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ABSTRACT Encoder–decoder networks are state-of-the-art approaches to biomedical image segmentation,
but have two problems: i.e., the widely used pooling operations may discard spatial information, and
therefore low-level semantics are lost. Feature fusion methods can mitigate these problems but feature
maps of different scales cannot be easily fused because down- and upsampling change the spatial resolution
of feature map. To address these issues, we propose INet, which enlarges receptive fields by increasing
the kernel sizes of convolutional layers in steps (e.g., from 3 × 3 to 7 × 7 and then 15 × 15) instead of
downsampling. Inspired by an Inception module, INet extracts features by kernels of different sizes through
concatenating the output feature maps of all preceding convolutional layers. We also find that the large
kernel makes the network feasible for biomedical image segmentation. In addition, INet uses two overlapping
max-poolings, i.e., max-poolings with stride 1, to extract the sharpest features. Fixed-size and fixed-channel
feature maps enable INet to concatenate feature maps and add multiple shortcuts across layers. In this way,
INet can recover low-level semantics by concatenating the feature maps of all preceding layers and expedite
the training by adding multiple shortcuts. Because INet has additional residual shortcuts, we compare INet
with aUNet system that also has residual shortcuts (ResUNet). To confirm INet as a backbone architecture for
biomedical image segmentation, we implement dense connections on INet (called DenseINet) and compare
it to a DenseUNet system with residual shortcuts (ResDenseUNet). INet and DenseINet require 16.9% and
37.6% fewer parameters than ResUNet and ResDenseUNet, respectively. In comparison with six encoder–
decoder approaches using nine public datasets, INet and DenseINet demonstrate efficient improvements
in biomedical image segmentation. INet outperforms DeepLabV3, which implementing atrous convolution
instead of downsampling to increase receptive fields. INet also outperforms two recent methods (named
HRNet andMS-NAS) that maintain high-resolution representations and repeatedly exchange the information
across resolutions.

INDEX TERMS Biomedical image, convolutional networks, encoder–decoder networks, semantic
segmentation.

I. INTRODUCTION
LeNet [1], AlexNet [2], VggNet [3], GoogleNet [4],
ResNet [5], and DenseNet [6] represent a series of break-
throughs in image classification using convolutional neural
networks (CNNs). A CNN is a neural network using con-
volution operations (Conv) in place of general matrix mul-
tiplication [7] in at least one layer (a Conv-layer). Semantic
segmentation, also called pixel-level classification, is the task
of predicting the corresponding category for each pixel in a
digital image and outputting a pixelwise mask for each object
in the image. Biomedical image segmentation is a critical step
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in biomedical image processing. It aims to provide a reliable
basis for pathology research and to assist doctors in mak-
ing clinical diagnoses more accurately. Recently, CNN-based
systems have achieved great success in automated biomedical
image segmentation. Application areas include brain mag-
netic resonance imaging (MRI) image segmentation [8], lung
segmentation on chest x-ray images [9], cell segmentation in
electron microscope recordings [10], and dermoscopic image
segmentation [11].

A. ENCODER–DECODER NETWORKS
The most widely employed CNNs architectures for image
segmentation are variants of so-called ‘‘encoder–decoder
networks’’ proposed initially in [12] for unsupervised
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feature learning. These encoder–decoder networks can obtain
lower-level spatial resolution features together with a deep
perception of the image (semantic recognition) via down-
sampling. They can also obtain higher-level spatial resolu-
tion features for highly accurate recovery of the image via
upsampling.

The general semantic segmentation task is to partition
an image into a set of coherent regions that are connected
and nonoverlapping, and that enable homogeneous pixels to
be clustered together [13]. A fully convolutional network
(FCN) [14] is an end-to-end image segmentation method
modified from VggNet [3] through replacing the fully con-
nected layer in a classification network by a transposed
Conv-layer. The single-layer deep decoder of the FCN is effi-
cient when computing low-resolution representations and for
coarse-segmentation map estimation. SegNet [15] improves
upon FCN by using a 13-layer deep decoder to recover
images, corresponding to a 13-layer deep encoder used for
feature extraction.

B. BIOMEDICAL IMAGE SEGMENTATION
In the field of biomedical image analysis, the desired out-
put often lies in distinguishing only interesting areas in an
image, such as tumor regions [16] or organs [17]. Segment-
ing regions of interest enables doctors to analyze only the
significant parts of otherwise incomprehensible multimodal
biomedical images [18]. In practice, diagnosis only lever-
ages the features extracted from segmented images [19].
Furthermore, biomedical image segmentation demands a
higher accuracy than that for natural images. While an
imprecise segmentation mask may be unimportant in a
natural image, even marginal segmentation errors in a
biomedical image may cause unreliable results in a clinical
setting.

While improvements in the accuracy and quality of seg-
mentation are of great importance in the domain of biomedi-
cal image processing, the acquisition of biomedical images
is expensive and complicated, and accurate annotation is
also difficult. Deep CNNs may suffer from overfitting prob-
lems when there are insufficient training data, motivating the
introduction of UNet [20] to improve performance with very
few annotated images. The encoder and decoder in UNet
are symmetrical, as for SegNet, but comprise fewer Conv-
layers (8 versus 13). In UNet, the output feature map of the
Conv-layer in the encoder is copied and concatenated with
the input feature map of the corresponding Conv-layer in
the decoder. This concatenation aims to provide high-level
spatial local information together with high-level semantic
global information, which has been shown to be important
for biomedical image segmentation [21].

C. RELATED WORK
We review encoder–decoder networks related to feature
fusion from two aspects: spatial information recovering and
multilevel semantics exploiting.

1) SPATIAL INFORMATION RECOVERING
Encoder–decoder networks are notorious for the fact that
pooling causes much loss of valuable information and ignores
the relationship between parts and wholes. Max-pooling is
a widely used technique for downsampling in CNNs. Max-
pooling separates feature maps into nonoverlapping regions,
and outputs the maximum value from each region. This
thereby causes the losing of spatial information that could
be valuable. Several existing methods have tried to refine
the coarse high-level semantics by exploiting high-level spa-
tial resolution information. Stacked hourglass networks [22]
implement repeated bottom-up and top-down processing in
conjunction with multiscale fusion. Deeply fused nets [23]
fuse intermediate representations of shallow layers as the
input to deeper layers. HRNet [24] merges the representations
produced by subnetworks with high-level resolution as the
input to other parallel subnetworks. The global convolutional
network [25] encodes rich spatial information from input
images by using skip connections with large kernels. In gen-
eral, to recover spatial information using encoder–decoder
networks, modern methods concatenate the features of mul-
tiple layers before prediction computation [26]–[28].

2) MULTILEVEL SEMANTICS EXPLOITING
Higher-level semantics has a great impact on the output of
an encoder–decoder network. In addition to high-level spatial
information, feature fusion also recovers low-level semantics.
ResNet [5] adds lower-level semantic input feature maps to
higher-level semantic output feature maps to avoid degra-
dation problems brought by increasing depth. DenseNet [6]
concatenates multilevel semantics with the same level spa-
tial information to produce smoother decision boundaries.
H-DenseUNet [29] shows how low-level semantics can mit-
igate the difficulty of training encoder–decoder networks for
biomedical image segmentation via improved information
flow and parameter efficiency.

D. MOTIVATION
Encoder–decoder networks employ feature fusion to recover
spatial information and exploit multilevel semantics, from
which two problems arise. First, the feature maps of the
deep Conv-layer contain lower-level spatial information used
to recover the fused feature maps. Second, feature fusion
methods only provide the semantics of feature maps at the
same level of resolution. These problems are difficult to solve,
because elementwise addition and channel concatenation
lead to an unnecessarily restrictive fusion scheme, forcing
aggregation only for same-scale feature maps. As encoder–
decoder networks reduce the scale of feature maps by
downsampling and increase them by upsampling, only the
corresponding feature maps of the encoder and decoder are
at the same scale.

UNet lacks global spatial information and multilevel
semantics. As a result, UNet analyzes images pixel-
wise and uses color contrasting to distinguish objects.
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FIGURE 1. Qualitative results for (a) T1w, (b) T1C, (c) T2w, and (d) FLAIR
image of the BraTS2013 test set. From left to right: input image, ground
truth, ResUNet, and INet.

However, employing different colors to make objects stand
out does not always enhance the boundaries of tumors. Fig. 1
shows some qualitative results using the BraTS2013 test
set. The BraTS2013 dataset [30] provides four MRI modali-
ties, including T1-weighted (T1w), T1w contrast-enhanced
(T1C), T2-weighted (T2w), and fluid attenuation inver-
sion recovery (FLAIR). Tumor is more noticeable in T2w
(Fig. 1(c)) and FLAIR (Fig. 1(d)) images than those in T1w
(Fig. 1(a)) and T1C (Fig. 1(b)) images. Networks for pixel-
wise analysis are sensitive to color contrasting (e.g., in the
T2w image). As a result, ResUNet wrongly segments the
regions filled with cerebrospinal fluid (CSF), which is bright.
Therefore, although ResUNet successfully identified tumor
via strong signals in T2w and FLAIR images, it failed for
T1w and T1C images. However, our proposed INet can dis-
tinguish tumor regions from healthy brain tissue when color
contrasting is weak.

In this paper, we propose the INet architecture, which has
the following advantages:

• INet maintains spatial information by fixing the sizes of
feature maps. Instead of expanding receptive fields by
downsampling, INet mimics an expanding procedure by
gradually increasing the kernel size of a Conv-layer.

• INet fuses multilevel semantics by concatenating the
feature maps of all preceding layers.

• INet enhances its optimization capability by enabling
customized residual shortcuts and providing the pro-
posed convolutional index.

• Derivative models of INet can be further developed for
biomedical image segmentation.

II. METHOD
A. RECEPTIVE FIELD
The receptive field of a feature in the featuremap is composed
of an input spacewhere the feature is extracted, and a group of
feature maps that form the receptive field for a Conv-layer in
CNNs. The Conv changes theoretical receptive fields (TRF)
by the process as follows [31]:

ji = ji−1 · s

ri = ri−1 + (k − 1) · ji−1 (1)

where ri and ri−1 denote the sizes of the receptive field for
the output features of the ith and (i−1)th Convs, respectively;
ji−1 and ji represent the distance of two adjacent features
in the output feature maps of the ith and (i − 1)th Convs,
respectively; k is the kernel size, and s the stride size of the
ith Conv, respectively. The proposed method stacks Convs
with stride 1 × 1 and increases the kernel sizes from 3 × 3
to 7 × 7 and then 15 × 15 in steps to follow the Convs
used for downsampling, i.e., 3× 3 Conv with a stride 2× 2.
Fig. 2(b) shows the receptive field changes for 3 × 3 Convs
with stride 2 × 2. The first layer is the input layer, giving
r0 and j0 as 1 × 1 and 1, respectively. By applying (1), r1 is
3 × 3, r2 7 × 7, and r3 15 × 15. This is similar to Atrous
convolution [32], but Atrous convolution increases the TRF
while controlling the resolution of features by inserting zeros
between the kernels. As a result, Atrous convolution has a
so-called ‘‘gridding issue’’. That is, by padding zeros between
two pixels in a kernel, the TRF for this kernel covers the area
with checkerboard patterns (i.e., only sampling locations with
nonzero values). This causes local spatial information loss.

The effective receptive field (ERF) [33] is the actual recep-
tive field, occupying only a small fraction of the TRF and
being affected mainly by the centural pixels of the receptive
field. As the number of stacked Conv-layers grows, the size
of the ERF relative to the TRF shrinks at a rate of O(1/

√
n).

Stacked small filters such as 1× 1 or 3× 3 are more efficient
than larger kernels, given the same computational complexity.
However, only shrinking feature maps or increasing kernel
sizes will expand the ERF in extreme cases. To address this
issue, INet increases the kernel sizes of Conv-layers from
3× 3 to 7× 7 and then to 15× 15.

B. NETWORK ARCHITECTURE
As shown in Fig. 2, INet comprises three convolutional sub-
networks (Conv-subnetworks): 3 × 3, 7 × 7, and 15 × 15
Conv-subnetworks. Each Conv-subnetwork includes three
Conv-layers, which are composed of 1–4 Convs. As shown
in Fig. 2(c), the 2nd Conv-layer is within the 3 × 3 Conv-
subnetwork and contains two 3×3 Convs. The output feature
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FIGURE 2. (a) The INet architecture. The blue box indicates the input image. Each green, yellow, and orange box corresponds
to a multichannel feature map produced by 3 × 3, 7 × 7, and 15 × 15 Convs, respectively, with stride 1 × 1. The number of
channels is denoted on left of the box. (b) The theoretical receptive field of 3 × 3 Convs with stride 2 × 2 that the proposed
method intends to follow. (c) The Conv-subnetwork. (d) The concatenation operation. (e) The customized residual shortcuts
and the convolutional index example of INet.
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maps of a Conv-layer, expressed by H(xi), concatenate the
input feature maps of the Conv-layer, represented by xi,
to become the input to the next Conv-layer, indicated by xi+1.
Denoting the input image as x0, then we get:

xi+1 = concat[x0,H(x0),H(x1), . . . ,H(xi−1)︸ ︷︷ ︸
xi

,H(xi)]. (2)

In addition to fusingmultilevel semantics, reusing the input
featuremaps of all preceding layers helps the different kernels
extract features from one input feature map. The inputs to the
3 × 3 and 7 × 7 Conv-subnetworks will be used to extract
features by kernels of three and two different sizes, respec-
tively. Previous work on cortex-like mechanisms [34] and
spatial pyramid pooling [35] have shown that using kernels of
different sizes to extract features at different scales can enable
the fusion of features to obtain a better representation of the
image. In our proposed architecture, we extract features from
each image by stacked Inception-like modules [4], which
contain 3×3, 7×7, and 15×15 Convs in parallel. Inception-
ResNet [36] shows that residual shortcuts can accelerate the
training of CNNs with Inception-like modules. Because INet
has fixed-size and fixed-channel feature maps, we introduce
multiple shortcuts across the Conv-layers to accelerate the
training process.

1) CUSTOMIZED RESIDUAL SHORTCUT
As shown on the righthand side of Fig. 2(e) and denoting
the desired underlying mapping of the second-last Conv
and last Conv of a Conv-layer as G(xi) and H[Gi(xi)],
respectively, we let the stacked Convs fit another mapping:
Li(xi) = Gi(xi)− xi−1 and Fi[Gi(xi)] = Hi[Gi(xi)]− xi,
respectively. IfLi(xi) saturates ( i.e., Gi(xi) = xi−1), INet tries
to optimizeFi(xi−1) = Hi(xi−1)− xi rather than skip the last
Conv and perform identity mapping as the original residual
shortcut (i.e.,Hi[Gi(xi)] = xi).

2) CONVOLUTIONAL INDEX
As shown on the left-hand side of Fig. 2(e), the convolu-
tional index (Conv-index, Gi−1(xi−1)) enables INet to skip
the intermediate Convs between the second-last Conv of the
2nd Conv-layer and the last Conv of 3rd Conv-layer. We can
consider the concatenation of the featuremaps as giving equal
importance to all preceding Conv-layers in INet. The Conv-
index is then putting a larger weight on the output feature
maps of the previous Conv-layer, which contains the highest-
level semantics. In the extreme, Conv-index lets INet remove
the concatenation of feature maps. Formally, in this paper,
we consider a Conv-layer to be defined as:

Gi(xi) = Li(xi)+ xi−1 + Gi−1(xi−1)
Hi(xi) = Fi[Gi(xi)]+ xi (3)

3) OVERLAPPING MAX-POOLING
Encoder–decoder networks not only implement max-pooling
for downsampling but also for extracting the sharpest features
of images by indicating the contrast of adjacent regions.

Nonoverlapping max-pooling discards information about the
position of the maximal value, leading to coordinate trans-
form problems and spatial information loss [37]. Therefore,
INet adopts two max-poolings of stride 1. They overlap and
preserve the positions of features by coarse coding [38].

We had tried to adopt max-pooling at the end of each Conv-
subnetwork, like max-pooling at the Conv of the encoder.
However, when the last layer (before the output layer) is
max-pooled, the network loses many nonmaximal features,
and the maximal value may not be the most valuable. There-
fore, we merge the max-pooling at the 2nd and 3rd Conv-
subnetworks to the end of the second-last Conv-layer, and add
one more Conv to the end of the last Conv-layer. When the
Conv at the end of the last Conv-layer extracts the maximal
value, it performs similarly to max-pooling. Max-pooling
would extract values from a larger portion of an input image
as downsampling reduces the size of the feature maps.
In addition to the 2× 2 max-pooling in the encoder–decoder
network, the pool size of the second max-pooling of INet
is 4× 4.

III. EXPERIMENTS
A. BASELINE MODELS
Compared to the commonly used baseline model, UNet,
the proposed INet has additional residual shortcuts, and
therefore the learning task of the optimizer becomes eas-
ier [39] (We denote INet without customized residual short-
cuts and the Conv-index as Plain-INet). As a baseline model,
we adapted the original U-Net to include residual shortcuts
(ResUNet), thereby ensuring that any improvements achieved
by INet would not be attributed only to its implementa-
tion of residual shortcuts. The Atrous convolution (dilated
convolution) is widely used to increase the receptive field
while avoiding the downsampling operations. We selected
DeepLabV3 [32] for comparison to better support our claim
that the ‘‘gridding issue’’ leads to worse segmentation per-
formance. INet is compared with two recent methods named
HRNet and MS-NAS [40], respectively. HRNet maintains
high-resolution representations through the whole process
like INet to improve segmentation results. MS-NAS is a
multi-scale neural network architecture search framework
for biomedical image segmentation. We also added resid-
ual shortcuts to the original DenseUNet [41], giving Res-
DenseUNet as another baseline model to compare with INet
equipped with dense connections (DenseINet). This was to
test the idea that INet can serve as an alternative backbone
architecture for biomedical image segmentation. The input of
each Conv of DenseINet is the concatenation of the feature
maps for all preceding layers in the same Conv-layer. Table 1
gives the details of the models used in our experiments. Most
CNNs, including UNet and DenseUNet, use downsampling.
This reduces the size of feature maps by a factor of 4 (for
a stride of 2). To maintain the same number of features,
models have to augment the number of channels before pool-
ing to compensate reduced resolution. The opposite situation
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TABLE 1. Proposed models against alternative models based on UNet.

occurs in the decoder, which reduces the number of channels
in steps. Because INet and DenseINet have no down- and
upsampling operations, they keep the number of channels
unchanged at 32.

B. DATASETS
To demonstrate the generalization of the proposed method
in the segmentation of biomedical images, we carried out
experiments on nine public imaging datasets: three brain
(BraTS2013, LMS, BTD) one heart MRI [42]–[44], one liver
one spleen CT [44], [45], one lung X-ray [9], one colon
endoscopic [46], and one nerve ultrasonic [47].

1) MRI
Glioma constitutes 80% of all malignant primary brain
tumors in adults [48]. There are two main groups of gliomas
following the classification of theWorldHealthOrganization:
high- (HGG) and low-grade glioma (LGG), which reflect
their differences in patient survival. The LGG cases lack the
vascularity of HGG and are visually bland. We conducted
comprehensive experiments on three brain MRI images
datasets to analyze the effectiveness of the proposed INet for
segmenting brain MRI images. The BraTS2013 dataset con-
tains 20 HGG and 10 LGG cases with four MRI modalities:
T1w, T1C, T2w, and FLAIR. We trained the models with the
20 HGG cases and tested the performance when segmenting
LGG cases. The LMS [42] dataset contains 3,929 FLAIR
images from 110 LGG cases. The BTD [43] dataset contains
3,064 T1C images from 233 patients with three kinds of brain
tumor: meningioma (708 slices), glioma (1,426 slices), and
pituitary tumor (930 slices).

We also tested the performance of our proposed methods
when segmenting heart MRI images. Segmentation of the
left atrium (LA) is essential for atrial fibrillation ablation
guidance, fibrosis quantification, and biophysical modeling.
The heart MRI images dataset in [44] includes MRI images
from 30 cases covering the entire heart and acquired during a
single cardiac phasewithmasks for the left atrium appendage,
the mitral plane, and the portal vein end points.

2) CT IMAGES
The liver CT dataset in [45] contains images of primary
tumors, secondary tumors, and metastases. Liver metastases
are cancerous tumors that have spread to livers from other
parts of body and are more common than primary liver
cancers. The spleen is also involved in many different types
of pathologic disorder. Recent studies have found that the
correlation between hepatic and splenic hypertrophy [49]

and between liver and spleen are both critical to maintain-
ing the reticuloendothelial system [50]. This suggests that
they may share regulatory pathways. To test this conjecture,
we compared all models with respect to segmenting spleen
CT images from patients undergoing chemotherapy treatment
for liver metastases [44]. The liver and spleen CT datasets
each contained contrast-enhanced CT images of 40 randomly
chosen cases.

3) X-RAYS
Lung image segmentation is the first step in lung X-ray anal-
ysis and plays a vital role in diagnosing lung diseases such as
tuberculosis and corona-virus-related pneumonia. The lung
X-ray dataset in [9] contained 138 X-rays and corresponding
masks.

4) ENDOSCOPIC IMAGES
Colonoscopy is the gold standard for colorectal polyp and
cancer screening. Colorectal cancer arises from adenomatous
polyps developing in glandular tissues of colonic mucosa.
Adenomatous polyps can become malignant over time and
spread to both adjacent and distant organs, where they are
ultimately responsible for complications and possible death.
To segment polyps from endoscopy images, we used a colon
endoscopy image dataset with 612 polyp images and their
corresponding segmentation masks [46].

5) ULTRASOUND IMAGES
The nerve ultrasound image dataset [47] contains 5,638 nerve
ultrasound images with corresponding masks. Regional anes-
thesia is one of the most frequently undertaken tasks in hos-
pitals in the world. Ultrasound-guided regional anesthesia is
a rapidly growing alternative to general anesthesia, follow-
ing advances in ultrasound imaging technology. Nerve seg-
mentation of ultrasound images is therefore of great clinical
significance because any errors in the anesthetic provision
may cause lethal damage to the corresponding region of the
body or side effects with respect to the rest of body.

C. IMPLEMENTATION DETAILS
The proposed network was implemented using the Keras
framework [51] and trained on a NVIDIA Tesla K80 GPU,
with an He-Normal initializer, an ADAM optimizer, batch
normalization, and a batch size of 16. Weight values decay by
a factor of 1 × e−4 if validation loss has not improved after
four epochs and training stops once validation loss has not
improved after ten epochs. The loss function was a combina-
tion of binary-cross-entropy and Dice coefficient loss, which
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TABLE 2. Segmentation results for the BraTS2013 dataset.

TABLE 3. Segmentation results for the BTD dataset.

is widely used for training UNet and its variants [52]. The loss
is as follows:

L = −
1
N

N∑
k=1

(
yk log+ (1− yk) log (1− tk)+

2yk · tk
yk + tk

)
,

(4)

where yk is predicted by the network, tk denotes the ground
truth, and N indicates the batch size. It was observed that the
binary-cross-entropy loss optimized for pixel-level accuracy
whereas the dice loss helped in improving the segmentation
quality [53].

All datasets were divided randomly into training (50%),
validation (25%), and test (25%) sets. All imageswere resized
to 128 × 128. Data augmentation was performed, includ-
ing zooming and changing the brightness levels. We used a
Dice coefficient (Dice %), sensitivity (TPR %), specificity
(TNR %), and a 95% Hausdorff distance (HD95) to validate
the performance. In Tables 2 to 10, the best scores are shown
in bold.

IV. RESULTS AND DISCUSSION
A. OBJECTWISE AND PIXELWISE LEARNING
The results given in Tables 2 to 10 show that the pro-
posed method nearly always outperformed the baseline

TABLE 4. Segmentation results for the LMS dataset.

TABLE 5. Segmentation results for the Heart dataset.

TABLE 6. Segmentation results for the Liver dataset.

models while ResUNet outperformed the original U-Net and
DeepLabV3. Therefore, we focus on comparing INet with
ResUNet. For the T1C and FLAIR images in BraTS2013,
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TABLE 7. Segmentation results for the Spleen dataset.

TABLE 8. Segmentation results for the Lung dataset.

TABLE 9. Segmentation results for the Colon dataset.

TABLE 10. Segmentation results for the Nerve dataset.

INet achieved larger Dice coefficients but also a larger
HD95 than those for ResUNet. We can note that T1C uses
a paramagnetic contrast agent (usually gadolinium-based)
to improve the contrast in areas that are affected by hem-
orrhage. The contrast agent highlights tumor core regions.
FLAIR imaging keeps the abnormalities bright while attenu-
ating normal-CSF areas, making the differentiation between
CSF and tumor much easier. Therefore, the color contrast
in the T1C and FLAIR images is higher than that in the
T1w and T2w images, respectively. ResUNet has more max-
pooling operations to extract the sharpest features, giving the
best lower-level representation of an image. ResUNet can

therefore achieve smaller HD95s, which are more sensitive
to segmented boundaries.

Even though INet learns less information from the bound-
aries, it returned a better performance in terms of the Dice
coefficients, which are more sensitive to the overlapping
between ground truth and predicted masks. Furthermore, for
the T1w and T1C images in BraTS2013 where whole tumor
regions are not highlighted, INet results in significantly larger
Dice scores than ResUNet (Mann-Whitney U test, p = 0.00
and p = 0.00). These results confirm that the performance
improvement with INet can be attributed to its combined
multilevel semantics and maintaining spatial information.
For the LMS and BTD datasets, both INet and ResUNet
exhibited low HD95s but INet performed significantly better
with respect to HD95s and Dice coefficients. For the LMS
dataset, INet’s results were lower in HD95 that those of
ResUNet (Mann-Whitney U test, p = 0.08). Because of
the lower contrast and smaller size, segmenting low-grade
glioma (LGG) MRI images is more complex than for high-
grade glioma (HGG) [48]. Recent methods have combined
three-dimensional UNet with a conditional random field [54]
to supply the spatial information. These methods improve
the segmentation results for LGG MRI images, but are con-
strained to three-dimensional MRI images. In contrast, INet
can maintain spatial information in two-dimensional MRI
images, with our experiments demonstrating that INet is bet-
ter at segmenting LGG MRI images than ResUNet, irrespec-
tive of whether the corresponding training is with HGG MRI
images or LGG MRI images.

B. ROBUSTNESS AND INTERPRETABILITY
The results in Table 8 show that ResUNet achieved similar
performance with INet. However, we found that INet is more
robust against artifacts and noise. Acquisition or preprocess-
ing artifacts and various types of noise in biomedical images
make distinguishing target objects from the background more
challenging. For example, Figs. 3(b) and 3(d) show that
ResUNet classified tissue areas of low signal intensity within
target objects as healthy tissues, even though doing so would
scatter a continuous segmented region. Fig. 3(f) depicts a
more serious problem, i.e., all target objects are lungs and
located near the middle of the images in the Lung dataset.
We observe that ResUNet’s segmentation considered the tis-
sue with an area of low signal intensity surrounded by a
mass with high signal intensity as a target object. As a result,
ResUNet classified the shadow on the arms as part of the
lung. Even though such outliers do not lower the values of
segmentation results, they would impair further biomedical
image analysis. Because ResUNet did not recognize lungs
properly, it obtained a high discrimination score at the cost
of a low interpretability of black-box representations. In con-
trast, a representation learned by INet contains information
not only about surrounding elements but also the relationship
between the features and the whole image. The spatial infor-
mation improves not only the robustness but also the trustwor-
thiness of INet for subsequent biomedical image analysis.
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FIGURE 3. Qualitative results for (a) BTD, (b) LMS, (c) Heart, (d) Liver,
(e) Spleen, (f) Lung, (g) Colon, and (h) Nerve test sets. From left to right:
input image, ground truth, ResUNet, and INet.

C. SENSITIVITY AND SPECIFICITY
The results in Table 9 show that INet returned larger Dice
coefficients (Mann-Whitney U test, p = 0.79) and higher
sensitivities (Mann-Whitney U test, p = 0.00) than ResUNet
for the Colon dataset. However, ResUNet outperformed INet
with respect to specificity (Mann-Whitney U test, p = 0.00).
Endoscopes have a narrow and poorly illuminated field
of view, which often leads to the overexposure of near
objects and the underexposure of distant structures. As shown
in Fig. 3(g), a polyp within the overexposure area at the
left had inconspicuous boundaries. ResUNet categorized the
whole area as negative and turned to search the correctly
exposed area. In contrast, lacking clear boundaries did not
deter INet from searching more widely. INet persisted and
finally found an adenomatous polyp. We can also observe
this phenomenon of a sensitivity increase accompanied by a
specificity decrease in the segmentation results for the BTD
dataset. Fig. 3(a) depicts an example of qualitative results
for the BTD dataset. A tumor is gray and not apparent, but
a lateral ventricle filled with CSF is dark. ResUNet classi-
fied the tumor as healthy brain tissues and segmented the
lateral ventricle with low signal intensity. However, INet
analyzes objectwise and therefore tries to identify images
by other means when the boundary of the tumor appears to
be missing. We consider that this characteristic enabled INet
to outperform ResUNet in the segmentation of the T1w and
T1C images in BraTS2013 containing tumors with no distinct
edges, such as Figs. 1(a) and 1(b).

For clinical purposes, we should guarantee a high sensi-
tivity with a reasonable specificity. Furthermore, for people
who have already complained symptoms, the nonrecognition
of cancerous areas could lead to delayed treatment possible
with worse outcomes. Therefore, a high sensitivity is usually
desired in medical diagnosis, even at the cost of a slight
decrease in specificity. In such circumstances, INet would be
preferable to UNet as a backbone architecture for biomedical
image segmentation. For example, high-sensitivity colorectal
polyp detection is more valuable than accurate segmentation
during colonoscopy procedures for the early screening of
colorectal cancer.

D. SPATIAL INFORMATION AND SEMANTICS
1) DENSE CONNECTIONS
In terms of HD95, INet outperformed ResUNet except for the
T1C and FLAIR images in BraTS2013, but dense connec-
tions enabled DenseINet to outperform ResDenseUNet when
segmenting T1C images (Mann-Whitney U test, p = 0.85).
As shown in Fig. 3, T1C imaging does not always high-
light tumor cores, whereas FLAIR images consistently show
the boundary of the whole tumor. Dense connections help
a network consider all preceding layers in the same Conv-
layer (the original INet considers the output feature maps of
all preceding Conv-layers). This strengthens the relationship
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FIGURE 4. Progress of the validation loss with the number of epochs when training on (a) T1w, (b) T1C, (c) T2w, and (d) FLAIR image of the BraTS2013,
(e) BTD, (f) LMS, (g) Heart, (h) Liver, (i) Spleen, (j) Lung, (k) Colon, and (l) Nerve dataset. Green: ResUNet. Blue: Plain-INet. Red: INet.

between the part and the whole within a layer. Therefore,
DenseINet was better to recognize tumors whose color con-
trast did not make boundaries stand out.

2) MULTIPLE SHORTCUTS
Fig. 4 compares INet to ResUNet and Plain-INet with respect
to validation loss. Two results stand out. First, although INet
was easy to optimize, its counterpart Plain-INet exhibited
a higher validation loss than that of ResUNet when Plain-
INet was trained on the Colon dataset. Second, INet outper-
formed Plain-INet except when segmenting heart MR and
nerve ultrasound images. Plain-INet outperforming ResUNet

demonstrates that spatial information and multilevel seman-
tics can affect the results of segmenting MR, endoscopy,
and ultrasound images. INet performed better than Plain-
INet. This indicates that customized residual shortcuts and the
Conv-index improve the training process for tasks involving
the segmentation of LGG MR, CT, X-ray, and endoscopy
images.

The results in Tables 6 and 7 demonstrate that all INet
and UNet based networks could achieve similar scores when
segmenting liver and spleen images. For example, INet
achieved around 92% Dice for the Liver and Spleen datasets.
Dense connections enable networks to consider all preceding
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layers within the same Conv-layer. However, the results
in Tables 6 and 7 demonstrate that ResDenseUNet performed
less well than ResUNet when segmenting liver and spleen
images. This indicates that the low-level semantics of liver
and spleen images offer little benefit to the segmentation task.
Furthermore, Figs. 4(h) and 4(i) show that Plain-INet had
similar validation losses to those of ResUNet because they
both involve the output feature maps of all preceding Conv-
layers. Recent studies have found that the correlation between
hepatic and splenic hypertrophy [49] and between liver and
spleen are both critical to maintain the reticuloendothelial
system [50]. This suggests that they may share regulatory
pathways, and our results also demonstrate that liver and
spleen CT images share common features.

E. INet AND THE STATE-OF-THE-ART METHODS
INet outperformed HRNet and MS-NAS except when seg-
menting colon endoscopy and nerve ultrasound images in
terms of the Dice coefficients. As shown in Tables 9 and
Tables 10, INet returned the second largest and the third
largest Dice coefficients, but the highest sensitivities for
the Colon and Nerve datasets. Because INet, HRNet and
MS-NAS all maintain high-resolution feature maps through
the whole process, we argue that INet achieved high sensitiv-
ities is attributed to the large kernels (larger than 3× 3). The
computational complexity of a single Conv-layer [55] can be
measured by:

O
(
M2
· K 2
· Cin · Cout

)
(5)

whereM is the side length of each convolution kernel’s output
feature map. K is the side length of each convolution kernel
Kernel.Cin andCout are the number of input and output chan-
nels, respectively. INet uses large kernels and thus requires
more running time. When models are trained using the same
terminal condition in Keras with NVIDIA Tesla K80 GPU,
the time cost of INet is 1.67, 4.55, 5.28 and 5.71 times com-
pared with those of HRNet, DeepLabv3, ResUNet and UNet,
respectively. Since the present works’ primary goal is not
for segmentation in real-time, a high sensitivity is preferred,
even at the cost of a little more runtime. The Dice scores of
HRNet for all test datasets except for the nerve dataset are
less than those of INet and DenseINet. The INet also uses
fewer parameters than HRNet (7.5M vs. 28.5M). As for the
MS-NAS, it requires notably more search times to train thou-
sands of candidate models for a number of epochs throughout
the search.

Given the same computational complexity, stacking small
filters, typically 3 × 3, is more efficient than using a large
kernel. However, one of recent trends [4], [35] in network
architecture design is concatenating parallel kernels of differ-
ent sizes. Using kernels of different sizes to extract features
at different scales can enable the fusion of features to obtain
a better representation of image. Furthermore, in the field
of semantic segmentation, where we need to perform dense
per-pixel prediction, a large kernel is crucial to relieve the

contradiction between classification and localization [25].
Instead of concatenating parallel kernels of different sizes,
INet stacks kernels of different sizes, and thus avoids down-
sampling operations. INet extracts features by kernels of
different sizes by concatenating the output feature maps of
all preceding Conv-layers. The size of each Conv-layer’s
kernels is derived from effective receptive fields. In contrast,
the architectures of Inception-like modules (e.g., the number
of parallel paths, the number of stacked kernels each path, and
the size of kernels) lack interpretability.

In addition, we explain why we did not compare the pro-
posed method with state-of-the-art systems for each dataset.
Specialized state-of-the-art models for biomedical image seg-
mentation exist and are all based on the UNet backbone
architecture [52], [56]. However, this paper presents INet as
an alternative to UNet as a backbone architecture. Therefore,
we focused on comparing INet directly withUNet and present
DenseINet as an example of INet also being adaptable in
the same way as is UNet. INet aims to maintain the same
spatial resolution between the parts and the whole. In this
respect, even though INet did not achieve state-of-the-art
performance in all indexes for every task, it demonstrated
higher consistencies among feature maps than the encoder–
decoder networks.

Validation methods may also cause the difference of
index values. We trained and tested the proposed method
through randomly dividing cases into training (50%), vali-
dation (25%), and test (25%) sets, i.e., the images from a
specific case only belong to one of the three sets. However,
some other investigations only used training (80%) and test
(20%) sets. In one example [42], a Dice score of 82% was
achieved by Plain-UNet for the LMS dataset. In our exper-
iments, we tested Plain-UNet with the LMS dataset and
achieved a similar score (Plain-UNet and INet achieved Dice
scores of 82.40% and 87.73%, respectively) when splitting
all images into training (80%) and test (20%) sets.

V. CONCLUSION
This paper presents INet as a backbone architecture for
biomedical image segmentation. INet expands the receptive
fields by gradually increasing the kernel sizes of Conv-layers
to retain spatial information. INet also fuses the multilevel
semantics by concatenating the feature maps of all preceding
layers and improves the training process by adding mul-
tiple shortcuts. This paper also presents a variant of INet
(called DenseINet) that is equipped with dense connections.
We have tested our models against alternative models based
on UNet for nine distinct biomedical image applications.
Because INet and DenseINet have no down- and upsam-
pling operations, they maintain the same number of features
by keeping the number of channels unchanged at 32. INet
and DenseINet require 16.9% and 37.6% fewer parameters
than ResUNet and ResDenseUNet, respectively, and achieve
consistent performance improvements. Its dense connections
help DenseINet outperform INet with respect to LGG, heart,
liver, and nerve segmentation. INet outperforms an atrous

VOLUME 9, 2021 16601



W. Weng, X. Zhu: INet: Convolutional Networks for Biomedical Image Segmentation

convolution-based method named DeepLabV3, which inserts
‘‘holes’’(zeros) between pixels in convolutional kernels to
enlarges the receptive fields but also has a so-called ‘‘gridding
issue.’’ INet outperforms two recent methods named HRNet
andMS-NAS. HRNet andMS-NASmaintain high-resolution
feature maps through using kernels no larger than 3× 3. The
experimental comparison shows that large kernels in INet
are more feasible for extracting features in biomedical image
segmentation.
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