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ABSTRACT This paper presents a reduced complexity tensor approach for order selection and
subspace-based frequency estimation. The proposed covariance tensor based order selection algorithm,
termed as CT-OS, uses singular values of the covariance tensor formed from the 1D noisy observations
of multiple complex sinusoids. Experimental results show that the CT-OS algorithm is capable of providing
accurate order selection under short observations and is robust under medium to high signal-to-noise ratios.
The proposed covariance tensor based frequency estimator, termed as CT-FE, utilizes a singular vector
matrix in the higher-order singular value decomposition of the covariance tensor. Experimental results
show that the CT-FE outperforms the subspace alignment and separation algorithm (SAS-Est) and a recent
two-stage order and frequency estimation algorithm. Furthermore, both theoretical analysis and experimental
results demonstrate reduced computational complexity and time for the proposed CT-OS against the recent
covariance tensor based order estimation algorithm CTB-OE. The CT-FE algorithm is also shown to enjoy
reduced computational complexity and time when compared with the frequency estimator SAS-Est.

INDEX TERMS Covariance tensor, frequency estimation, generalized Kullback-Leibler divergence, high
order singular value decomposition, order selection, subspace alignment and separation algorithm.

NOMENCLATURE
2S-Est 2-stage estimation
CT-OS Covariance tensor based order selection
CT-FE Covariance tensor based frequency estimation
CTB-OE Covariance tensor based order estimation
HOSVD High order singular value decomposition
MUSIC MUltiple SIgnal Classification
PCOE Percentage of correct order estimation
SAS-Est Subspace alignment and separation based

estimation
C Set of complex numbers
R Set of real numbers
1f Minimum frequency separation
R Covariance tensor (M ×M × K )
S Core tensor
R̂ Covariance matrix estimate (M ×M )
D(p ‖ q) Generalized Kullback-Leibler divergence of

vector p to q
N Length of observation
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I. INTRODUCTION
Order selection and frequency estimation are fundamental
problems that arise from many important applications in
fields such as telecommunications, signal processing, and
power systems [1]. Most model-based methods require the
selection of a single or several integer-valued parameters,
often referred to as model order. The number of sinusoidal
components in a noisy signal or the number of source
signals striking on a sensor array are two examples of
such integer-valued parameters. According to [2], the most
commonly used order selection method is the maximum like-
lihood method (MLM). Akaike information criteria, general-
ized information criteria, and Bayesian information criteria
are some rules that can be used together with MLM. Fre-
quency estimation, also known as line spectral estimation,
can generally be grouped into two classes; namely, parametric
and non-parametric methods [3], [4]. Non-parametric meth-
ods require no assumptions about data sequence model and
respective algorithms such as those based on periodogram
or FFT have small computational cost. However, they are
not capable of resolving closely spaced frequencies and
tend to introduce bias in the frequency estimates. Paramet-
ric methods on the other hand are known to provide better
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resolution and can resolve closely spaced spectral peaks.
Typical examples of parametric algorithms include the
well-known MUltiple SIgnal Classification (MUSIC) [5],
its variations (such as the root-MUSIC [6], ESPRIT [7],
E-MUSIC [8], and SAS-Est [9]), and the discrete poly-
nomial phase transform based parameter estimation algo-
rithms [10], [11]. Combining the ideas behind these two
classes, an efficient 2-stage order and frequency estimation
algorithm (abbreviated as 2S-Est herein) was recently pre-
sented in [12]. This algorithm has also been extended for
2D signals in [13]. Note, however, that all these algorithms
perform well only when the observation data are sufficiently
long and their performances would deteriorate under short
observations.

Aiming primarily at processing short observation data and
motivated by the tensor approach of [14] for exponential data
fitting, we recently proposed in [15] a covariance tensor based
order estimation algorithm (termed as CTB-OE therein). It
was shown via simulations that the CTB-OE is capable of
providing better performance than classical approaches since
it allows exploitation of the redundancy introduced in the
covariance tensor. The approach was established based on
our observation that contributions of sinusoids and noise are
separable in the incremental Frobenius norms of the leading
principal subtensors of the core tensor in high order singular
value decomposition (HOSVD).

In the literature, the tensor approach has also been
used in multi-dimensional frequency estimation and order
selection methods such as multi-dimensional folding [16],
rank reduction estimation [17], decoupled root-MUSIC [18],
higher-order singular value decomposition [19], and the latest
unitary root-MUSIC based on tensor mode-R algorithm [20].
It is pointed out that in these studies the data are already in
tensor form and of large size. Furthermore, algorithms that
are specifically designed for multi-dimensional models are
known to require large number of snapshots [21].

In efforts to gain theoretical understanding and to reduce
the computational complexity of the CTB-OE [15], we
have developed a new covariance tensor based order selec-
tion algorithm which we refer to as CT-OS. We have
also derived a covariance tensor based algorithm for fre-
quency estimation, which we refer to as CT-FE. Both
algorithms are illustrated in the respective flowcharts in
Figure 1 and shall be detailed in the next section. We
show that the two algorithms are efficient and effective
for short observations, and that they have reduced compu-
tational complexity. The contributions of this work are as
follows:

1) We present a new order selection algorithm, i.e.,
CT-OS. Its improvement over the CTB-OE [15] is twofold:
i) in theory, the CT-OS is justified based on a relationship
between the singular values of covariance matrix and the
1-mode singular values of the covariance tensor; and ii) in
computation, the CT-OS is shown to enjoy a reduced compu-
tational complexity since it avoids computing the core tensor
in the HOSVD. A three-quarter reduction in computational

FIGURE 1. Flowcharts of the proposed covariance tensor based order
selection and frequency estimation (CT-OS and CT-FE).

complexity over the CTB-OE has been demonstrated both
analytically and via simulations.

2) We also present a novel covariance tensor based fre-
quency estimation algorithm, i.e., CT-FE. Benefiting from
the redundancy that the covariance tensor offers, the CT-FE
allows good frequency estimates that are close to the
Cramer-Rao lower bound (CRLB) [22]. The CT-FE also has
a reduced computational complexity when compared with
the SAS-Est, thanks to the good performance of the CT-OS
and a modification in the frequency searching space of the
optimization problem.

Experiments under additivewhite Gaussian noise (AWGN)
show that the proposed CT-OS allows accurate model order
selection under medium to large SNRs. It also has been
demonstrated that CT-OS allows significant improvements
over other model order selection algorithms such as MUSIC,
ESPIRIT+MAP, and E-MUSIC. The improvements are par-
ticularly notable at high order scenarios or under short
observation sizes. Experiments on frequency estimates also
demonstrate the advantages of the CT-FE over two recent
frequency estimation algorithms, namely, SAS-Est [9] and
2S-Est [12]. In addition, the CT-OS and CT-FE are also
applied on a real signal, namely, a piece of guitar audio
recording.

The remainder of this paper is organized as follows:
The problem statement and formation of covariance tensor
are provided in Section II. Section III details the proposed
CT-OS and CT-FE algorithms and discusses their compu-
tational complexities. Experimental results are provided in
Section IV. Finally, conclusions are drawn in Section V.

Throughout the paper, scalars are denoted by italic Roman
letters (e.g., a) or Greek letters (e.g., σ ), boldface lowercase
letters are used for vectors (e.g., x), boldface capital letters
denote matrices (e.g., M), and tensors are denoted by capital
bold calligraphic letters (e.g.,R). The starting index of arrays
is set to be 0.
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II. PROBLEM STATEMENT AND COVARIANCE TENSOR
FORMATION
Consider a complex discrete-time signal modeled as a linear
combination of several complex sinusoids contaminated by
additive noise:

xn =
L−1∑
`=0

a`ej(2π f`+φ`) + wn, n = 0, 1, . . . ,N − 1 (1)

where L is the model order, N is the observation size, f` ∈
(0, 1) and a` > 0 are the `th sinusoid’s frequency (in Hz) and
the amplitude respectively. It is assumed that phases φ`’s are
independent and uniformly distributed in (−π, π], and that
noise samples wn are independent and stationary.
Our order selection and frequency estimation problems can

be stated as follows: Given N samples of the noisy signal x
in (1), estimate 1) the order L, and 2) the frequencies f`, ` =
0, 1, . . . ,L − 1.
In the sequel, we present a covariance tensor approach

to the said problems. Given the 1D data x, we first form a
3D covariance tensor as illustrated in Figure 2. We start by
cropping the data into K overlapping segments of length W :

xk =
[
xkxk+1· · ·xk+W−1

]T
∈CW , k = 0, 1, . . . ,K − 1 (2)

whereW = N−K+1. Then, for the kth segment, an estimate
of its covariance matrix can be obtained, for example, as

R̂k =
1

M + 1

M∑
µ=0

xk,µxHk,µ ∈ RM×M (3)

whereM = bW/2c, the superscript H denotes the Hermitian
operator, and

xk,µ =
[
xk+µ xk+µ+1 · · · xk+µ+M−1

]T
∈ CM (4)

for µ = 0, 1, . . . ,M . Finally, by up all the covariance
matrices, we form a 3-way K -layer covariance tensor R ∈
RM×M×K .

III. A TENSOR APPROACH TO ORDER SELECTION AND
FREQUENCY ESTIMATION
This section describes the proposed covariance tensor based
order selection (CT-OS) and frequency estimation (CT-FE)
algorithms. It also discusses their computational complex-
ities. We begin by introducing the HOSVD of covariance
tensorR.

A. HOSVD OF COVARIANCE TENSOR
Under the HOSVD [23], the 3D covariance tensor R can be
expressed as

R = S ×1 U1 ×2 U2 ×3 U3 (5)

where S ∈ CM×M×K is the core tensor which satisfies
the all-orthogonality and the ordering properties, Ud , d =
1, 2, 3, are orthonormal matrices of d-mode singular vectors
of R, and operator ×d represents the mode-d product of
tensor with matrix, d = 1, 2, 3. Let Sid=µ denote the sub-
tensors of S in which the d th index is fixed to be µ, where

FIGURE 2. Formation of covariance tensor R from 1D discrete-time
signal x .

µ = 0, 1, . . . , Id − 1, with I1 = I2 = M and I3 = K . Then
the ordering property implies their Frobenius norms can be
ordered as

‖Sid=0‖F ≥ ‖Sid=1‖F ≥ · · · ≥ ‖Sid=Id−1‖F , d = 1, 2, 3.

(6)

As an example, if d = 1, (6) becomes

‖S(0, :, :)‖F ≥‖S(1, :, :)‖F ≥· · ·≥‖S(M − 1, :, :)‖F . (7)

Furthermore, these Frobenius norms are equal to the d-mode
singular values σ (d)

µ ofR, i.e.,

‖Sid=µ‖F = σ (d)
µ , d = 1, 2, 3; µ = 0, 1, . . . , Id − 1 (8)

which are defined as the singular values of the d-mode
unfolding matrixR(d) of tensor R.

We shall show in the sequel that this ordering prop-
erty allows a simplified order selection based on only the
1-mode singular values σ (1)

µ ’s. Moreover, an efficient fre-
quency estimator can also be developed by using singular
vector matrix U1.

B. COVARIANCE TENSOR BASED ORDER SELECTION
(CT-OS)
For the purpose of theoretical analysis and under the station-
arity assumption on x, it is reasonable to suppose that esti-
mate in (3) yields approximately the same covariance matrix
R̂ ∈ RM×M for k = 0, . . . ,K − 1. As a result, the
1-mode unfolding matrix of the covariance tensor R has the
following block structure:

R(1) ≈
[
R̂ R̂ · · · R̂

]︸ ︷︷ ︸
K blocks

. (9)

Let a singular value decomposition of R̂ be given as

R̂ = U6UT (10)

whereU ∈ RM×M is a singular vector matrix that is orthonor-
mal and6 ∈ RM×M is diagonal with elements being singular
values of R̂. Denote these values as σ0 ≥ σ1 ≥ · · · ≥
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Algorithm 1 Covariance Tensor Based Order Selection
(CT-OS)
Input: N samples of signal x
Output: Model order L
1: Set the number of layers K
2: Estimate covariance matrices R̂k , k = 0, 1, . . . ,K − 1,

and form the covariance tensor R
3: Calculate the 1-mode singular values σ

(1)
µ , µ =

0, 1, . . . ,M − 1
4: Apply the k-means clustering to {σ (1)

µ }
M−1
µ=0 to obtain two

clusters
5: Take L to be the size of the cluster with larger singular

values
6: while |σ (1)

L − (ms + mn)/2| ≤ |σ
(1)
L − mn| do

7: L ← L + 1
8: end while

σM−1 ≥ 0. In view of (9), it can be shown that the 1-mode
singular values of R are related to those of matrix R̂ as1

σ (1)
µ ≈

√
Kσµ, µ = 0, 1, . . . ,M − 1. (11)

To motivate our CT-OS algorithm, we recall that if R̂
estimates the covariance matrix of signal x accurately, then
its singular values are separated in terms of the amplitudes
a′`s of the sinusoids and the power σ

2 of the noise as [1]

σµ =

{
aµ + σ 2, µ = 0, 1, . . . ,L − 1
σ 2, µ = L, . . . ,M − 1.

(12)

This implies that order L can be estimated via this separation
property of σµ’s.
In view of relationship (11), we can set L to be the number

of large 1-mode singular values σ (1)
µ ’s. These large elements

can be selected using the k-means clustering algorithm [24]
which separates {σ (1)

µ }
M−1
µ=0 into two clusters: a signal cluster

of large elements and a noise cluster with the remaining
smaller elements. Order L is then taken to be the num-
ber of elements in the signal cluster. Through experiments,
we observe that the simple k-means clustering sometimes
under-estimates the model order. We thus fine-tune the order
by comparing the largest element σ (1)

L of the noise clus-
ter against the means ms = mean{σ (1)

µ }
L−1
µ=0 and mn =

mean{σ (1)
µ }

M−1
µ=L of the two clusters. If this element is closer

to the average of the two means than to mn, then it is moved
into the signal cluster. This comparison can be repeated for
the two updated clusters until no further tuning is neces-
sary. The pseudocode for the proposed CT-OS is provided in
Algorithm 1.

C. COVARIANCE TENSOR BASED FREQUENCY
ESTIMATION (CT-FE)
We now assume that L is accurately estimated by the
CT-OS. Under the structural property (9), the left singular

1Since R̂ is Hermitian, the 2-mode singular values of R are the same as
the 1-mode singular values; i.e., σ (2)µ = σ

(1)
µ , µ = 0, 1, . . . ,M − 1.

vectors of R(1) are found to be approximately identical to
those of covariance matrix R̂. Furthermore, if the covariance
estimation is accurate, singular vector matrix U1 of HOSVD
in (5) is identical to U in (10). This implies that U1 can be
used to estimate the frequencies of x based on their relation
to the steering matrix [1]

A =
[
a0 · · · aL−1

]
∈ CM×L (13)

where steering vector a` is defined in terms of the correspond-
ing frequency f` as follows:

a` =
[
1 ej2π f` · · · ej(M−1)2π f`

]T
∈ CM (14)

for ` = 0, 1, . . . ,L − 1.
Let S be the submatrix composed of the first L columns of

U1, i.e.,
S = U1(:, 0 : L − 1). (15)

When the covariance matrixR is precisely estimated, the sig-
nal subspace C(S),2 and the steering subspace C(A) are iden-
tical. This suggests that we can estimate the frequencies by
aligning C(S) toward C(A) [9]. The closeness of these two
subspaces can be characterized in terms of their principal
angles θ`, ` = 0, 1, . . . ,L − 1. These principal angles can
be determined via the leading singular value s`’s of SS+AA+

as θ` = cos−1(s`), since SS+ and AA+ are the orthogonal
projection matrix on C(S) and C(A), respectively.3 Note that
when C(S) = C(A), all L angles between C(S) and C(A)
are equal to zero. For the purpose of frequency estimation,
we shall make the L angles as small (close to zero) as possible.
If the covariance matrix estimate is precise, then C(S) =

C(A), thus θ` = 0 and s` = 1, ` = 0, 1, . . . ,L − 1. If
this is not the case, then C(S) 6= C(A) and 0 ≤ s` ≤ 1,
` = 0, 1, . . . ,L − 1. Aligning signal subspace C(S) toward
steering subspace C(A) can be realized by pulling vector

s =
[
s20 · · · s

2
L−1

]T
(16)

toward vector

1 =
[
1 · · · 1

]T
∈ RL . (17)

The degree of this non-alignment can be measured in terms
of the generalized Kullback-Leibler divergence [25] between
the two vectors. Recall that the generalized Kullback-Leibler
divergence of two L-dimensional non-negative vectors p =
{p`} and q = {q`} is defined as [25]

D(p‖q) =
L−1∑
`=0

(
p` ln

p`
q`
− p` + q`

)
. (18)

Hence, the non-alignment measure between C(S) and C(A)
can be written as

D(s‖1) = L −
L−1∑
`=0

(1− ln s2`)s
2
`. (19)

It is easy to see that 0 ≤ D(s||1) ≤ L in general and that
D(s||1) attains the minimum of 0 if and only if C(S) = C(A)

2C(·) denotes the column space of ‘‘ · ’’.
3The superscript ‘‘+ " denotes the Moore–Penrose pseudoinverse.
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Algorithm 2Covariance Tensor Based Frequency Estimation
(CT-FE)
Input: N samples of signal x and model order L
Output: Frequency estimates f̂0, f̂1, . . . , f̂L−1
1: Set the number of layers K
2: Estimate covariance matrices R̂k , k = 0, 1, . . . ,K − 1,

and form the covariance tensor R
3: Compute orthogonal matrixU1 and let S = U1(:, 0 : L−

1)
4: Define non-alignment measureD(s ‖ 1) as in (19), where

s is given in terms of the L leading singular values of
SS+AA+ as in (16) with A being the steering matrix
dependent on frequency f0, f1, . . . , fL−1

5: MinimizeD(s ‖ 1) subject to the constraint (21) to obtain
estimates f̂0, f̂1, . . . , f̂L−1

(when s = 1). Note that through steering matrix A of (13),
measure D(s‖1) is function of f`, ` = 0, 1, . . . ,L − 1. As a
result, the least divergence between C(S) and C(A) is attained
at the frequencies of signal x in (1). This implies that these
frequencies can be estimated as solution to the following
minimization problem:

f̂ = argmin
f∈F

D(s||1) (20)

where,

F = {f = [f0 f1· · ·fL−1]T : 0 < f0 < f1 < · · ·< fL−1 < 1}

(21)

is the set of searching vectors of frequencies. The pseudocode
for the CT-FE is provided in Algorithm 2.

D. COMPUTATIONAL COMPLEXITY
First, it is pointed out that compared with the CTB-OE [15],
the proposed CT-OS enjoys a significantly reduced computa-
tional complexity. Consider CT-OS first. The complexity for
singular value decomposition of R(1) is O(M3 K ); and the
complexity of the k-clustering is O(M2). Hence, the over-
all complexity of the CT-OS is equal to O(M3 K + M2),
or approximately O(M3 K ) sinceM2

� M3 K . On the other
hand, the CTB-OE requires the core tensorS, which involves
computing the orthogonal matricesUd , d = 1, 2, 3, and addi-
tional three matrix multiplications. In view of the dimensions
of the unfoldingmatrices ofR, the complexity for computing
S is found to beO(4M3 K+2M2 K 2). In addition, computing
Frobenius norms of the leading principal subtensors of S has
a complexity of O( 13M

3 K ). As a result, the CTB-OE has an
overall complexity of O(4 1

3M
3 K + 2M2(K 2

+ 1)), which is
approximately equal to O(4 1

3M
3 K ) when K � 2 1

6M (thus
2M2(K 2

+ 1))� 4 1
3M

3 K ).
The above complexity analysis results are summarized

in Table 1. Roughly speaking, the computational load of
CT-OS is seen to be slightly less than one quarter of that
of the CTB-OE. In other words, it enjoys a reduction of
more than three quarters. Consider one example where

TABLE 1. Complexity Order of CTB-OE and CT-OS.

N = 128 and K = 9. We now have M = 60, and the overall
complexity orders of CTB-OE and CT-OS are calculated to
be O(9, 010, 800) and O(1, 947, 000) (or O(8, 424, 000) and
O(1, 944, 000) approximately) respectively, giving a reduc-
tion of 76.9% (or 78.4% if the approximate formulas are
used).

Similarly, the CT-FE is also shown to enjoy a signifi-
cantly reduced computational load when compared with the
SAS-Est algorithm [9], which aligns the steering subspace
toward the signal subspace and simultaneously away from the
noise subspace. Note that major computations for both CT-FE
and SAS-Est are spent in solving the respective minimization
problem. Thanks to the preceding CT-OS which renders a
good selection for the model order, minimization in CT-FE
is only over frequencies; whereas the SAS-Est needs to carry
out a joint minimization over order and frequencies. As a
result, the CT-FE would require less computation than the
SAS-Est, as the objective functions in both algorithms are
essentially the same in terms of the frequency argument.
Moreover, recall that the searching space of SAS-Est is the
entire hypercube (0, 1)L , whereas the searching space of
CT-FE reduces to only a small fraction (1/2L−1 in volume)
of the searching hypercube because of the linear inequalities
in (21).

In Section IV we shall also demonstrate the significant
saving of both CT-OS and CT-FE in computation-time over
CTB-OE and SAS-Est, respectively.

IV. EXPERIMENTAL RESULTS
In this section the improvements introduced by the proposed
reduced-complexity order selection and frequency estimation
algorithms are demonstrated via simulations. We evaluate the
performance of the proposed CT-OS and CT-FE algorithms
for synthetic multiple complex sinusoids under AWGN.
A guitar audio recording is also studied for their applicability
to real-life signals.

The performances are measured in terms of the per-
centage of correct order estimation (PCOE) and mean
square error (MSE) respectively. The CT-OS was compared
against some subspace algorithms such as MUSIC [26],
ESPRIT + MAP [7], E-MUSIC [8], SAS-Est [9], the recent
CTB-OE [15] and 2S-Est [12]. The CT-FE was compared
against SAS-Est [9] and 2S-Est [12], and in reference to the
CRLB. In view of the recommendation in [15], the number
of layers was chosen to be K = 9 in all experiments.
All minimization problems are solved using the MATLAB
function fmincon.
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FIGURE 3. PCOE comparison of the proposed CT-OS and some order
selection algorithms under various model orders. [1f = 0.015, SNR
= 20dB, N = 128].

FIGURE 4. PCOE performance of the proposed CT-OS under various
observation sizes and SNR values. [L = 5, 1f = 0.015, N = 128, 96, 80].

A. ORDER SELECTION
We first examined how the CT-OS algorithm would per-
form under various model orders. Figure 3 gives the PCOE
results for model orders L = 3, 4, . . . , 10, obtained from
400 Monte Carlo simulations. Note that, for all model orders
considered, the performance of the CT-OS is over those of
MUSIC, ESPRIT+MAP, E-MUSIC and SAS-Est, and is on
a par with CTB-OE. In addition, the drop rate in PCOE at
L ≥ 9 is slower for CT-OS when compared with 2S-Est.
For model orders 3 to 6 both 2S-Est and CT-OS have similar
performances. At orders 7 to 8 the 2S-Est has an edge over
CT-OS. At order L = 9 their performances become same
(the curves cross each other) and at L = 10 the CT-OS has
the highest PCOE, giving 7% edge over SAS-Est and 8% over
2S-Est.

Next, we studied the performance of the CT-OS algorithm
under various observation sizes. For model order L = 5
and a minimum frequency separation of 1f = 0.015, which
is the smallest admissible frequency difference between any
frequency pair. Figure 4 depicts the PCOE values of the
CT-OS under observation sizes of N = 128, 96, and 80 and
SNR values of 20, 15, 10, and 5dB (each with 400 runs). The
results depicted in Figure 4 indicate that, even with a 25%

FIGURE 5. PCOE comparison between CT-OS and 2S-Est algorithms under
various model orders and 1f values. [L = 7, 8, 9, SNR = 20dB, N = 128].

reduction (from N = 128 to N = 96) in observation size the
CT-OS can still achieve 92% estimation accuracy under SNR
values of 20, 15, and 10dB. When the observation size is fur-
ther reduced to N = 80 (a 37.5% reduction from N = 128),
the CT-OS algorithm would still deliver approximately 84%
accuracy. Note that when N = 96, L = 5 and SNR= 20dB,
the MUSIC and E-MUSIC algorithms would respectively get
only 6.7% and 50% estimation accuracy [15].

Figure 5 depicts the PCOE comparison between proposed
CT-OS and the recent 2S-Est algorithms over a range of 1f
values. In the experiment 1f is varied from 0.01 to 0.05
with steps of 0.005 and the PCOE is obtained for model
orders of L = 7, 8 and 9. It is seen that the 2S-Est generally
results in higher PCOE at 1f ≤ 0.015 values, especially for
model orders L = 7 and L = 8. However, for model order
L = 9, the CT-OS consistently yields a PCOE of 100% for
1f ≥ 0.02; whereas the 2S-Est gives some smaller value
of 89%.

In the above experiments, the amplitudes of complex sinu-
soids were all assumed to be unity. We also tested the robust-
ness of the CT-OS under none-unity amplitudes. We let the
amplitudes be subject to variation up to an assumed percent-
age from the unity amplitude. The PCOE results depicted
in Figure 6 shows that the CT-OS algorithm allows 30% vari-
ation for model orders from 3 to 7. Furthermore, performance
with a 10% variation is almost as good as the one with unity
amplitudes over all model orders tested.

B. FREQUENCY ESTIMATION
We now turn to the frequency estimation. Figure 7 depicts the
MSE comparison between the proposed CT-FE algorithm and
the SAS-Est [9] under various observation sizes and SNRs.
All experiments assume that L = 3 and 1f = 0.015. The
MSE for each frequency at a particular SNR was obtained
from 200 Monte Carlo simulations. We observe that at N =
128 and 96, the MSE curves of the SAS-Est are parallel
to the CRLB when SNR ≥ 5dB. If SNR ≤ 0dB, they all
diverge away from the CRLB and the MSE is always above
10−4. On the other hand, even at SNR= 0dB theMSE curves
of the CT-FE are still parallel to the CRLB. At N = 80,
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FIGURE 6. PCOE with unity and non-unity amplitudes. [1f = 0.015,
SNR = 20dB, N = 128].

FIGURE 7. MSE comparison of the proposed CT-FE and SAS-Est under
various SNR values and observation sizes. [L = 3, 1f = 0.015].

FIGURE 8. MSE comparison of the proposed CT-FE and 2S-Est under
various SNR values and observation sizes. [L = 5, 1f = 0.015].

the CT-FE yields significant improvements under high SNR
values (greater than or equal to 5dB) and the MSEs are only
approximately 1% of those of the SAS-Est.

The proposed CT-FE algorithm was also compared against
the 2S-Est [12] for the five-sinusoid case (L = 5). The
results (also of 200 runs) are shown in Figure 8. It is seen

that the MSE curves of the 2S-Est are all far above the
CRLB, indicating that the 2S-Est is not suitable for short
observations. The CT-FE on the other hand yields MSE close
to the CRLB when SNR ≥ 10dB for N = 96, 80 and SNR
≥ 5dB for N = 128. This again shows that CT-FE is robust
and performs well even under short observations.

C. FURTHER EXPERIMENTS: A GUITAR AUDIO SIGNAL
The proposed order and frequency estimation algorithms
CT-OS and CT-FE were also tested using some real data
obtained by playing notes C, E, A and D consecutively
on a classical guitar and taking an audio recording (with a
sampling frequency of 44100 Hz). For the purpose of our
experiment, the recorded audio recording was first decimated
using a down-sampling factor of 20 to have fewer samples.
The decimated audio is then considered in our applications
of the CT-OS and CT-FE. For any notes played on the fret
board there would be a number of frequency components
generated [27]. The frequencies include the fundamental fre-
quency (also known as main pitch frequency), multiples of
the fundamental frequency (often referred to as overtones or
harmonics), and undertones whichmay occur due to vibration
of the instrument or its parts [28]. Considering that the order
and frequencies of the audio signal has a time-varying nature,
we segmented the signal into overlapping sections and each
section is then processed separately for the purpose of order
selection and frequency estimation. One example of the deci-
mated audio signal is shown in Figure 9(a), which also shows
the centers of the segments of and overlaps (10%). Figure 9(b)
shows the spectrogram of the audio wave. Each line on the
spectrogram either indicates a fundamental frequency for the
note played or its overtone/undertone. The number of lines
in an observed section of the spectrogram can serve as a
reference value of model order of the particular section of
the audio signal. We then applied our CT-OS and CT-FE
algorithms to every sections of the audio. In view of existence
of multiple overtones in Guitar audio, the order selected using
Algorithm 1 is further tuned so that the signal cluster is
adequately separated from the noise cluster in the sense that
the least element of the signal cluster is at least twice as
large as the largest element of the noise cluster. The model
orders and frequencies obtained are presented in Figures 9(c)
and 9(d), respectively. It is seen that the frequency estimates
in Figure 9(d) agree with the respective frequency lines in
the spectrogram quite well. These results demonstrate the
applicability of the proposed algorithms to a real-life signal.

D. COMPUTATIONAL TIME
A final experiment was carried out to compute the average
run-times of the proposed CT-OS and CT-FE and to com-
pare them with two related algorithms, namely, CTB-OE and
SAS-Est. The PC used had a 2.4GHz Intel core i5 CPU
supported by 8GB of RAM. Figure 10 shows average compu-
tation times obtained for the CT-OS and CT-FE and compares
them with those of CTB-OE and SAS-Est. Since SAS-Est
is a joint order and frequency estimator, we also considered
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FIGURE 9. Experimental results on a guitar recording: (a) the audio wave,
(b) its spectrogram, (c) the order selection, (d) the frequency estimation.

FIGURE 10. Comparison of average computation times [L = 3,
1f = 0.015, SNR = 20dB, N = 128].

its simplified version SAS-FE which takes a predetermined
model order and estimates the frequencies only. All average
times have been computed over 400Monte Carlo simulations
and under condition L = 3, 1f = 0.015, SNR= 20dB,
and N = 128 As shown in Figure 10, the CT-OS requires
four times less computation time than CTB-OE. Furthermore,
the average runtime for CT-FE is roughly one quarter of that
of SAS-FE. A look at the average computation times for
joint order and frequency estimation shows that the proposed
CT-OS & CT-FE pair requires far less computational time
than SAS-Est.

It should be pointed out that the execution times are
dependent on machine configuration and programming skill.
Nevertheless, considering the fact that the experiment was
carried out on the same PC and implemented by the authors,
and that the comparison results are in good agreement with
complexity analysis results of Section III-D, it is reasonable

to conclude the reduced computational time of the proposed
new algorithms.

V. CONCLUSION
This paper proposed a reduced complexity covariance tensor
based approach to order selection and frequency estimation
for complex sinusoids in noise. Based on theoretical analysis,
the proposed order selection algorithm CT-OS selects the
order by clustering 1-mode singular values of a three-way
covariance tensor. The proposed frequency estimator CT-FE
aligns the signal subspace (which is obtained from 1-mode
singular vectors of the covariance tensor) toward the steering
vectors. Experimental results show that under short obser-
vations the CT-OS allows selection of the true model order
and outperforms MUSIC, ESPRIT+MAP, and E-MUSIC. It
is also demonstrated that the CT-FE algorithm is capable of
yielding small mean-square error even at low SNRs, thus
outperforming SAS-Est. Moreover, the CT-OS and CT-FE
are also shown to enjoy reduced computational complexity
and time when compared with the recent tensor based order
estimator CTB-OE and subspace based frequency estimator
SAS-Est.

It should bementioned that the computational complexities
of the two proposed estimation algorithms CT-OS and CT-FE
are still high when compared with classical subspace based
algorithms such as the MUSIC and its variants. Nevertheless,
this may be regarded as a trade-off between achieving good
performance in difficult scenarios (e.g., under short obser-
vation sizes) and computational cost. Future work on the
two algorithms may focus on their theoretical performance
analysis.
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