encoding and matching against raw RGB-D
frames, ElasticFusion uses predicted views of the surfacemap
once they are aligned and fusedwith the live camera view. The
surface constraint Q for global loop closure is defined as:

Qp
=

((
HE iP

)
p
(
u,Da

t
)
;Ptp

(
u,Da

t
)
; E it ; t

)
(40)

After the global loop was found, ElasticFusion align the
matched framewith the current model prediction. If the align-
ment is successful, a relative transformation matrix H ∈ SE3
which brings the current model prediction into alignment
with the matching frame will be resolved. And the remaining
operation is the same as local loop closing.

VII. ADVANCED TOPICS AND OPEN PROBLEMS
A. SEMANTIC MAPPING
As the rapid development of semantic segmentation, it is ben-
eficial to combine SLAM and semantic segmentation to get a
semantic map as well as enhance the SLAM’s accuracy and
robustness. SLAM++ [34] builds an object database before
scanning and uses PPFs to detect objects and obtain their
6Dof pose. The object pose is added to SLAMoptimization to
achieve higher accuracy. In 2017, Sunderhauf et al. proposed
a semanticmapping system,which uses object detection algo-
rithm to detect objects at real-time and builds a map made up
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of objects [35]. In the same year, McCormac et al. proposed
a semantic mapping system that fuses dense 3d map with
semantic labels [36]. What’s more, object detection results
can be used to detect dynamic objects and remove them,
improving the system’s robustness and accuracy [25], [37].

B. DYNAMIC ENVIRONMENTS RECONSTRUCTION
The traditional RGB-D SLAM methods mainly focus on
localization and reconstruction in static scenes. For more
realistic situations, there are often dynamic objects in the
scene, which brings challenges to previous methods. How
to improve the performance of RGB-D SLAM in dynamic
scenes has become a new research hotspot. In 2017, Sun et al.
proposed amotion removal approach acted as a preprocessing
module to remove the associated data and moving objects,
and integrated this module into the front end of RGB-D
SLAM to improve the performance in challenging dynamic
environments. Following this work, in 2018, Sun et al. pro-
posed an online motion removal method that does not require
prior knowledge, such as the semantic or visual appearance
information of moving objects. Different from these works,
in 2020, Vincent et al proposed a pipeline that uses deep
neural networks to extend Kalman filters and visual SLAM
to improve tracking and mapping in dynamic environment.

C. EDGE-BASED AND PLANE-BASE METHODS
Traditional geometric RGB-D SLAM algorithms only use
point feature or part of pixels for camera pose estimation,
while being robust to camera rotation, light variation and
scale change to some extent, they are easy to drift and can not
handle textureless environment very well. The application of
lines and planes in the RGB-D SLAM will help exploit the
structural regularities of indoor scenes, thus improving the
system’s performance when the scene has weak texture but
strong structural priors.

Changhyun Choi et al. is of the first ones that combine
edge detection and RGB-D SLAM [44]. In their method, both
3D shape information and photometric texture information
are used to detect 3D edges in RGB-D point clouds. Finally,
edge points with ICP algorithm are used for camera pose
estimation. RGB-D SLAM based on lines performs well in
textureless environment or in the case of motion blur, but
can not work in scenes with little lines. To overcome this
limitation, [45] uses both points and lines for RGB-D SLAM.
In [46]–[50] and [51], direct edge alignment is proposed that
minimizes the sum of squared distances between the repro-
jected and the nearest edge point using the distance transform
of the edge-map, with other errors like photometric error or
ICP-based point-to-plane distance minimized together [1].

D. MULTI-SENSOR FUSION
The result of RGB-D SLAM can be combined with
other sensor estimations to achieve better robustness and
accuracy. [52] incorporates semantic features and IMU mea-
surements for RGB-D odometry and local bundle adjust-
ment. [53] mounts an RGB-D camera on a robot hand and

performs SLAM in the configuration space of the robot
instead of the pose space of the camera, which improves
robustness to missing or ambiguous depth data compared to
approaches that are unconstrained by the robot’s kinemat-
ics. [54] combines a direct VO with IMU measurements and
robot kinematics to obtain a semi-dense map which can be
used for robot collision free motion planning.

E. NON-RIGID RECONSTRUCTIONS
Dynamic scenes with deformable or moving objects will
disturb normal camera registration and map building, which
makes non-rigid reconstruction a popular research area in
recent years. As for the reconstruction of scenes with mov-
ing objects, [55] classifies the scene parts into static and
dynamic using probabilistic segmentation, and fuses the static
parts and discard the dynamic ones. [56] tracks and recon-
structs moving objects while reconstructs the static environ-
ment. [57] performs a two-fold segmentation of the scene
and divides the scene into static or moving elements of
rigid clusters. This method gets robust and accurate motion
estimation results in dynamic environments on a multi-core
CPU. As for the reconstruction of deformable objects, [58]–
[60] set up multi-camera systems, at the cost of high cost,
complex maintenance, and lack of portability. [61] use a
single camera for non-rigid reconstruction but relies on a
template prior to reducing the difficulty. [62] proposed a
template-less non-rigid reconstruction method with a single
RGB-D camera, using an efficient local-to-global hierarchi-
cal optimization framework. [63] removes the need for tem-
plate prior to compute deformations by optimizing a global
alignment problem and use an as-rigid-as-possible constraint
to eliminate the shrinkage problem of the deformed shapes,
especially near open boundaries of scans.

F. ROLLING SHUTTER DISTORTION
To achieve accurate camera pose estimation, it is important to
consider a shutter type. In rolling shutter cameras, each row
of a captured image is taken by different camera poses and it
is difficult to calculate a pose for each row respectively. Most
RGB-D SLAM algorithms assume a global shutter, and these
algorithms estimate one camera pose for each frame, while
most consumer RGB-D cameras employ a rolling shutter
for its low cost. To overcome this problem, [5] proposes a
benchmark with global shutter image data and [64]–[66] uses
the interpolation-based approach to estimate rolling shutter
camera pose, which applies a spline function to interpolate a
camera trajectory.

VIII. EVALUATION
To obtain an intuitive understanding of the performance
of different methods for different application scenarios,
we select 7 RGB-D SLAM systems to perform the quan-
titative evaluation with TUM [67], ICL-NUIM [68] and
ETH3D [5] datasets with the help of relevant source code.

As we have introduced in the survey part, classified by
camera tracking, ORB-SLAM2 and RGB-D SLAM v2 are
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TABLE 1. Table summarizing the algorithms used in our experiments. We mark with a
√

when the functionality is included.

the most popular SLAM systems based on the indirect
method, which track the camera pose using geometric error of
the features. KinectFusion, ElasticFusion, DVO-SLAM and
BAD-SLAM are four representative direct methods, which
evaluate the motion of the camera using photometric error,
based on frame-to-frame or frame-to-model tracking method.
BundleFusion is a hybrid method that combine direct meth-
ods and indirect methods by minimizing both photometric
error and geometric error to get the camera pose. When it
comes to the representation model of local mapping, Kinect-
Fusion, BundleFusion and RGB-D SLAM v2 are volumetric
method, the first two use the TSDF model to represent scene
geometry, while RGB-D SLAMv2 is based on the occupancy
voxel. Other four are point-based methods. Among all meth-
ods, KinectFusion is the only one without the loop closing
module.

The criterion for our selection is to cover direct-
based/indirect-based tracking; volumetric-based/point-based
mapping, and with/without loop detection strategy, also we
want to compare more about the classic and advanced work.
So that we choose these representative systems, according
to the methods and attributes of them, and enumerate their
attribute in Table 1. We have also introduced 3 relatively
advanced RGB-D SLAM systems, include two direct-based
tracking methods: RGBDTAM [13], ID-RGBDO [14] and
one indirect-based methods Plane-Edge-SLAM [18], and we
have also introduced their tracking method in the survey
part. Due to the lack of open source code or implementation
difficulties, we did not conduct experiments and only refer to
the experimental data provided in their articles. This may not
guarantee an absolute fair comparison. (different hardware
conditions) but the main purpose of this article as a review
paper is only to gain some intuitive understanding of different
RGB-D SLAM systems.

A. EVALUATION ENVIRONMENT
1) EVALUATION CRITERIA
In this paper, we use the absolute trajectory error with
SE(3) alignment (SE(3) ATE RMSE c.f. [67]) to measure
the tracking accuracy of the RGB-D SLAM systems above.

The absolute trajectory error, ATE for brevity, is the absolute
error between the estimated pose and the ground truth pose,
which can intuitively reflect the accuracy and the global
consistency of the trajectory. It should be noted that the
estimated pose and ground truth pose are usually not in the
same coordinate system, so we need to calculate a conversion
matrix S ∈ SE3 from the estimated pose to the ground truth
pose by the least square method to align them. For a set of
estimated poses P1:n and ground truth poses Q1:n, the ATE at
time i is defined as:

Fi = Qi−1SPi (41)

The ATE RMSE is:

RMSE(Fi:n) = (
1
n

n∑
i=1

‖trans(Fi)‖2)1/2 (42)

where trans (·) represents the translation part of ATE.

2) DATASET
We conduct a series of experiments on the TUM [67],
ICL-NUIM [68] and ETH3D [5] datasets. The TUMdataset is
a huge dataset containing RGB-D data, which is widely used
to evaluate the quality and performance of visual odometry
and visual SLAM algorithms. The true value of the cam-
era trajectory was collected using a high-precision camera
motion capture system composed of eight high-speed motion
cameras (100 Hz). The ICL-NUIM dataset is an RGB-D
dataset of two different synthetic scenes (the living room and
the office room scene), provided with ground truth trajecto-
ries and depth-maps. The ETH3D dataset is a well-calibrated
benchmark dataset for RGB-D SLAM, captured by synchro-
nized global shutter cameras(while the other two dataset are
both captured by local shutter cameras).

3) PARAMETERIZATION
We use the relative open source code to evaluate the 7 SLAM
systems in different datasets. For RGBD-SLAM v2, we run
it with different parameters in different sequences, while for
other SLAM systems, we use the default parameter of the
relative source code for every sequences, that is because using
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TABLE 2. Tracking accuracy results on the easy TUM RGB-D dataset. ATE RMSE (m).

different parameters for different sequences has a greater
impact on the performance of RGB-D SLAM v2, while we
have also did some fine tuning on other systems, there is
no significant change compared to the default. Specifically,
for RGB-D SLAM v2, we mainly fine tune three parame-
ters to get a reasonable running result for every sequences.
These three parameters include: the number of matching
immediate predecessors(represented as n), randomly sam-
pled keyframes(represented as k) and randomly sampled
frames for loop closures(represented as l). For feature-rich
and short sequences, we set the three values low, while for
longer or texture-less sequences, we increase the values,
according to [2]. For the short and feature-rich sequences
‘‘fr1_desk’’,‘‘fr1_floor’’,‘‘fr1_room’’, ‘‘fr3_office’’ and
‘‘fr3_nst’’ in TUM RGB-D dataset and all sequences in
ICL-NUIM dataset, we set n = 2, k = 2, l = 5, for
more texture-less sequences ‘‘fr2_xyz’’ in TUM, we set
n = 4, k = 4, l = 10, for the long and texture-less
sequences ‘‘fr2_360_hemisphere’’, ‘‘fr2_large_no_loop’’
and ‘‘fr2_large_with_loop’’ in TUM, we set n = 8, k = 8,
l = 20.

4) TEST ENVIRONMENT
We use a PC with an Intel Core i7 3.6GHz CPU and 32 GB
of memory for experiments. The systems were implemented
from the open source code. The web address of the source
code and RGB-D SLAM dataset we used and mentioned in
the article are all listed in the section IX.

B. EVALUATION ON TRACKING ACCURACY
1) TUM RGB-D DATASET
The Table 2 and Table 3 shows the result of tracking accu-
racy in TUM RGB-D dataset of the 10 SLAM systems we
choosed, where Table 2 contains relatively simple sequences,
while the sequences in Table 3 are more challenging, which
have longer trajectories, sparser textures and less structure.
(Note that we did not show the experimental results of
KinectFusion on all sequences, and BAD-SLAM on Table2,

because tracking lost occurred on these sequences.) We can
see that in all the SLAM systems, ORB-SLAM2 clearly
has the best tracking accuracy on most sequences. Compar-
ing with the SIFT feature-based tracking used by RGBD-
SLAM_v2 and BundleFusion, ORB feature-based tracking
method is more robust especially in the cases of fast camera
motion and vigorous rotation, as the result shown in the
sequence ‘‘fr1_room’’ and ‘‘fr3_office’’. In addition, ORB-
SLAM2 has more advanced global mapping and loop closure
modules. In combination with ORB features, it can reliably
reconstruct a globally consistent map, hence having better
accuracy. It is worth noting that the new feature-basedmethod
Plane-Edge-SLAM also has good performance, and even bet-
ter than ORB-SLAM2 in ‘‘fr1_floor’’, the scenes with more
plane structures. The reason for which, we analyze is that,
through the fusion of plane and edge, the estimated pose of
Plane-Edge-SLAM is fully constrained, and the plane fitting
method can adapt to various measurement noises correspond-
ing to different depth measurements, so that it can achieve
higher accuracy in the planar scene. Compared with the
feature-based methods mentioned above, the direct methods
are generally more inaccurate and there are more tracking
failures (as we regard the tracking error above 0.5m or track-
ing lost as the situation of tracking failures). And in the more
challenging large-scale situations, the accuracy difference
between the direct methods and feature-based methods is
even greater, as the result shown in the Table 3. The cause
we analyze is that in the front-end, when the camera moves
or rotates on a large scene, it is difficult for direct methods
to satisfy the condition of constant gray level in large scene,
and the vigorous camera rotation will cause short exposure
time and blurred images, which is easy to cause methods
based on photometric errors to fall into local extremes. The
accuracy difference between direct and indiret method is
not that significant in sequence ‘‘fr1_desk’’, ‘‘fr2_xyz’’ and
‘‘fr3_nst’’, and we can see that in ‘‘fr2_xyz’’, the result of
RGBDTAM is equal to the ORB-SLAM2. This is because
these sequences are not in large-scale, the camera moves
slowly and the rotation is not that vigorous, which ensures
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TABLE 3. Tracking accuracy results on the hard TUM RGB-D dataset. ATE RMSE (m).

TABLE 4. Tracking accuracy results on the ICL-NUIM dataset.
ATE RMSE (m).

that there is almost no motion blur and rolling shutter effects
in the data.

2) ICL-NUIM DATASET
As we can see in Table 4, for these sequences in ICL-NUIM
dataset, which only cover small scenes and simple camera tra-
jectories (without fast camera motion and vigorous rotation),
the only hybrid method BundleFusion has the best track-
ing accuracy on all chosen sequences, and the feature-based
method ORB-SLAM2 and the direct method ElasticFusion
are almost in equal performance. This result does not con-
flict with the result in TUM dataset, as we have explained
above, the direct methods rely on gray-scale consistency and
are easily affected by factors such as rolling shutter effects,
motion blur and the change of external light, while in a
sequence without these limits, the direct method can achieve
better accuracy. The reason why BundleFusion achieve the
best result we analyze is that there are many planar structure
(mainly untextured wall and floor) and repeated textures,
and lack of corner points in the dataset environment, which
can make the feature-based method have larger errors even
in a small range, while direct methods are robust to these,
so we can say that the increase in accuracy comes from the
combination of the direct method and feature-based method
adopted by BundleFusion. Specifically, the BundleFusion
employs correspondences based on sparse features and dense
geometric and photometric matching, which not only ensures
less feature matching time, but also achieves higher precision
tracking accuracy in low-texture areas.

3) ETH3D DATASET
From the experimental results in Table 5, we can see that
BAD-SLAM is fully dominant in each chosen sequence
of the ETH3D dataset, only ORB-SLAM2 can compare

TABLE 5. Tracking accuracy results on the ETH3D dataset. ATE RMSE (m).

with it, while other direct methods are much worse than
BAD-SLAM. Firstly, we have to mention again, ETH3D
dataset is the only dataset captured by synchronized global
shutter cameras, while the other two datasets are both cap-
tured by local shutter cameras, which means there is no
rolling shutter effects for all the SLAM systems in ETH3D
dataset. From the previous evaluation results in Table1 and
Table 2, we can see that the rolling shutter effects can
introduce further geometric distortions, which may strongly
affect direct methods, while ORB-SLAM2 as an indirect
method is less affected by rolling shutter than direct methods,
and can achieve better accuracy. Without the rolling shutter
effects, BAD-SLAM achieves higher accuracy than ORB-
SLAM. The main reason we analyze is that in the back-end,
BAD-SLAM use gradients rather than raw pixel intensities to
be robust to photometric changes, and it alternates between
refining the 3D map and the camera poses to minimize the
number of parameters considered at each point in time, which
guaranteed the efficiency of BA optimization, and largely
improved the overall tracking accuracy.

C. EVALUATION ON TRACKING TIME
Table 6 shows the tracking time result of the seven SLAMsys-
tems on the TUM RGB-D dataset. We can see that the direct
method KinectFusion and ElasticFusion have the shortest
mean tracking time, followed by the hybrid method Bundle-
Fusion, and indirect method ORB-SLAM2. The indirect
method RGBDSLAM_v2 has the longest mean tracking time,
and significantly longer than other methods. In order to make
a clearer comparison of methods besides RGBDSLAM_v2,
we plot the result in Fig. 9.

The result proves that direct methods usually run faster
than indirect methods, because the preprocessing time and
the time-consuming feature matching process is removed.
The exception here is ORB-SLAM2, as an indirect method,
the mean tracking time is much less than RGBDSLAM_v2,

VOLUME 9, 2021 21381



S. Zhang et al.: Survey and Evaluation of RGB-D SLAM

TABLE 6. Mean tracking time results on the TUM RGB-D dataset. (s).

FIGURE 9. Mean tracking time result besides RGBDSLAM_v2.

and even less than some direct methods. The reason we
analyze is that the ORB descriptor used in the whole process
is computed on the retained FAST corners, which makes the
process of corner extraction and descriptor computation very
fast. Actually, the ORB feature extraction is much less than
33ms per image, which excludes the SIFT (∼300ms) used by
RGBDSLAM_v2, and promises the real-time performance
without GPUs.

D. EVALUATION ON RECONSTRUCTION ACCURACY
The ICL-NUIM dataset also provides the ground truth 3D
model used to generate the virtually scanned sequences.
In addition to the camera tracking evaluation, we evaluate
surface reconstruction accuracy (mean distance of the model
to the ground truth surface) for the living room model. From
the Table 7 we can see that the hybrid method BundleFu-
sion has the best reconstruction accuracy, followed closely
by ElasticFusion. In comparison, RGB-D SLAM_v2 and
DVO-SLAM are far from them, and KinectFusion, the only
method without loop closing, has the lowest accuracy.We can
see that the result of reconstruction accuracy corresponds to
the result of the tracking accuracy in Table 4, which illustrates
the correlation between the two. For the methods which use
the frame-to-model mechanism, we can say that high tracking
accuracy brings high reconstruction accuracy, and vice versa.
The results of ORB-SLAM2 and BAD-SLAM are not given,
because the method ORB-SLAM only reconstructs a sparse
map, and BAD-SLAM failed in this dataset.

The Fig. 10 shows the quality reconstruction results of
three methods in the sequence ‘‘fr1_room’’ on the TUM

TABLE 7. Surface reconstruction accuracy on the ICL-NUIM dataset. (m).

TABLE 8. Loop closing effect evaluation on the TUM RGB-D dataset ATE
RMSE. (m).

dataset. Visually, BundleFusion has the highest reconstruc-
tion quality in terms of scan completeness and align-
ment accuracy. While ElasticFusion as the only point-based
method among them, has the most sparse reconstruction
model, and there are more empty space compared with the
other two volumetric-based systems. We can also see that no
method can reconstruct the thin structures and objects well,
like the spindly legs of tables and chairs. The reason we
analyze is that the thin structures often lack distinct point fea-
tures and have severe self-occlusion, so it is very hard for the
traditional image-based or depth-based reconstruction. The
recent work Vid2Curve [69] proposes the first approach that
simultaneously estimates camera motion and reconstructs the
geometry of complex 3D thin structures in high quality, which
may be the new research hotspot.

E. EVALUATION ON LOOP CLOSING
We choose ORB-SLAM2 as the test subject, and mainly
study the effect of the two cases with or without loop closing
on the TUM RGB-D dataset. The result in Table 8 shows
that in all chosen sequences, the tracking accuracy of the
case with loop closing is much better than without loop
closing, and the difference between with and without loop
closing is particularly significant in large-scale scenes, as the
result shown in the sequence ‘‘fr2_360_hemisphere’’. The
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FIGURE 10. Reconstruction quality of three systems on the ‘‘fr1_room’’ sequence in TUM.

Fig. 11 shows the tracking trajectories on different datasets.
It is obvious that the trajectories of the cases without loop
closing reflects that with the long-distance movement of the
camera, the error continues to accumulate and increase, and
the error even reached nearly one meter in the final stage of
the trajectory. The experimental results show that the loop
closing mechanism plays a very important role in solving
error accumulation and trajectory drift.

F. SUMMARY AND DISCUSSION
In this subsection, we mainly made a summary about the
direct method and indirect method. The mean tracking time
result proves the rapidity of the direct methods, since there
is no time-consuming feature matching process, and it is
precisely because it does not rely on feature matching that
the direct method is less prone to matching errors in a
scene with sparse texture or large planar structure. However,
in the situation of rapid camera motion and vigorous rotation,
the direct method is easier to encounter tracking lost, and
both the accuracy and robustness are worse than indirect
methods. From the evaluation result, we have also found
that the indirect methods are less affected by rolling shutter
effects, as exhibited by the camera used in the TUM dataset,
than direct methods. Here, we summarized the advantages
and disadvantages of direct and indirect methods, as well as
their suitable applications.

1) ADVANTAGES OF DIRECT METHODS:
• Compared with the feature point method (only the infor-
mation around the feature point is used), all the informa-
tion in the image is used.

• Direct methods can save a lot of time for feature extrac-
tion andmatching, and easy to be transplanted to embed-
ded systems, and integrated with IMU.

• The pixel gradient is used instead of corner points. It can
be used in situations where features are missing. For
example, there are many repeated textures or lack of
corner points in the environment, but there are many
areas with edges or light variables that are not obvious.

2) DISADVANTAGES OF DIRECT METHODS
• Generally, the requirements for the camera are relatively
high, and a global shutter camera is required for photo-
metric calibration, etc.

• Invariable gray level is a strong assumption that is dif-
ficult to satisfy (susceptible to exposure and blurred
images).

• There is no discrimination in the single-pixel area, and
the image block or correlation needs to be calculated.

• The prerequisite for the success of the direct method is
that the objective function has been declining from the
initial value to the optimal value, but the image is not
convex. Therefore, a fairly good initial estimate and a
good quality image are in need.
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FIGURE 11. Tracking trajectories with or without loop detection on the TUM dataset.
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• It is difficult to realize map reuse, loop detection
and relocation after tracking lost. Unless all keyframe
images are stored, it is difficult to use previously built
maps, even if there is a way to store all keyframe images.
When reusing the map, it also needs to have a more
accurate initial estimate of the pose, which is usually
difficult.

3) ADVANTAGES OF INDIRECT METHODS
• When the motion is too large, as long as the matching
point is still within the pixel, it is unlikely to cause non-
matching, which is more robust than the direct method.

• Less affected by rolling shutter effects, which makes it
less demanding for the camera than direct methods.

• The robustness for the situation of a fast move and
vigorous rotation is much better than direct methods.

• More suitable for loop detection and relocation than
direct methods.

4) DISADVANTAGES OF INDIRECT METHODS
• The indirect method can not work well in textureless
environments or scenes with very sparse features.

• Spend a lot of time on calculating feature descriptors
and matching, which may make it fall short of real-time
requirements.

• The feature calculation process puts forward high
requirements for computing resources, and may not suc-
ceed when computing resources are limited.

IX. RESOURCES
A. BENCHMARK
• RGB-D SLAM Dataset and Benchmark [67]:
(https://vision.in.tum.de/data/datasets/rgbd-dataset)
With color, depth images and accelerometer data cap-
tured by a Microsoft Kinect, the dataset provides ROS
bags and compressed files for downloading. The dataset
is recorded in a wide variety of conditions: rotation-only
and general motion, static and dynamic environments
and small and mid-size scene coverage. What’s more,
the dataset proposes an evaluation criterion for mea-
suring the quality of the estimated camera trajectory of
visual SLAM systems.

• The ETH3D dataset [5]:(https://www.eth3d.net/)
It is a well-calibrated benchmark dataset for RGB-D
SLAM, captured by synchronized global shutter cam-
eras.

• The ICL-NUIM dataset [68]:
(https://www.doc.ic.ac.uk/%7Eahanda/VaFRIC/iclnuim
.html)
It is an RGB-D dataset of two different synthetic scenes
(the living room and the office room scene), provided
with ground truth trajectories and depth-maps.

B. SOURCE CODE
• BundleFusion [4]:
(https://github.com/niessner/BundleFusion)

Real-time, high-quality 3D mapping method for large
scenes.

• DVO-SLAM [23]:
(https://github.com/tum-vision/dvo_slam)
RGB-D SLAM combining dense visual odometry and
Pose SLAM.

• KinectFusion [12]:
(https://github.com/GerhardR/kfusion)

• ElasticFusion [24]:
(https://github.com/mp3guy/ElasticFusion)
RGB-D scene-centered SLAM system that models the
scene as a set of surfels that are deformed to accommo-
date loop closures.

• ORB-SLAM2 [3]:
(https://github.com/raulmur/ORB_SLAM2)
SLAM based on ORB features with high accuracy.

• RGBDSLAM_v2 [2]:
(https://github.com/felixendres/rgbdslam_v2)
Implementation of an feature-based RGB-D SLAM sys-
tem, with a perfect and easy to use GUI.

• BAD-SLAM [5]:
(https://github.com/ETH3D/badslam)
RGB-D SLAM based on direct Bundle Adjustment.

X. CONCLUSION
As the development of robotics and VR/AR, vSLAM is
receiving more and more attention because of its capability to
estimate the camera pose and reconstruct 3D structure of the
scene with low cost, small size, and power-efficient cameras.
RGB-D camera, a new kind of camera which provides depth
information except for RGB information, has many advan-
tages over traditional cameras, like scale awareness and the
ability to reconstruct 3D structures for even low texture areas
easily and quickly. As a result, RGB-D cameras have been
the most popular sensors for indoor reconstruction in the past
decade.

In this paper, we summed up the basic architecture of
RGB-D SLAM. We divide common RGB-D SLAM algo-
rithm into three main components: camera tracking, local
mapping and loop closing. For camera tracking, we described
the principle and formulation of direct methods, indirect
methods and hybrid methods. And we highlighted the dif-
ference between them. For local mapping, we introduced
the difference between point-based and volumetric methods.
For loop closing, we detailed their process with specific
examples. In the experiment part, we evaluated several related
properties of the chosen SLAM systems on the main RGB-D
datasets, and summarized their ability and analyzed their
advantages and disadvantages and their adaptability in dif-
ferent situations. And our evaluation presents valuable guid-
ances to developers for the choice of a proper SLAM systems
selection method regarding a particular application.
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