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ABSTRACT This paper is concerned with the finite-time annular domain bounded control of Itô-type
stochastic systems with Wiener and Poisson random disturbance. First, utilizing different quadratic function
methods, some sufficient conditions for finite-time annular domain bounded-ness (FTADB) of the system are
achieved. Second, two finite-time annular domain bounded controllers are skillfully developed to ensure the
FTADB of the closed-loop system, of which one is state feedback controller and the other is dynamic output
feedback controller. Furthermore, an algorithm is provided to deal with the obtained matrix inequalities.
Finally, two examples are used to demonstrate the effectiveness of the theorems in this paper.

INDEX TERMS Stochastic systems, Poisson random disturbance, finite-time annular domain bounded.

I. INTRODUCTION
The control problems of stochastic systems have attracted
much attention in physics, biology, engineering and other
practical systems in the last decades. Among various stochas-
tic control systems, Itô stochastic differential/difference
equations play important roles. This class of systems have
received considerable attention from control and mathemati-
cal communities. There are have been some results available
in the literatures about stability of stochastic systems. For
example, some robust state feedback controllers are proposed
for linear stochastic systems with Markovian switching in
[1]. It is verified [1] that the robust stabilization problem can
be solved. H2/H∞ control for nonlinear stochastic systems
based on coupled Hamilton-Jacobi equations are investigated
in [2]. Then, the results are further developed in stochastic
fuzzy affine systems in [3]. Some other excellent research
results of stochastic systems can be found in [4]–[10] and
their references.

It is known that Wiener and Poisson random process
play an important role in stochastic control systems. Hence,
stochastic linear systems with Wiener and Poisson random
disturbance have been brought into focus [11]–[18]. For
instance, stability problems for semi-Markovian switched
singular stochastic systems with Wiener noise are investi-
gated in [11]. TheH∞ control problems for systems perturbed
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by jump random noise, i.e., Poisson-driven stochastic sys-
tems are studied in [12]. Disturbance attenuation properties
and robust H∞ adaptive fuzzy tracking control of nonlinear
systems are investigated in [13]. Based on Poisson processes,
the problem of moment estimators for the parameters of
Ornstein-Uhlenbeck processes is developed in [14]. Other
outstanding research results can be found in [15]–[18].

When the time goes infinity, asymptotic stability is con-
sidered in most of the existing results [19]–[25]. As men-
tioned in [26], asymptotically stable systems may have poor
transient characteristics. In practice, it is important to reach
steady state in finite time, especially in communication net-
work system [27], robot control system [28]. Fortunately,
the concept of finite-time stability (FTS) is put forward
[29]. Due to the advantage of the finite-time technique,
there have been many nice results on it, such as the FTS
of switched stochastic systems [30]–[32], FTS of stochas-
tic delayed systems [33]–[35], FTS of stochastic Marko-
vian jump systems [36], [37]. Besides, external disturbance
is unavoidable in practice. In order to solve the problem,
the concept of finite-time bounded (FTB) has been introduced
[38], and many excellent research results based on finite-time
bounded-ness theory have been obtained [39]–[42], [44]. For
example, in [39], some sufficient conditions on finite-time
stochastic bounded-ness are provided for stochastic systems
with stochastic delayed interval and Markovian switching.
In [40], a newly stochastic Lyapunov-Krasovskii functional
and novel activation function conditions are proposed for a
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class of Markovian jump linear systems and put forward a
controller to investigate the finite-time stochastic contrac-
tive bounded-ness problem. In [41], a stochastic variable
satisfying the Bernoulli distribution is utilized for the prob-
lem of FTB control. In [42], the problem of FTS analysis
and stochastic finite-time bounded-ness for switched linear
systems are studied. However, the FTS and FTB problem
in [39]–[44] only involves the upper bound of the system
orbit, not its lower bound. In practice, the research of the
upper bound and lower bound of system state showed the
great significance. For instance, in [45], the temperature
of the reactor should be within the given interval in some
chemical reaction controlled systems, otherwise the reaction
cannot proceed smoothly during a given time interval. In [46],
to make the entire electrical power system work properly
during a given time interval, transient voltage should be
controlled in a finite-time interval. To deal with these phe-
nomenon, the problem of finite-time annular domain stability
and bounded control of the stochastic systems has been inves-
tigated with the lower bound of the system orbit in [47]–[49].
In [47], a quadratic function approach is developed for the
FTADB of a linear stochastic system. The finite-time annular
domain stability of stochastic impulsive systems was inves-
tigated in [48]. Nevertheless, the influence of Wiener and
Poisson random disturbances on system performance is not
considered in [47]–[49] simultaneously. Thus, how to develop
a new strategy for Itô-type stochastic systems with Wiener
and Poisson random disturbance such that the closed-loop
systems are FTADB has not been adequately dealt with till
now, which motivates the current study.

The FTADB control of Itô-type stochastic systems are
investigated in this paper. Themain contributions of this work
can be stated as follows: i) The FTADB control of Itô-type
stochastic systems with Wiener and Poisson random distur-
bance are studied, which generalizes some existing stochastic
system. ii) By a different quadratic function method, Itô for-
mula, Gronwall inequality, and matrix inequality technique,
several sufficient criteria for FTADB of Itô-type stochastic
systems are obtained under a state feedback controller (SFC)
and an output feedback controller (OFC). iii) An algorithm is
presented to give the relationship of the parameters under the
state feedback and output feedback cases.

The paper is structured as follows. Section II introduces
some basic preliminaries. Section III provides a sufficient
condition for FTADB. Section IV gives some sufficient con-
ditions for the existence of feedback controllers. Section V
shows an algorithm for solving the related parameters of the
two controllers. In section VI gives two simulation examples
to illustrate the feasibility of the proposed theoretical results.
A conclusion is shown in the last section.

Notations: M ′ denotes the transpose of matrix M . M >

0(M ≥ 0) means that M is positive-definite (positive semi-
definite). rmax(M )(rmin(M )) means the largest (smallest)
eigenvalue of matrix M . Rp means an p-dimensional
Euclidean space. “∗” represents the entries implies by the
symmetry to a matrix. diag{· · · } represents a diagonal matrix.

E represents the mathematical expectation of a random
process.

II. PRELIMINARIES AND PROBLEM STATEMENT
Consider the following Itô-type stochastic linear system with
Wiener and Poisson random disturbance

dx(t)= (A11x(t)+B11u(t)+H1$ (t))dt
+(A21x(t)+B21u(t)+H2$ (t))dw(t)
+(A31x(t)+B31u(t)+H3$ (t))dn(t),
y(t)=C1x(t), x(0)=x0 ∈ Rn,

(1)

where A11, A21, A31, B11, B21, B31, H1, H2, H3, C1 are con-
stant matrices with appropriate dimensions. x(t) ∈ Rn, u(t) ∈
Rm, y(t) ∈ Rp denote the state of the system, the control input,
and the measurement output, respectively. n(t) stands for the
marked Poisson process with Poisson jump intensity λ. w(t)
is the one-dimensional standard wiener process.$ (t) denotes
the external disturbance and all $ (t) ∈ <. x0 presents the
initial state.
The class < is defined as follows:
<={$ (t)|d$ (t)=F$ (t)dt+F1$ (t)dw(t),

$ (0)=$0,$
′

0R1$0 ≤ f1,E
[
$ ′(t)R1$ (t)

]
< f }, (2)

where f > 0 and f1 > 0 are given scalars, and F > 0, F1 > 0,
and R1 > 0 are constant matrices.
Remark 1: From the above definition of f and f1, one can

see that < actually includes a big class of signals.
Next, the concept of FTADB is introduced andmore details

can be found in [50] and [51].
Definition 1:Given scalars δ1 > 0, δ2 > 0, δ3 > 0, δ4 > 0,

T > 0, with a matrix R > 0, δ2 > δ4 > δ3 > δ1 > 0, and a
class of exogenous signals <, then the following system

dx(t) = (A11x(t)+ H1$ (t))dt
+(A21x(t)+ H2$ (t))dw(t)
+(A31x(t)+ H3$ (t))dn(t),
x(0) = x0,

(3)

issaid tobe FTADBwith respectto (δ1, δ2, δ3, δ4, <, T , R), if
δ3 ≤ E

[
x ′(0)Rx(0)

]
≤ δ4

⇒ δ1 < E
[
x ′(t)Rx(t)

]
< δ2, (4)

for all t ∈ [0, T ], $ (t) ∈ <.
Next, some lemmas that will be used are given in this paper.
Lemma 1 [52]: For given ν(x(t)) ∈ C1,2(R+, Rn), associ-

ated with the following stochastic system
dx(t) = f (x)dt + g(x)dw(t)+ a(x)dn(t). (5)

Define the infinitesimal operator `ν as

`ν(x(t)) =
∂ν(x(t))
∂t

+
∂ν′(x(t))
∂x

f (x)

+
1
2
[g′(x)

∂2ν(x(t))
∂x2

g(x)]

+ λ[ν(x(t)+ a(x))− ν(x(t))]. (6)

Lemma 2 [51]: Let h(t) be a nonnegative function, if there
exist some constants m ≥ 0 and η ≥ 0, such that

h(t) ≤ m+ η
∫ t

0
h(s)ds 0 ≤ t ≤ T , (7)
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then
h(t) ≤ m exp(ηt) 0 ≤ t ≤ T . (8)

Lemma 3 [51]: Let h(t) be a nonnegative function, if there
exist some constants m ≥ 0 and η ≥ 0, such that

h(t) ≥ m+ η
∫ t

0
h(s)ds 0 ≤ t ≤ T , (9)

then
h(t) ≥ m exp(ηt) 0 ≤ t ≤ T . (10)

III. FINITE-TIME ANNULAR DOMAIN BOUNDED-NESS
This section is to address the FTADB problem of the system
(1) by selecting different quadratic functions.

In [44], a key approach to obtain the main results is as
follows. Take the positive-definite function ν(Sstate(t)), then
based on the following inequalities

`ν(Sstate(t)) < αν(Sstate(t)), (11)

and

`ν(Sstate(t)) > βν(Sstate(t)), (12)

one can obtain the main results. Since the general quadratic
functions in (11) and (12) are the same, one can find that
ν(Sstate(t)) which satisfies (11) may not satisfy (12). Thus,
the results obtained are conservative.

In order to deal with this problem, a different method will
be introduced. Specifically, by choosing different positive
quadratic functions ν1(Sstate(t)) and ν2(Sstate(t)), the follow-
ing inequalities

`ν1(Sstate(t)) < αν1(Sstate(t)), (13)

and

`ν2(Sstate(t)) > βν2(Sstate(t)), (14)

will be derived. Thus, the main results obtained by different
quadratic function methods are better than those obtained by
common approach.

Based on the different quadratic function methods,
Theorem 1 is obtained.
Theorem 1: Given positive scalars δ1, δ2, δ3, δ4, T , and a

matrix R > 0, with δ2 > δ4 > δ3 > δ1 > 0, the system
(3) is FTADB with respect to (δ1, δ2, δ3, δ4, <, T , R), if there
exist symmetric matricesQ1 > 0,Q2 > 0,Q3 > 0, and some
scalars ri, i = 1, 2, 3, α ≥ 0, β ≥ 0, such that the following
inequalities hold
ψ H1

√
λQ̃1(I + A31)′ Q̃1A′21

∗ 01 − αQ̃2
√
λH ′3 H ′2

∗ ∗ −Q̃1 0
∗ ∗ ∗ −Q̃1

< 0, (15)


ψ1 H1

√
λQ̃1(I+A31)′ Q̃1A′21

∗ βQ̃2−02
√
λH ′3 H ′2

∗ ∗ −Q̃1 0
∗ ∗ ∗ −Q̃1

< 0, (16)

[
r2f1 − δ2e−αT

√
δ4

∗ −r1

]
< 0, (17)

[
r3f − δ3

√
δ1

∗ −r1

]
< 0, (18)

r1I<Q1 < I , (19)

0<Q2 < r2I , (20)

0<Q3 < r3I , (21)

where

Q̃1 = R−
1
2Q1R−

1
2 , Q̃2 = R

1
2
1Q2R

1
2
1 , Q̃3 = R

1
2
1Q3R

1
2
1 ,

ψ = Q̃1A′11 + A11Q̃1 − λQ̃1 − αQ̃1,

01 = F ′Q̃2 + Q̃2F + F ′1Q̃2F1,

ψ1 = βQ̃1 + λQ̃1 − Q̃1A′11 − A11Q̃1,

02 = F ′Q̃3 + Q̃3F + F ′1Q̃3F1.

Proof: The proof is divided into two steps.
Step 1 : E[x ′(0)Rx(0)] ≤ δ4 ⇒ E[x ′(t)Rx(t)] < δ2

Choose the following quadratic function
ν1(x(t),$ (t)) = x ′(t)Q̃−11 x(t)+$ ′(t)Q̃2$ (t), (22)

where Q̃1 = R−
1
2Q1R−

1
2 , Q̃2 = R

1
2
1Q2R

1
2
1 , with symmetric

matrices Q1 > 0, Q2 > 0.
Applying Itô formula for ν1(x(t),$ (t)) along the trajectory

of the following system

d

[
x(t)
$ (t)

]
=

[
A11 H1

0 F

][
x(t)
$ (t)

]
dt+

[
A21 H2

0 F1

][
x(t)
$ (t)

]
dw(t)

+

[
A31 H3

0 0

][
x(t)
$ (t)

]
dn(t)[

x(0)
$ (0)

]
=

[
x0
$0

]
∈ Rn+l,

(23)

it follows
`ν1(x(t),$ (t))

= (A11x(t)+ H1$ (t))′Q̃−11 x(t)

+ x ′(t)Q̃−11 (A11x(t)+ H1$ (t))

+ (A21x(t)+ H2$ (t))′Q̃−11 (A21x(t)

+H2$ (t))+ (F$ (t))′Q̃2$ (t)

+$ ′(t)Q̃2F$ (t)+ (F1$ (t))′Q̃2F1$ (t)

+ λ[(x(t)+ A31x(t)+ H3$ (t))′Q̃−11 (x(t)

+A31x(t)+ H3$ (t))− x ′(t)Q̃−11 x(t)], (24)

and one obtains
`ν1(x(t),$ (t))− αν1(x(t),$ (t))

= x ′(t)[A′11Q̃
−1
1 + Q̃

−1
1 A11 + AT21Q̃

−1
1 A21

+ λ(I + A31)′Q̃
−1
1 (I + A31)− λQ̃

−1
1

−αQ̃−11 ]x(t)+ x ′(t)[Q̃−11 H1 + A′21Q̃
−1
1 H2

+ λ(I + A31)′Q̃
−1
1 H3]$ (t)+$ ′(t)[H ′1Q̃

−1
1

+H ′2Q̃
−1
1 A21 + λH ′3Q̃

−1
1 (I + A31)]x(t)

+$ ′(t)[F ′Q̃2 + Q̃2F + F ′1Q̃2F1 + H ′2Q̃
−1
1 H2

+ λH ′3Q̃
−1
1 H3 − αQ̃2]$ (t). (25)
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Pre-multiplying and post-multiplying both sides of
inequality (15), by diag{Q̃−11 , I , Q̃−11 , Q̃−11 }, according to
Schur complement, one can obtain that[
3+ A′21Q̃

−1
1 A21 31 + Q̃

−1
1 H1 + A′21Q̃

−1
1 H2

∗ 32 + H ′2Q̃
−1
1 H2

]
< 0,

(26)

where

3 = A′11Q̃
−1
1 + Q̃

−1
1 A11 + λ(I + A31)′Q̃

−1
1 (I + A31)

− λQ̃−11 − αQ̃
−1
1 ,

31 = λ(I + A31)′Q̃
−1
1 H3,

32 = F ′Q̃2 + Q̃2F + F ′1Q̃2F1 + λH ′3Q̃
−1
1 H3 − αQ̃2.

By (25) and (26), one obtains

`ν1(x(t),$ (t)) < αν1(x(t),$ (t)). (27)

Then, integrate from 0 to t with t ∈ [0,T ] and take the
mathematical expectation on both sides of (27), one has
Eν1(x(t),$ (t))

< Eν1(x(0),$ (0))+ α
∫ t

0
Eν1(x(s),$ (s))ds. (28)

By Lemma 2, it can be concluded that

Eν1(x(t),$ (t)) < Eν1(x(0),$ (0))eαt . (29)

Applying the given conditions, we obtain

Eν1(x(0),$ (0))eαt

= E[x ′(0)Q̃−11 x(0)+$ ′(0)Q̃2$ (0)]eαt

= E[x ′(0)R
1
2Q−11 R

1
2 x(0)+$ ′(0)R

1
2
1Q2R

1
2
1$ (0)]eαt

≤ E[rmax(Q
−1
1 )δ4 + rmax(Q2)f1]eαT

= [
1

rmin(Q1)
δ4 + rmax(Q2)f1]eαT

< [
1
r1
δ4 + r2f1]eαT , (30)

Eν1(x(t),$ (t))
= E[x ′(t)Q̃−11 x(t)+$ ′(t)Q̃2$ (t)]

= E[x ′(t)R
1
2Q−11 R

1
2 x(t)

+$ ′(t)R
1
2
1Q2R

1
2
1$ (t)]

≥ E[rmin(Q
−1
1 )x ′(t)Rx(t)

+ rmin(Q2)$ ′(t)R1$ (t)]

= E[
1

rmax(Q1)
x ′(t)Rx(t)+ rmin(Q2)$ ′(t)R1$ (t)]

> E[x ′(t)Rx(t)]. (31)

According to (29), (30) and (31), it yields

E[x ′(t)Rx(t)] < (
1
r1
δ4 + r2f1)eαT . (32)

From (17), one finds

(
1
r1
δ4 + r2f1)eαT < δ2. (33)

According to (32) and (33), one can obtain
E[x ′(t)Rx(t)] < δ2. (34)

Step 2 : δ3 ≤ E[x ′(0)Rx(0)]⇒ δ1 < E[x ′(t)Rx(t)]

Consider a function as follows

ν2(x(t),$ (t)) = x ′(t)Q̃−11 x(t)+$ ′(t)Q̃3$ (t), (35)

where Q̃1 = R−
1
2Q1R−

1
2 , Q̃3 = R

1
2
1Q3R

1
2
1 , with symmetric

positive definite matrices Q1, Q3 being solutions (15)-(21).
Applying Itô formula for ν2(x(t),$ (t)) along the

trajectory of the system of (23), one has

`ν2(x(t),$ (t))

= (A11x(t)+ H1$ (t))′Q̃−11 x(t)

+ x ′(t)Q̃−11 (A11x(t)+ H1$ (t))

+ (A21x(t)+ H2$ (t))′Q̃−11 (A21x(t)+ H2$ (t))

+ (F$ (t))′Q3$ (t)+$ ′(t)Q3F$ (t)

+ (F1$ (t))′Q3F1$ (t)

+ λ[(x(t)+ A31x(t)+ H3$ (t))′Q̃−11 (x(t)

+A31x(t)+ H3$ (t))− x ′(t)Q̃−11 x(t)], (36)

and it follows

βν2(x(t),$ (t))− `ν2(x(t),$ (t))

= x ′(t)[βQ̃−11 + λQ̃
−1
1 − A

′

11Q̃
−1
1 − Q̃

−1
1 A11

−A′21Q̃
−1
1 A21 − λ(I + A31)′Q̃

−1
1 (I + A31)]x(t)

− x ′(t)[Q̃−11 H1 + A′21Q̃
−1
1 H2

+ λ(I + A31)′Q̃
−1
1 H3]$ (t)

−$ ′(t)[H ′1Q̃
−1
1 + H

′

2Q̃
−1
1 A21

+ λH ′3Q̃1(I + A31)]x(t)

+$ ′(t)[βQ̃3 − F ′Q̃3 − Q̃3F − F ′1Q̃3F1
−H ′2Q̃

−1
1 H2 − λH ′3Q̃

−1
1 H3]$ (t) (37)

Pre-multiplying and post-multiplying both sides of
inequality (15), by diag{Q̃−11 , I , Q̃−11 , Q̃−11 }, according to
Schur complement, one can obtain that[
6 + A′21Q̃

−1
1 A21 61 + Q̃

−1
1 H1 + A′21Q̃

−1
1 H2

∗ 62 + H ′2Q̃
−1
1 H2

]
< 0,

(38)

where

6 = βQ̃−11 + λQ̃
−1
1 − A

′

11Q̃
−1
1 − Q̃

−1
1 A11

+ λ(I + A31)′Q̃
−1
1 (I + A31),

61 = λ(I+A31)′Q̃
−1
1 H3,

62 = βQ̃3 − F ′Q̃3 − Q̃3F − F ′1Q̃3F1 + λH ′3Q̃
−1
1 H3.

Considering (37) and (38), one obtains

`ν2(x(t),$ (t)) > βν2(x(t),$ (t)). (39)

Then, integrating from 0 to t with t ∈ [0,T ] and taking the
mathematical expectation on both sides of (39), one has

Eν2(x(t),$ (t))

> Eν2(x(0),$ (0))+ β
∫ t

0
Eν2(x(s),$ (s))ds. (40)
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Using Lemma 3, it yields
Eν2(x(t),$ (t)) > Eν2(x(0),$ (0))eβt . (41)

By (19) and (21), one has
Eν2(x(0),$ (0))eβt

= E[x ′(0)Q̃−11 x(0)+$ ′(0)Q̃3$ (0)]eβt

= E[x ′(0)R
1
2Q−11 R

1
2 x(0)+$ ′(0)R

1
2
1Q3R

1
2
1$ (0)]eβt

≥ rmin(Q
−1
1 )δ3 =

1
rmax(Q1)

δ3 > δ3. (42)

Eν2(x(t),$ (t))

= E[x ′(t)Q̃−11 x(t)+$ ′(t)Q̃3$ (t)]

= E[x ′(t)R
1
2Q−11 R

1
2 x(t)

+$ ′(t)R
1
2
1Q3R

1
2
1$ (t)]

≤ E[rmax(Q
−1
1 )x ′(t)Rx(t)

+ rmax(Q3)$ ′(t)R1$ (t)]

= E[
1

rmin(Q1)
x ′(t)Rx(t)+rmax(Q3)$ ′(t)R1$ (t)]

<
1
r1
E[x ′(t)Rx(t)]+ r3f . (43)

By (41), (42) and (43),

δ3 <
1
r1
E
[
x ′(t)Rx(t)

]
+ r3f . (44)

From (18), one has
δ1 − δ3r1 + r3fr1 < 0, (45)

and (45) is equivalent to
δ1 < (δ3 − r3f )r1. (46)

From (44) and (46), it is easy to obtain
δ1 < E[x ′(t)Rx(t)]. (47)

This completes the proof. �
Remark 2: For system (1) with u(t) = 0 (i.e. Itô-

type stochastic linear with Wiener and Poisson random
disturbance), the FTADB can be tested by Theorem 1.

IV. FINITE-TIME ANNULAR DOMAIN BOUNDED
CONTROLLER DESIGN
In this section, in order to deal with the system (1) is FTADB,
different quadratic functions are constructed to design the
SFC and OFC.

A. STATE FEEDBACK FINITE-TIME ANNULAR DOMAIN
BOUNDED CONTROLLER DESIGN
For system (1), consider the following SFC

u(t) = Kx(t), (48)

where K is the feedback controller gain to be designed.
Substituting (48) into system (1), one gets

dx(t)= [(A11+B11K )x(t)+H1$ (t)]dt
+[(A21+B21K )x(t)+H2$ (t)]dw(t)
+[(A31+B31K )x(t)+H3$ (t)]dn(t)
y(t)=C1x(t), x(0)=x0 ∈ Rn.

(49)

Next, the following theorem provides sufficient conditions
to guarantee the system (49) is FTADB.
Theorem 2: Given a matrix R > 0, and positive scalars δ1,

δ2, δ3, δ4, T , with δ2 > δ4 > δ3 > δ1 > 0, the system (49) is
FTADB with respect to (δ1, δ2, δ3, δ4, <, T , R), if there exist
symmetric matrices Q1 > 0, Q2 > 0, Q3 > 0, some scalars
ri, i = 1, 2, 3, α ≥ 0, β ≥ 0, and a suitable dimensions matrix
U , such that the following inequalities hold

1 H1 11 Q̃1A′21 + U
′B′21

∗ 01 − αQ̃2
√
λH ′3 H ′2

∗ ∗ −Q̃1 0
∗ ∗ ∗ −Q̃1

< 0, (50)


12 H1 11 Q̃1A′21 + U

′B′21
∗ βQ̃2 − 02

√
λH ′3 H ′2

∗ ∗ −Q̃1 0
∗ ∗ ∗ −Q̃1

< 0, (51)

where

Q̃1 = R−
1
2Q1R−

1
2 , Q̃2 = R

1
2
1Q2R

1
2
1 , Q̃3 = R

1
2
1Q3R

1
2
1 ,

1 = Q̃1A′11 + A11Q̃1 + U ′B′11 + B11U − λQ̃1 − αQ̃1,

11 =
√
λQ̃1(I + A31)′ +

√
λU ′B′31,

12 = βQ̃1 + λQ̃1 − Q̃1A′11 − A11Q̃1 − U ′B′11 − B11U .

In this case, a desired controller gain is given by K =
UQ̃−11 .
Proof:By replacing A11 by A11+B11K , A21 by A21+B21K

and A31 by A31 + B31K in Theorem 2. One can obtain that
conditions (15), (16) and

1∗ H1 1∗1 Q̃1(A21 + B21K )′

∗ 01 − αQ̃2
√
λH ′3 H ′2

∗ ∗ − Q̃1 0
∗ ∗ ∗ − Q̃1

 < 0, (52)


1∗2 H1 1∗1 Q̃1(A21 + B21K )′

∗ βQ̃2 − 02
√
λH ′3 H ′2

∗ ∗ − Q̃1 0
∗ ∗ ∗ − Q̃1

 < 0, (53)

hold. Let U = KQ̃1, it can be seen that (52) and (53) are
derived from (50) and (51), where

1∗ = (A11 + B11K )Q̃1 + Q̃1(A11+B11K )′ − λQ̃1 − αQ̃1,

1∗1 =
√
λQ̃1(I + A31 + B31K )′,

1∗2 = βQ̃1 + λQ̃1 − Q̃1(A11 + B11K )′ − (A11 + B11K )Q̃1.

This completes the proof. �

B. DYNAMIC OUTPUT FEEDBACK FINITE-TIME ANNULAR
DOMAIN BOUNDED CONTROLLER DESIGN
It is well known that the SFCmay fail, when the system states
are not fully accessible. Therefore, we propose an OFC.
Assumption 1: There exists a SFC v(t) = Kx(t) which has

been designed using the results of Theorem 2.
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An observer-based controller with appropriate dimensions
is selected as follows

dx̂(t)= [A11x̂(t)+B11v(t)+L(y(t)−C1x̂(t))]dt
+[A21x̂(t)+B21v(t)+L(y(t)−C1x̂(t))]dw(t)
+[A31x̂(t)+B31v(t)+L(y(t)−C1x̂(t))]dn(t)
v(t)=Kx̂(t), x̂(0)= x̂0 ∈ Rn,

(54)

where x̂(t) is the estimate of the state of x(t) and L is an
estimator gain matrix with appropriate dimensions.

Define e(t) = x(t)− x̂(t), then one gets the error system as
follows

de(t)= [(A11−LC1)e(t)+H1$ (t)]dt

+[(A21−LC1)e(t)+H2$ (t)]dw(t)

+[(A31−LC1)e(t)+H3$ (t)]dn(t). (55)

In general, it is required to satisfy E[e′(t)Re(t)] < 1, t ∈
[0,T ].

Let z(t) = [x ′(t) e′(t) $ ′(t)]′; then one gets the following
augmented system{

dz(t) = Ã1z(t)dt + Ã2z(t)dw(t)+ Ã3z(t)dn(t),
z(0) = [x ′0 e

′

0 $
′

0]
′
∈ R2 n+l,

(56)

where

Ã1 =

 A11 + B11K −B11K H1
0 A11 − LC1 H1
0 0 F

 ,
Ã2 =

 A21 + B21K −B21K H2
0 A21 − LC1 H2
0 0 F1

 , (57)

Ã3 =

 A31 + B31K −B31K H3
0 A31 − LC1 H3
0 0 0

 .
According to Assumption 1, the following theorem is given

to solve the sufficient conditions of the existence of L
Theorem 3: Given a matrix R > 0, and positive scalars δ1,

δ2, δ3, δ4, T , with δ2 > δ4 > δ3 > δ1 > 0, the system (56) is
FTADB with respect to (δ1, δ2, δ3, δ4, <, T , R), if there exist
symmetric matrices Q1 > 0, Q2 > 0, Q3 > 0, some scalars
τi > 0, i = 1, 2, · · · , 7, α ≥ 0, β ≥ 0, a suitable dimensions
matrixV , and L = Q̃−12 V , such that the following inequalities
hold 

�11 �12 �13 0 0
∗ �22 �23 �24 �25
∗ ∗ �33 0 0
∗ ∗ ∗ −Q̃2 0
∗ ∗ ∗ 0 −Q̃2

 < 0, (58)


ϒ11 ϒ12 ϒ13 0 0
∗ ϒ22 ϒ23 ϒ24 ϒ25
∗ ∗ ϒ33 0 0
∗ ∗ ∗ −Q̃2 0
∗ ∗ ∗ 0 −Q̃2

 < 0, (59)

τ4I<Q1<τ1I , 0<Q2<τ2I , 0<Q3 < τ3I , (60)

τ6I<Q4 < τ5I , (61)

0<Q5 < τ7I , (62)

τ1δ4 + τ2 + τ3f1 ≤ δ2 exp(−αT )τ4, (63)

δ1τ5 − δ3τ6 + τ2 + τ7f < 0, (64)

where

Q̃1 = R
1
2Q1R

1
2 , Q̃2 = R

1
2Q2R

1
2 , Q̃3 = R

1
2
1Q3R

1
2
1 ,

Q̃4 = R
1
2Q4R

1
2 , Q̃5 = R

1
2
1Q5R

1
2
1 ,

�11 = (A11 + B11K )′Q̃1 + Q̃1(A11 + B11K )

+ (A21 + B21K )′Q̃1(A21 + B21K )

+ λ[(A31 + B31K )′Q̃1 + Q̃1(A31 + B31K )

+ (A31 + B31K )′Q̃1(A31 + B31K )]− αQ̃1,

�12 = −Q̃1B11K − (A21 + B21K )′ Q̃1B21K − λ[Q̃1B31K

+ (A31 + B31K )′ Q̃1B31K ],

�13 = Q̃1H1 + (A21 + B21K )′ Q̃1H2

+ λ[Q̃1H3 + (A31 + B31K )′ Q̃1H3],

�22 = A′11Q̃2 + Q̃2A11 − C ′1V
′
− VC1 + K ′B′21Q̃1B21K

+ λ[A31Q̃2+Q̃2A31−C ′1V
′
−VC1+K ′B′31Q̃1B31K ]

−αQ̃2,

�23 = Q̃2H1 + A′21Q̃2H21 − C ′1V
′H2 − K ′B′21Q̃1H2

+ λ[Q̃1H3 + A′31Q̃2H3 − C ′1V
′H3 − K ′B′31Q̃1H3],

�24 = A′21Q̃2 − C ′1V
′,

�25 =
√
λA′31Q̃2 −

√
λC ′1V

′,

�33 = F ′Q̃3 + Q̃3F + H ′2Q̃1H2 + H ′2Q̃2H2 + F ′1Q̃3F1
+ λ[H ′3Q̃1H3 + H ′3Q̃2H3]− αQ̃3,

ϒ11 = βQ̃4 − (A11 + B11K )′Q̃4 − Q̃4(A11 + B11K )

− (A21 + B21K )′ Q̃4 (A21 + B21K )

− λ[(A31 + B31K )′Q̃4 + Q̃4(A31 + B31K )

+ (A31 + B31K )′ Q̃4 (A31 + B31K )],

ϒ12 = Q̃4B11K + (A21 + B21K )′ Q̃4B21K

+ λ[Q̃4B31K + (A31 + B31K )′ Q̃4B31K ],

ϒ13 = −Q̃4H1 − (A21 + B21K )′ Q̃4H2

− λ[Q̃4H3 + (A31 + B31K )′ Q̃4H3],

ϒ22 = −A′11Q̃2 − Q̃2A11 + C ′1V
′
+ VC1 − K ′B′21Q̃2B21K

− λ[A31Q̃2 + Q̃2A31 − C ′1V
′
− VC1

+K ′B′31Q̃2B31K ]+ βQ̃2,

ϒ23 = −Q̃2H1 − A′21Q̃2H2 + C ′1V
′H2 + K ′B′21Q̃4H2

− λ[Q̃2H3 + A′31Q̃2H3 − C ′1V
′H3 − K ′B′31Q̃4H3],

ϒ24 = A′21Q̃2 − C ′1V
′,

ϒ25 =
√
λA′31Q̃2 −

√
λC ′1V

′,

ϒ33 = −F ′Q̃5 − Q̃5F − H ′2Q̃4H2 − H ′2Q̃2H2 − F ′1Q̃5F1
− λ[H ′3Q̃4H3 + H ′3Q̃2H3]+ βQ̃5.

Proof: The proof is divided into two steps.

Step1 : E[x ′(t0)Rx(t0)] ≤ δ4 ⇒ E[x ′(t)Rx(t)] < δ2

Let 2 = diag{Q̃1, Q̃2, Q̃3}, Q̃1 > 0, Q̃2 > 0 and Q̃3 > 0
being solutions to (58)-(64).
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Define z(t) = [x ′(t) e′(t)$ ′(t)]′, one has

ν3(z(t)) = z′(t)2z(t)

= x ′(t)Q̃1x(t)+ e′(t)Q̃2e(t)

+$ ′(t)Q̃3$ (t), (65)

where Q̃1 = R
1
2Q1R

1
2 , Q̃2 = R

1
2Q2R

1
2 , Q̃3 = R

1
2
1Q3R

1
2
1 .

For ν3(z(t)), according to Itô formula along with the state
trajectory of (56), one obtains

`ν3(z(t))

= (Ã1z(t))′2z(t)+ z′(t)2(Ã1z(t))

+ (Ã2z(t))′2(Ã2z(t))

+ λ[(z(t)+ Ã3z(t))′2(z(t)+ Ã3z(t))

− z(t)′2z(t)]

= z(t)′[Ã′12+2Ã1 + Ã
′

22Ã2 + λ(Ã
′

32+2Ã3
+ Ã′32Ã3)]z(t)

= [x(t)′ e(t)′ $ (t)′]Z̄ [x(t)′ e(t)′ $ (t)′]′, (66)

where

Z̄ =

511 �12 �13
∗ 522 523
∗ ∗ 533

 , (67)

511 = (A11 + B11K )′Q̃1 + Q̃1(A11 + B11K )

+ (A21 + B21K )′ Q̃1 (A21 + B21K )

+ λ[(A31 + B31K )′Q̃1 + Q̃1(A31 + B31K )

+ (A31 + B31K )′ Q̃1 (A31 + B31K )],

522 = (A11 − LC1)′Q̃2 + Q̃2(A11 − LC1)

+ (A21 − LC1)′Q̃2(A21 − LC1)+ K ′B′21Q̃1B21K

+ λ[(A31 − LC1)′Q̃2 + Q̃2(A31 − LC1)

+ (A31 − LC1)′Q̃2(A31 − LC1)+ K ′B′31Q̃1B31K ],

523 = Q̃2H1 + (A21 − LC1)′Q̃2H2 − K ′B′21Q̃1H2

+ λ[Q̃1H3 + (A31 − LC1)′Q̃2H3 − KB′31Q̃1H3],

533 = F ′Q̃3 + Q̃3F + H ′2Q̃1H2 + H ′2Q̃2H2 + F ′1Q̃3F1
+ λ[H ′3Q̃1H3 + H ′3Q̃2H3],

which leads to

`ν3(z(t))− αν3(z(t)) = z′(t)Z̄∗z(t), (68)

where

Z̄∗ =

511 − αQ̃1 �12 �13

∗ 522 − αQ̃2 523
∗ ∗ 533 − αQ̃3

 .
According to Schur complement, and let V = Q̃2L, condi-

tion (58) can be rewritten as

Z̄∗ < 0. (69)

It is obvious that (68) and (69) give

`ν3(z(t)) < αν3(z(t)). (70)

Then, integrate from 0 to t with t ∈ [0,T ] and take the
mathematical expectation on both sides of (70), one has

Eν3(z(t)) < Eν3(z(0))+ α
∫ t

0
Eν3(z(s))ds. (71)

According to Lemma 2, one has

Eν3(z(t)) < Eν3(z(0))eαt . (72)

Considering (60), one obtains

Eν3(z(0))eαt

= E[z′(0)2z(0)]eαt

= E[x ′(0)Q̃1x(0)+ e′(0)Q̃2e(0)
+$ ′(0)Q̃3$ (0)]eαt

= E[x ′(0)R
1
2Q1R

1
2 x(0)+ e′(0)R

1
2Q2R

1
2 e(0)

+$ ′(0)R
1
2
1Q3R

1
2
1$ (0)]eαt

≤ [rmax(Q1)δ4 + rmax(Q2)+ rmax(Q3)f1]eαT

< [τ1δ4 + τ2 + τ3f1]eαT , (73)

Eν3(z(t))
= E[z′(t)2z(t)]

= E[x ′(t)Q̃1x(t)+ e′(t)Q̃2e(t)+$ ′(t)Q̃3$ (t)]

= E[x ′(t)R
1
2Q1R

1
2 x(t)+ e′(t)R

1
2Q2R

1
2 e(t)

+$ ′(t)R
1
2
1Q3R

1
2
1$ (t)]

≥ E[rmin (Q1) x ′(t)Rx(t)+ rmin (Q2) e′(t)Re(t)
+ rmin (Q3)$

′(t)R1$ (t)]
≥ E[rmin (Q1) x ′(t)Rx(t)]
> τ4E[x ′(t)Rx(t)]. (74)

According to (72), (73) and (74), it follows

E[x ′(t)Rx(t)] <
1
τ4

[τ1δ4 + τ2 + τ3f1] eαT . (75)

According to (75) and (63), one obtains E[x ′(t)Rx(t)] < δ2
for all t ∈ [0,T ].

Step 2 : δ3 ≤ E[x ′(t0)Rx(t0)]⇒ δ1 < E[x ′(t)Rx(t)]

Let 2̄ = diag{Q̃4, Q̃2, Q̃5}, Q̃4 > 0, Q̃2 > 0 and Q̃5 > 0
being solutions to (58)-(64), and z(t) = [x ′(t) e′(t) $ ′(t)]′;
one gets

ν4(z(t)) = z′(t)2̄z(t)
= x ′(t)Q̃4x(t)+ e′(t)Q̃2e(t)
+$ ′(t)Q̃5$ (t), (76)

where Q̃4 = R
1
2Q4R

1
2 , Q̃2 = R

1
2Q2R

1
2 , Q̃5 = R

1
2
1Q5R

1
2
1 .

For ν4(z(t)), according to Lemma 1, one can obtain
`ν4(z(t))
= (Ã1z(t))′2̄z(t)+ z′(t)2̄(Ã1z(t))
+ (Ã2z(t))′2̄(Ã2z(t))
+ λ[(z(t)+ Ã3z(t))′2̄(z(t)+ Ã3z(t))
− z(t)′2̄z(t)]

= z(t)′[Ã′12̄+ 2̄Ã1 + Ã
′

22̄Ã2 + λ(Ã
′

32̄+ 2̄Ã3
+ Ã′32̄Ã3)]z(t)

= [x ′(t) e′(t)$ ′(t)]Z̃ [x ′(t) e′(t)$ ′(t)]′, (77)
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where

Z̃ =

411 −ϒ12 −ϒ13
∗ 422 423
∗ ∗ 433

 , (78)

411 = (A11 + B11K )′Q̃4 + Q̃4(A11 + B11K )

+ (A21 + B21K )′ Q̃4 (A21 + B21K )

+ λ[(A31 + B31K )′Q̃4 + Q̃4(A31 + B31K )

+ (A31 + B31K )′ Q̃4 (A31 + B31K )],

422 = (A11 − LC1)′Q̃2 + Q̃2(A11 − LC1)

+ (A21 − LC1)′Q̃2(A21 − LC1)+ K ′B′21Q̃1B21K

+ λ[(A31 − LC1)′Q̃2 + Q̃2(A31 − LC1)

+ (A31 − LC1)′Q̃2(A31 − LC1)+ K ′B′31Q̃4B31K ],

423 = Q̃2H1 + (A21 − LC1)′Q̃2H2 − K ′B′21Q̃4H2

+ λ[Q̃2H3 + (A31 − LC1)′Q̃2H3 − K ′B′31Q̃4H3],

433 = F ′Q̃5 + Q̃5F + H ′2Q̃4H2 + H ′2Q̃2H2 + F ′1Q̃5F1
+ λ[H ′3Q̃4H3 + H ′3Q̃2H3],

which leads to

βν4(z(t))− `ν4(z(t)) = z′(t)Z̃∗z(t), (79)

where

Z̃∗ =

 βQ̃4 −411 ϒ12 ϒ13
∗ βQ̃2 −422 −423
∗ ∗ βQ̃5 −433

 .
LetV = Q̃2L and by using Schur complement, condition (59)
can be rewritten as

Z̃∗ < 0. (80)

It is obvious that (79) and (80) give

βν4(z(t)) < `ν4(z(t)). (81)

Then, integrate from 0 to t with t ∈ [0,T ] and take the
mathematical expectation on both sides of (81), one has

Eν4(z(0))+ β
∫ t

0
Eν4(z(s))ds < Eν4(z(t)). (82)

By Lemma 3, one has

Eν4(z(0))eβt < Eν4(z(t)). (83)

Considering (61) and (62), one obtains

Eν4(z(0))eβt

= E[z′(0)2̄z(0)]eβt

= E[x ′(0)Q̃4x(0)+ e′(0)Q̃2e(0)

+$ ′(0)Q̃5$ (0)]eβt

= E[x ′(0)R
1
2Q4R

1
2 x(0)+ e′(0)R

1
2Q2R

1
2 e(0)

+$ ′(0)R
1
2
1Q5R

1
2
1$ (0)]eβt

≥ E[rmin(Q4)x ′(0)Rx(0)+ rmin(Q2)e′(0)Re(0)

+ rmin(Q5)$ ′(0)R1$ (0)]

> τ6δ3, (84)

Eν4(z(t))

= E[z′(t)2̄z(t)]

= E[x ′(t)Q̃4x(t)+ e′(t)Q̃2e(t)+$ ′(t)Q̃5$ (t)]

= E[x ′(t)R
1
2Q4R

1
2 x(t)+ e′(t)R

1
2Q2R

1
2 e(t)

+$ ′(t)R
1
2
1Q5R

1
2
1$ (t)]

≤ E[rmax (Q4) x ′(t)Rx(t)+ rmax (Q2) e′(t)Re(t)

+ rmax (Q5)$
′(t)R1$ (t)]

< τ5E[x ′(t)Rx(t)]+ τ2 + τ7f . (85)

From (83), (84) and (85), one finds

δ3τ6 − τ2 − τ7f
τ5

< E[x ′(t)Rx(t)]. (86)

Equation (64) gives

δ1 <
δ3τ6 − τ2 − τ7f

τ5
. (87)

So it is easy obtained that

δ1 < E[x ′(t)Rx(t)], (88)

for all with t ∈ [0,T ].
This completes the proof. �
Remark 3: It can be seen from the above that the values of

α and β determine the feasibility of Theorem 3. The selection
process of α and β is provided in below section.

V. NUMERICAL ALGORITHMS
An algorithm is presented for the results of the paper in this
section. The specifics of the stragegy are as follows.
Algorithm 1
Step 1.Set the values of δ1, δ2, δ3, δ4, <, T , and R.
Step 2.Take a series of αp(p = 1, · · · , n) and a series of

βq(q = 1, · · · ,m).
Step 3.Let p = 1 and set α1 = 0.
Step 4.Let q = 1 and set β1 = 0.
Step 5.If (αp, βq) such that the conditions (17)-(23) are

feasible, then store (αp, βq) into (X (p),Y (q)) and
βq = βq+1; go to Step 5; otherwise, go to the next
step.

Step 6.If p+ 1 < n, then αp = αp+1 and take βq; return to
Step 5; otherwise, skip to Step 7.

Step 7.Break.
Remark 4: From Algorithm 1, one can get the feasible

solution area surrounded by α and β.

VI. NUMERICAL EXAMPLES
In this part, an numerical example with their Matlab simula-
tions are provided to show the effectiveness of the obtained
results. The parameters of the system (1) are defined as:

A11 =
[
1.21 −2.27
2.57 0.82

]
, A21 =

[
0.16 −0.45
0.12 −0.37

]
,

A31 =
[

0.5 0.2
−0.25 0.3

]
, B11 =

[
2 −0.8
1.5 0.1

]
,

VOLUME 9, 2021 17291



Z. Yan et al.: Finite-Time Annular Domain Bounded Control of Itô-Type Stochastic Systems

FIGURE 1. A region by α and β in A.

B21 =
[
0.9 0.5
−1 1

]
, B31 =

[
0.35 0.21
−0.4 0.75

]
,

H1 =

[
1.1 0.05
0.06 0.2

]
, H2 =

[
−0.01 0.03
0.02 −0.12

]
,

H3 =

[
−0.04 0.02
−0.01 0.08

]
, F =

[
0.5 −0.3
−0.6 0.5

]
,

F1 =
[
0.13 0.5
0.15 0.18

]
,C1=

[
1 2

]
, x(0)=

[
1.5 −1.5

]′
.

and δ1 = 1, δ2 = 35, δ3 = 4, δ4 = 5, f = 0.5, f1 = 0.1,
T = 0.3, λ = 0.25, R = R1 = I .

A. STATE FEEDBACK FINITE-TIME ANNULAR DOMAIN
BOUNDED CONTROLLER DESIGN
Applying Algorithm 1 to Theorem 2, one can get the feasi-
ble solution area surrounded by α and β (See Figure 1 for
details).

According to Figure 1, let α = 5, β = 0.4, and solving
(17)-(21) and (50)-(51), one obtains

r1 = 0.2959, r2 = 53.4000, r3 = 6.6104,

Q1 =

[
0.8278 −0.0034
−0.0034 0.8624

]
, Q2=

[
25.1521 −2.1231
−2.1231 25.9419

]
,

Q3 =

[
5.0297 −0.6646
−0.6646 2.0367

]
,U =

[
0.0241 0.2392
−0.2957 0.4024

]
.

Thus, one can obtain the feedback gain matrix as follows

K = UQ−11 =

[
0.0302 0.2774
−0.3554 0.4651

]
.

Figure 2 depicts the influence of Poisson jump intensity
λ on the system (1). From Figure 2, when δ2 = 35 and
λ = 0.7322, one can obtain tmin is 0, that is there is no
solution to the system of matrix inequalities when λ>0.7322.
Furthermore, considering the external disturbance $ (t) =
sin(t), one can obtain, 4 = δ3 ≤ E

[
x ′(t0)Rx(t0)

]
= 4.5 ≤ δ4,

and we can get 1 = δ1<E
[
x ′(t)Rx(t)

]
<δ2 = 35. Then,

the simulation results are shown in Figure 3. From Figure 3,
one can get the system of (1) is FTADB with respect to (1,
35, 4, 5, <, 0.3, I ).

FIGURE 2. When λ ∈ [0,1.8], the value of tmin in A.

FIGURE 3. The evolution of E[x(t)′Rx(t)] of the closed-loop system of (1)
in A.

B. DYNAMIC OUTPUT FEEDBACK FINITE-TIME ANNULAR
DOMAIN BOUNDED CONTROLLER DESIGN
Based on SFC design, an observer-based dynamic controller
v(t) = Kx̂(t) is chosen. Applying Algorithm 1 to Theorem 3,
one can get the feasible solution area surrounded by α and β
(See Figure 4 for details).

According to Figure 4, let α = 6, β = 0.4, and solving
(58)-(64), we obtain

τ1 = 142.6099, τ2 = 48.3473, τ3 = 88.4166,
τ4 = 134.7766, τ5 = 114.9056, τ6 = 70.6907,
τ7 = 199.6924,

Q1 =

[
138.5253 −0.0135
−0.0135 138.4162

]
, Q2=

[
31.2164 1.7243
1.7243 37.1193

]
,

Q3 =

[
34.3755 −2.8616
−2.8616 27.6025

]
, Q4=

[
79.4562 2.8600
2.8600 88.6498

]
,

Q5 =

[
177.7823 −8.0007
−8.0007 16.5713

]
,V =

[
−2.4203 −4.5547

]′
.

Hence, the observe gain matrix is given by

L = Q̃−12 V =
[
−0.0709 −0.1194

]′
.

Figure 5 depicts the influence of Poisson jump intensity λ
on the system (1). Fromfigure 5, when δ2 = 35 and λ = 1.66,
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FIGURE 4. A region by α and β in B.

FIGURE 5. When λ ∈ [0,1.8], the value of tmin in B.

FIGURE 6. The evolution of E[x(t)′Rx(t)] of the system (1) in B.

one can obtain tmin is 0, that is, there is no solution to the
system of matrix inequalities when λ>1.66.
Moreover, considering the external disturbance $ (t) =

sin(t), one can obtain Figure 6 and Figure 7. Specifically,
Figure 6 shows that the system (1) is FTADB with respect
to (1, 35, 4, 5, <, 0.3, I ). The evolution of E[e′(t)Re(t)] of
the error system of (55), and E[e′(t)Re(t)] < 1 are shown
in Figure 7.

FIGURE 7. The evolution of E[e′(t)Re(t)] in B.

VII. CONCLUSION
Finite-time annular domain bounded control problems of Itô-
type stochastic systems withWiener and Poisson random dis-
turbance are investigated in this paper. Then, using different
quadratic function methods, a SFC and an OFC are obtained,
respectively. Several sufficient conditions are derived under
different controllers. And one numerical example and their
Matlab simulations are given to illustrate the feasibility of the
proposed theoretical results. In the future, we will study the
finite-time control problem subject to some other more com-
plex systems such as Takagi-Sugeno fuzzy system, network
system, linear variable parameter system, and so on.
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