
Received December 16, 2020, accepted January 18, 2021, date of publication January 21, 2021, date of current version January 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3053317

Individualized Short-Term Electric Load
Forecasting With Deep Neural Network Based
Transfer Learning and Meta Learning
EUNJUNG LEE AND WONJONG RHEE , (Fellow, IEEE)
Department of Transdisciplinary Studies, Seoul National University, Seoul 08826, South Korea

Corresponding author: Wonjong Rhee (wrhee@snu.ac.kr)

This work was supported in part by Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean
government [20ZR1100, Core Technologies of Distributed Intelligence Things for Solving Industry and Society Problems] and in part by
the Korea Medical Device Development Fund’ grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of
Trade, Industry and Energy, the Ministry of Health Welfare, Republic of Korea, the Ministry of Food and Drug Safety) (Project Number:
202013B14).

ABSTRACT While the general belief is that the best way to predict electric load is through individualized
models, the existing studies have focused on one-for-all models because the individual models are difficult to
train and require a significantly larger data accumulation time per individual. In recent years, applying deep
learning for forecasting electric load has become an important research topic but still one-for-all has been the
main approach. In this work, we adopt transfer learning and meta learning that can be smoothly integrated
into deep neural networks, and show how a high-performance individualized model can be formed using the
individual’s data collected over just several days. This is made possible by extracting the common patterns
of many individuals using a sufficiently large dataset, and then customizing each individual model using the
specific individual’s small dataset. The proposed methods are evaluated over residential and non-residential
datasets. When compared to the conventional methods, the meta learning model shows 7.84% and 15.07%
RMSE improvements over the residential and non-residential datasets, respectively. Our results suggest that
the individualized models can be used as effective tools for many short-term load forecasting tasks.

INDEX TERMS Deep learning, individualized models, meta learning, transfer learning, short-term load
forecasting.

I. INTRODUCTION
Reliable energy load forecasting is an important aspect of
effective energy management. Based on the forecast period,
energy load forecasting can be classified into long-term,
medium-term, and short-term forecasting [1]. Long-term
forecasting helps in decision making for financial and opera-
tional planning. In contrast, medium- to short-term forecast-
ing can be useful for improving power system operations such
as short-term capacity scheduling or real-time controlling.
Short-Term Load Forecasting (STLF) is especially useful for
reliable and efficient operation of electric grids [2], and stud-
ies on STLF have typically focused on one-for-all models.
One-for-all models learn from the data of all customers and
infer loads for target dates using a common model for all. In
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contrast, individualized models are trained on the data spe-
cific to each customer or customer group and provide direct
forecasting corresponding to individual customers respec-
tively. Although individualized forecasting has the potential
to fit each customer’s specific load patterns, traditionally it
has not been prioritized due to the lack of data and the chance
of over-fitting. Lack of data has been known as one of the
major failure reasons in load forecasting [3], [4]. However, we
still need individualized load forecasting because residential
customers have dynamic and volatile loads [5] and non-
residential customers have widely different load character-
istics according to their facilities and type of businesses [4].
Furthermore, smart grid infrastructures are increasingly com-
plicating the individual load characteristics [6].

Traditional machine learning models have achieved great
success in the area of STLF. Auto-Regressive Integrated
Moving Average (ARIMA) has been an essential technique
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for decades, where the signals captured from the past values
are extrapolated into the future values. More sophisticated
machine learning models have been popular as well. In a
case study involving office buildings [7], a Support Vec-
tor Machine (SVM) model performed better than a con-
ventional neural network model with three layers. Fan and
Chen [8] suggested a hybrid network with self-organizedmap
(SOM) and SVM. Hong et al. [9] proposed a Support Vector
Regression (SVR) model that predicts monthly loads using
a seasonal adjustment mechanism and a chaotic immune
algorithm. Clustering based models have been successfully
applied, too. Al-Qahtani and Crone [10] suggested a multi-
variate k-Nearest Neighbor (KNN) regression model. Zhang
et al. [11] used decision tree based clustering where the load
of customers in each cluster is predicted by a piece-wise
linear regression model. Following the success of traditional
machine learning, deep learningmodels have become popular
because they allow modeling through more complex func-
tions and provide a potential to improve the performance.
Ding et al. [12] suggested Multi-Layer Perceptron (MLP)
model for STLF of medium-voltage and low-voltage substa-
tions. Similarly, Ribeiro et al. [4] also used an MLP model,
and they proposed transfer learning with temporal adjust-
ments. Kong et al. [5] developed two Recurrent Neural Net-
works (RNN) with Long Short-Term Memory (LSTM) cells
to predict short term load. A Convolutional Neural Network
(CNN) based model was suggested in [13], and it exceeded
the performance of LSTM models and ARIMA with exoge-
nous inputs. Choi et al. [14] combined a Residual Network
(ResNet), which is an advanced type of CNN, with LSTM
units. The combined model showed the best performance
among MLP, LSTM, and ResNet models in their experiment.
A modified ResNet without LSTM outperformed wavelet
neural network models in [15].

Even though many machine learning and deep learning
models have been studied, a clear limitation has been that
almost all have considered one-for-all models instead of
individualized models. A customer’s electric load pattern,
however, might have unique and multi-faceted characteristics
where many different features contribute toward the final pat-
tern. If we consider all possible combinations of the features,
the number of possible electric load patterns can be extremely
large. The number of unique features, however, might not
be very large and a person skilled in the art might be able
to tell much about a customer’s electric load pattern simply
by looking at the customer’s recent electric load data. For
instance, residential customers might be well characterized
by looking at the last several days of electric load patterns. A
customer might always have very low usage in the weekday
afternoon while another customer might have varying usage
in the weekday afternoon, depending on how many family
members are present at home each day. In such a residential
scenario, it can be crucial to identify the common and impor-
tant features by investigating the data of many residential cus-
tomers, to recognize which features are present and important
for the customer whose electric load needs to be predicted,

and to use the information in an individualized way such
that the future load prediction can be improved. Obviously,
one-for-all models are limited because the algorithms are not
specialized for individualization. Clustering models are also
limited in that they do not focus on learning the features.
Instead, they simply try to group the individual patterns that
are formed as the combination of the underlying features.

There have been a few approaches for making individu-
alized models work. Tascikaraoglu and Sanandaji [16] uti-
lized external information. They employed a spatio-temporal
algorithm using a multivariate autoregressive model with
the data from a variety of electrical appliances in the target
house and surrounding houses. The spatial information from
the surrounding houses significantly improved the prediction
accuracy at the individual level. The performance, however,
was verified only for the case of two residential customers.
Because gathering sufficiently useful external data can be
practically impossible for large scale deployments, algorith-
mic approaches are strongly preferred. Mocanu et al. [17]
proposed reinforcement transfer learning with deep belief
networks, where the model was trained with six years of data
and evaluated over five buildings. Ribeiro et al. [4] developed
a transfer learning model that has two adaptation phases
for transferring temporal knowledge and non-temporal fea-
tures. The developed model with MLP performed slightly
better than the SVM model when evaluated over four build-
ings. Both transfer learning studies were for building load
forecasting, and the small number of buildings might have
been a critical limitation. For transfer learning to work well,
it is crucial to construct a base learner that can serve as
a good initialization point of the following individualiza-
tion. But when only a few buildings are used for training
the base learner, there is a high chance that the charac-
teristics of the target building are quite different from the
characteristics of the buildings used for constructing base
learner.

In this work, we propose to use transfer learning [18] and
meta-learning [19] for individualized STLF, especially for
the tasks with a large number of individuals as in residential
STLF problems.Whereas the traditional models train an indi-
vidualized model using the data of the target individual only,
the two methods aim to use the knowledge from many other
individuals as well. Despite the existing works on applying
transfer learning in energy areas, to the best of our knowledge,
we are the first to apply transfer learning with an explicit
focus on the STLF with a large number of individuals. In
our experiments, the number of customers for training the
base learner is 2,633 for the residential dataset and 265 for
the non-residential dataset. For meta learning, we propose a
meta learning framework with a few-shot mechanism, named
as few-shot short-term load forecasting. In the deep learning
algorithm society, meta learning has received great attention
in the last few years [19]–[25]. With our best knowledge, this
is the first work to adopt the latest meta learning techniques to
STLF tasks. In the energy areas, the suggested framework can
be applied to a variety of tasks that are based on time-series
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datasets. The details of transfer learning and meta learning
are provided in Section II.

The rest of the paper is organized as follows. Section II
provides the background of transfer learning and meta learn-
ing. Also, a brief introduction is provided on the deep learn-
ing models that are used as the base models for integrating
transfer learning and meta learning. Section III presents tra-
ditional, transfer learning, and meta learning frameworks for
individualized STLF. Section IV describes the experimen-
tal setting for the frameworks traditional learning, transfer
learning, and meta learning approaches. The performance of
those three approaches, together with statistical, ARIMA, and
one-for-all learning approaches, is compared and discussed
in Section V. In addition, we analyze algorithm performance
over seven months to investigate the seasonal effects on the
algorithm accuracy and provide experiment results for cold-
start where only a limited amount of past data is available.
Section VI summarizes the key results and concludes the
paper.

II. BACKGROUND
We start by describing transfer learning and meta learning.
We also present deep learning models that are used as the
base for implementing transfer learning and meta learning.

A. TRANSFER LEARNING
In machine learning, a task can be loosely defined as a
dataset and loss function T = {D,L}. Transfer learning is
intended to improve learning of a specific task (target task)
using the knowledge from different but related tasks (source
tasks) [18]. With transfer learning, we can extract the knowl-
edge from the source tasks and use it for an improvement in
the target task.

Consider a situation where we have a source task Ts and a
target task Tt . The dataset of each task consists of a train-
ing set Dtrain and a test set Dtest . For transfer learning, a
model is trained to solve the source task Ts first. Then, the
weights of the trained model are fine-tuned using Dt

train of
the target task Tt and evaluated on Dt

test of Tt . For exam-
ple, training a load forecasting model of a target customer
can be performed in the following two steps. First, train
a model for load forecasting, or any other forecasting that
is sufficiently relevant to load forecasting, of another cus-
tomer or many other customers. Then, fine-tune the model
using the target customer’s data. Because the training pro-
cedure of a deep learning model consists of slowly updating
weight parameters, fine-tuning is simply defined as additional
weight parameter updates using the target task’s data. In the
recent context of deep learning, transfer learning generally
refers to parameter transfer and fine-tuning. The choice of
source tasks depends on the availability of datasets and their
relevance to the target task. In general, transfer learning
does not guarantee a performance improvement [26], but
it is usually helpful when the source tasks are sufficiently
similar to the target task and the target task’s data size
is small.

B. META LEARNING
In the last few years, meta learning has received considerable
attention in the field of deep learning. The motivation for
meta-learning is to be able to learn and adapt quickly from
a few examples as in the case of a human being. Whereas
traditional machine learning aims to solve a given task from
scratch using a fixed learning algorithm, meta learning is
intended to improve the learning algorithm with the expe-
rience from multiple learning episodes, which covers a dis-
tribution of related but different tasks p(T ). Hence, meta
learning is considered as a mechanism for learning to learn.
There are three main approaches to meta-learning of few-

shot learning [28]. Metric based methods [23], [24] learn a
similarity space over embeddings of examples. Estimated dis-
tance between the class embedding and the example embed-
ding in the space is used for prediction. Optimization based
methods [19], [25] adapt the embedding model parameters
using few training examples through gradient descent.Model
based methods [21], [22], [29] learn to store ‘‘experience’’
for estimating parameters of the model for few-shot learning.
In this work, we limit our scope to the optimization based
methods because they are known to performwell and because
they can be flexibly modified depending on the needs of
the application. Whereas most of the followings are general
explanations of meta learning, some explanations such as
adjusting the inner algorithm are specific to the optimization
based meta learning.

Meta learning has two components [30]. One component
is for learning through an inner or base learning algorithm
with an inner objective such that a particular task can be
handled well. The other component is for learning to learn
through an outer or meta learning algorithm with an outer
objective such that the meta learner knows how to adjust the
inner learning algorithm whenever a new task is given. The
existence of an outer objective is the major difference from
transfer learning. Whereas meta learning has a wide scope
of applications, recent studies have focused on a few appli-
cations including few-shot learning [30]. Few-shot learning
aims to solve classification or regression problems with only
a few labeled examples, and thus fits our need to perform
load forecasting with only a limited amount of data from each
target individual. As ameta learning setup,N -wayK -shot has
been heavily studied, and an insightful classification example
is shown in Fig. 1. In our work, we focus on adopting the
N -way K -shot meta learning setup to the load forecasting
because there is a strong analogy between N -way K -shot and
‘load forecasting of a customer (N = 1) based on the last
K days of load usage examples’. An illustrative classification
example for a vision application is shown in Fig. 1.
Here we describe meta learning of theN -wayK -shot prob-

lem. We consider a set of p classes, {c1, c2, · · · , cp}, and an
unoverlapping set of q classes, {cp+1, cp+2, · · · , cp+q}. The
p classes are used for training the meta learning model, and
the q classes are used for evaluating the model. We denote
the dataset for the tasks using the p classes as meta-train
dataset, Dmeta−train, and the dataset for the tasks using the q
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FIGURE 1. Meta learning setup as 5-way 1-shot in [27, Fig. 1]. Each gray box represents a task, where we
have one example from each of 5 classes (with each class labeled 1-5) in the training set Dtrain and two
examples in the test set Dtest . For each task, the goal is to use the five training samples to learn the classes,
and then to determine to which class each of the test sample belongs to. The number of training samples in
each task is too small (only five) and learning is impossible for traditional learning, but meta-learning can
learn general knowledge from many of such tasks that belong to Dmeta−train and perform well for the tasks
in Dmeta−test . Each of the meta-training set Dmeta−train and meta-test set Dmeta−test consists of many
tasks, but typically the classes used in the two sets are disjoint in the benchmark problems.

classes as meta-test dataset, Dmeta−test . For meta-training, a
task’s training set Dtrain contains N classes that are sampled
from the p classes. For each selected class, K examples are
randomly chosen as the training data. The task’s test setDtest
is formed in a similar way where each test sample is formed
by choosing K examples from one of the N classes. For meta-
test, all are the same except that the samples are chosen from
the q classes.

In meta-training phase, the inner learning algorithm solves
tasks from Dmeta−train and the outer learning algorithm
updates the way inner learning algorithm is adjusted with
Dtrain for each individual task. The outer learning algorithm
aims to improve an outer (or meta) objective, and an example
of the outer objective can be the average performance of the
inner learning algorithm over many individual tasks. In meta-
testing phase, the trained outer learning algorithm can quickly
adapt the inner model to the chosen task from Dmeta−test
using only the N -way K -shot examples of the task. Through
a large number of tasks from Dmeta−train, the trained model
can generalize well for unseen tasks from Dmeta−test . There
is no intersection between the classes from Dmeta−train and
the classes from Dmeta−test , but meta learning works because
the underlying features are the same for both Dmeta−train
and Dmeta−test .
Here, we introduce the Model-Agnostic Meta Learn-

ing (MAML) algorithm [19], which is a representative
optimization-basedmethod and is easy to apply to the existing
deep learning models. MAML formulates meta learning as
a bi-level optimization procedure, where inner optimization

aims to adapt to a given task, and outer optimization is
intended to generalize unseen tasks during meta training.
Specifically, consider a parametric model fθ with param-
eters θ . In the inner optimization, the parameter vector θ
will be updated as θ ′j as a consequence of one or more
gradient descent updates on j’th task Tj that is sampled from
Dmeta−train (i.e., Tj is sampled from task distribution p(T ));
θ ′j = θ − α∇θLTj (fθ ). The inner learning rate (step size)
α can be fixed or learned. For simple notation, we consider
only one gradient update. In the outer optimization, that is,
meta optimization, the model parameters θ are updated using
the updated model parameters θ ′j across tasks via stochastic
gradient descent as follows:

θ ← θ − β∇θ
∑

T ∼p(T )

LTj (fθ ′j )

where β is the meta learning rate (step size). Algorithm 1
presents the exact algorithm.

C. BASE DEEP LEARNING MODELS FOR ONE-FOR-ALL
AND INDIVIDUAL LEARNING
In this section, we describe LSTM, sequence to sequence, and
ResNet models that serve as the base deep learning model
for implementing one-for-all and individual learning models.
Thanks to the flexibility of deep learning models, any of the
base models can be used as the backbone structure.

The Recurrent Neural Networks (RNNs) are intended to
generalize feedforward neural networks to sequences. Given
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Algorithm 1Model-Agnostic Meta Learning [19]
Reguire: p(T ): distribution over tasks
Reguire: α, β: step size hyperparameters
1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Tj ∼ p(T )
4: for all Tj do
5: Evaluate ∇θLTj (fθ ) with respect to K examples
6: Compute adapted parameters with gradient

descent: θ ′j = θ − α∇θLTj (fθ )
7: end for
8: Update θ ← θ − β∇θ

∑
T ∼p(T ) LTj (fθ ′j )

9: end while

a sequence input, general RNNs estimate a sequence out-
put by capturing temporal correlations between previous
and current information. However, it is challenging for tra-
ditional RNNs to learn long-range temporal dependencies
owing to the problems of vanishing or exploding gradients
[31]. LSTM [32] is one of the representative RNNs, which
are capable of solving these problems. LSTM defines and
maintains an internalmemory cell state to keep the long-range
dependencies.

The Sequence to Sequence (Seq2Seq) learning model [33]
is a multilayered LSTM for encoding and decoding. The
encoder-decoder approach can map all the necessary infor-
mation of an input sequence into a fixed-length vector. The
Seq2Seq model was designed for machine translation, but
the encoder-decoder framework is also well suited for energy
load forecasting [34].

Recently, convolutional neural networks have been the key
technique in computer vision and other pattern recognition
areas. Not surprisingly, stacking layers cause the problem of
vanishing and exploding gradients as in LSTM. ResNet [35]
has been developed to solve the gradient problem for CNNs.
ResNet is intended to learn the input residual by referencing
the layer input. Depending on the number of layers L in con-
volution and pooling operation, the ResNet model is referred
to as ResNet-L.

III. METHODOLOGY
In this section, we present the framework of STLF individual-
ization including traditional, transfer, and meta learning. We
also explain the statistical, ARIMA, and one-for-all models
that are evaluated together for comparison.

We consider a parametric model fθ as a predictor that maps
a past time series x to a subsequent future time series ŷ as
below:

fθ : x→ ŷ

We consider a parametric model fθ as a predictor that maps
a past time series x to a subsequent future time series ŷ as:
fθ : x → ŷ. In our study, x is the observed load vector of
the customer i for the past 5 days and 12 hours and ŷ is

the future load vector of the customer during the subsequent
12 hours. An example is shown in Fig. 2. The ground truth
of the future time series is denoted as y. To accommodate
the meta learning framework, we consider each customer as
a class and split all the customers in our dataset into the
meta-training group of p customers, {c1, c2, · · · , cp}, and
the meta-test group of q customers, {cp+1, cp+2, · · · , cp+q}.
To accommodate the meta learning framework, we consider
each customer as a class and split all the customers in our
dataset into the meta-training group of p customers, group P,
and the meta-test group of q customers, group Q. The first
group is named as group P and the second group is named as
group Q. Data of each group can be divided according to the
time period, as shown in Fig. 3. We refer to the load data of
group P during the training period and test period as DP

train
and DP

test , respectively. Also, we call the load data of group
Q during training period and test period as DQ

train and DQ
test ,

respectively.

FIGURE 2. An example of input and output. The span of input vector is
5 days and 12 hours. The output is the vector of immediately following
12 hours.

FIGURE 3. Data splits for modeling short-term load forecasting. Each row
is a time-series, and it represents electric load data of a customer. For the
p customers in group P , DP

train is the load data for training period and

DP
test is the load data for test period. DQ

train and DQ
test are defined in the

same way, but using the q customers in group Q instead.

Assuming the data split shown in Fig. 3, the training data
for learning the models can be summarized as Table 1. All
of the models are evaluated over DQ

test , i.e. over D
ci
test for all

i ∈ [p+1, · · · , p+q]. Assuming the data split shown in Fig. 3,
all of the models are evaluated over DQ

test , i.e. over D
ci
test for

all i ∈ [p+1, · · · , p+q]. The overall information on how the
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data is used for training and testing are illustrated in Fig. 4.
Further details are provided in the following.

TABLE 1. Data used for training customer i ’s model. Test performance is
evaluated over D

ci
test .

A. STATISTICAL METHODS, ARIMA, AND ONE-FOR-ALL
LEARNING
In our study, some of the statistical methods, such as Avg5,
High4of5, Low4of5, and ARIMA are also evaluated for com-
parison. Avg5 estimates the load as the average load of the
last five days. High4of5 selects the top four days out of the
last five days, and calculates the average load of the four
days. Low4of5 is calculated by the average load value of the
bottom four days out of the last five days. These methods
are commonly used in industry [36] as the default choice,
because they are extremely easy to implement and because
they are relatively accurate. Except for ARIMA, there is no
need to train a model and only the customer i’s own input x
is used for predicting the output ŷ. In our experiments, this
means the past five days of data is used for the prediction.
ARIMA, on the other hand, utilizes all of the historical data
of customer i. Therefore,DQ

train is used in addition toD
Q
test for

training ARIMA.
One-for-all learning is the most conventional way of apply-

ing machine learning algorithms to STLF. In one-for-all
learning, the models are trained using the data of all p cus-
tomers in DP

train and evaluated over the q customers in DQ
test .

Note that DP
test and D

Q
train are not used for training.

B. INDIVIDUAL LEARNING
The details of individual models are provided here.

1) TRADITIONAL LEARNING
As shown in Fig. 4, only the historical data of customer i is
used for training traditional individual model. The training for
customer i is performed usingDci

train, and the evaluation is per-
formed using Dci

test . This model is simple to understand and
easy to implement, but it suffers from the small size of Dci

train
and lack of general understanding over all the customers.

2) TRANSFER LEARNING
As shown in Fig. 4, transfer learning first learns from the
entire population in group P using DP

train, and then adapts to
the data of customer i usingDci

train. The first step is performed
as a regular training and the second step is performed as

a fine-tuning of the model parameters. Evaluation of cus-
tomer i’s model is performed using Dci

test as in the traditional
learning, and the overall performance is found by repeating
over the q customers in group Q. Note that transfer learning
is different from the one-for-all model only because of the
presence of the fine-tuning step.

3) META LEARNING
Our framework of meta learning is shown in Fig. 4. STLF is a
regression problem, and we apply 1-way 5-shot learning for
predicting customer i’s load. In this setup, each task is defined
as the following. First, only one customer is involved in each
task because N is equal to one. For the task’s training data
Dtrain, user i’s load data of the past five days are provided.
In there, each day of train data is divided into the before
noon part (shown in solid color in the meta learning segment
of Fig. 4) and after noon part (shown in striped color), and
thus allowing the relationship modeling between the before
and after parts of each day. In each day, each part of the
data consists of 12-hours of consecutive load measurements.
Then, the load data of the sixth day is used as the task’s test
data Dtest . In the test, the algorithm’s goal is to look into
the before noon part of the sixth day and to predict the load
value vector of the after noon part. For the task defined as
above, the meta learning model is trained using the tasks
in Dmeta−train where the tasks are defined using the dataset
DP
train. The test of meta learning model is performed using

the tasks in Dmeta−test where the tasks are defined using the
dataset DQ

test .

IV. EXPERIMENT
The dataset, metrics, and implementation details are
explained here.

A. DATASETS
We performed evaluation over a residential and a non-
residential load dataset. The residential dataset is from the
Korean demand response pilot program between January
2017 and September 2017 that is explained in [36]. We
excluded load data of weekends and replaced the data of holi-
days and demand response event days, for which people were
requested to reduce their load, with the load data of the same
day of the previous week. The data contained load data of
3,543 customers. Each set of customer data contained hourly
electric loads. The data are aggregated to 1-hour resolution
and contained load data of 3,543 customers. We randomly
chose 2,633 customers for group P and 910 customers for
group Q. Among 2,633 customers in group P, the data of
526 randomly chosen customers were used as the validation
set. Additionally, we set the training period from January to
July and the test period from August to September because
the high temperature and the use of air conditioning caused
a high load variance in the summer for the residential data
[36] and we wanted to evaluate the modeling effects for the
challenging period.
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FIGURE 4. The learning models evaluated in this work and the data used for training and testing
the models. In this simplified illustration, i = 1, 2 are the customers in group P (shown in yellow
and blue colors) and i = 3 is the target customer in group Q (shown in green color) whose electric
load needs to be predicted. In other words, p = 2 and q = 1.
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The non-residential dataset is a substation electric load
dataset that is one of the public datasets in the UCI repository
[37]. The dataset covers the electric loads of 370 substations
in Portugal from 2011 to 2014with a 15-min sampling period.
We aggregated the data as hourly and excluded weekend load
data as we did for the residential data. We aggregated the
data as hourly as we did for the residential data. Among
the 370, we used 334 substations whose data was available
between August 2013 and September 2014. The numbers
of substations for group P and group Q were 265 and 69,
respectively. Randomly chosen 64 substations among the 265
substations were used as the validation set. We trained the
models using the data during training period from August
2013 to July 2014, i.e., exactly one year, and the models were
evaluated using the data during test period from August to
September 2014. Summary statistics of residential and non-
residential datasets are shown in Table 2.

TABLE 2. Statistics of hourly load data in kWh.

B. METRICS
The error metrics used in this study are Root Mean Squared
Error (RMSE) and Symmetric Mean Absolute Percentage
Error (SMAPE), which are typical metrics used to evaluate
STLF models. RMSE and SMAPE are calculated as follows:

RMSE =

√√√√ 1
C × D×M

C∑
c=1

D∑
d=1

M∑
m=1

(yc,d,m − ŷc,d,m)2

(1)

SMAPE =
100

C × D×M

C∑
c=1

D∑
d=1

M∑
m=1

|yc,d,m − ŷc,d,m|
(|yc,d,m| + |ŷc,d,m|)/2

(2)

where yc,d,m is the m’th element of the ground truth load
vector of day d for the customer c during the test period
and ŷc,d,m is the same for the predicted load vector. In our
experiments, C = q because the test group (group Q) has
q customers and M = 12 because we predict the later
12 hours of the sixth day’s hourly load values. D varied over
the experiments.

C. IMPLEMENTATION DETAILS
In this section, we describe the implementation details
of our experiments. For all the models, each individual’s
electric load measurements were normalized with the aver-
age value of its input vector. This was necessary to han-
dle the extensive variations in dynamic range over the
customers.

1) STATISTICAL METHODS, ARIMA, AND ONE-FOR-ALL
LEARNING
To compare the individual learning models with the existing
methods, we used three statistical models (Avg5, High4of5,
and Low4of5), ARIMA, Extreme Gradient Boosting (XGB),
and four deep learning models (MLP, LSTM, Seq2Seq,
ResNet/LSTM). XGB was included because it is one of
the most popular and well performing models among the
traditional machine learning algorithms. For the training of
ARIMA, we used all available days before each forecasting
day. The order of AR and MA for ARIMA was optimized
for each individual with the maximum order of three for
both autoregressive and moving average models. For XGB,
we set the total tree number as 1,000, the depth of each
individual tree as four, and the learning rate as in [38]. The
deep learning models were used for one-for-all and all three
individual learning models, and the details of the deep learn-
ing models are provided in the following subsections. The
details of the deep learningmodels for one-for-all learning are
provided in the following subsections. We used python for
our experiment. Auto ARIMA in the pmdarima library and
XGBRegressor in the XGBoost library were used for ARIMA
and XGB. Keras and Tensorflow libraries were used for the
deep learning models.

2) TRADITIONAL LEARNING
We evaluated deep learning models including MLP, LSTM
[32], Seq2Seq [33], and ResNet [35] of 12 layers with LSTM
(ResNet/LSTM). We use four fully connected layers for the
MLPmodel with 256, 128, 64, and 64 units, respectively. The
LSTM model comprises seven cells with 300 hidden nodes
and a fully connected layer. Seq2Seq model has three LSTM
cells with 100 hidden nodes for both the encoder and decoder.
We also use the same architecture of ResNet-12 with LSTM
as in [14], which consists of twelve-layer ResNet and the
following three cells with 300 hidden nodes. All models were
trained and evaluated for each customer.

Deep learning models were trained for 150 epochs. Those
models were optimized using Adam optimizer with a learning
rate of 0.001. Batch size was 128, and activation function was
ReLU. We did not apply an activation function on the output
layer, the cell output of the last LSTM cell, or any outputs
of LSTM cells in ResNet/LSTM as in the typical regression
models. These hyperparameters were set the same as the
hyperparameters of [14] except for the number of epochs.
Their settings were found to be suitable for the proposed
work.

3) TRANSFER LEARNING
The deep learning models and their parameters described in
IV-C2 were also used for transfer learning. For each model,
the number of fine-tuned layers was adjusted according to the
validation performance. In the residential data, the last hidden
layer and output layer for MLP, the output layer for LSTM,
the last three hidden layers and the output layer for Seq2Seq,
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and the output layer for ResNet/LSTM were fine-tuned. In
the non-residential data, the output layer was fine-tuned for
MLP, LSTM, and Seq2Seq, and all layers were fine-tuned
for ResNet/LSTM. The number of epochs for fine-tuning was
fixed to 10.

4) META LEARNING
For meta learning, only MLP was tried as the base model.
We have used MAML that is explained in II-B as the meta
learning algorithm, and the other deep learning models such
as LSTM, Seq2Seq, and ResNet/LSTM required too much
memory for running the training. Meta learning rate β was
0.001 and inner learning rate α was 0.005. For meta learning,
we have used MAML as the meta learning algorithm, and
only MLP was tried as the base model due to lack of memory
for running the training. We have used MAML as the meta
learning algorithm, and the other deep learning models such
as LSTM, Seq2Seq, and ResNet/LSTM required too much
memory for running the training. We have used Adam as the
optimizer and have set α = 0.005, β = 0.001. We used ten
gradient updates for adjusting the inner algorithm of meta
learning and batch size was 128. The number of maximum
iterations was 80,000 where early stopping was used.

5) HYPERPARAMETER OPTIMIZATION (HPO)
Deep learning networks are highly sensitive to the choice
of tuning parameters, commonly known as hyperparameters
in machine learning. Whereas the basic assessments were
performed using the algorithms’ default hyperparameter val-
ues, we desired to observe the extent of improvement that
is possible through hyperparameter optimization (HPO). For
themost important hyperparameter, the learning rate, we have
used diversified Bayesian optimization [39] as the choice of
HPO algorithm and assessed the extra improvements. The
range of learning rate for one-for-all and transfer learning
was [10−6.0, 10−0.2]. The ranges of meta learning rate and
inner learning rate were both [10−6.0, 10−0.1]. The number
of updates for meta learning were from [1, 20]. For the fine-
tuning of transfer learning, the learning rate was kept the same
as the learning rate of the base model learning. The number of
layers and the number of epochs for fine-tuning were adjusted
according to the validation performance.

V. RESULTS
In this section, the experiment results of residential and non-
residential datasets are provided. Also, an additional analysis
on non-residential dataset is provided where we evaluate
the main algorithms’ sensitivity to the choice of test period.
Important parameters in our experiments are summarized in
Table 3.

A. RESIDENTIAL DATASET
For the residential dataset, we evaluated the RMSE and
SMAPE performances of nineteen models including statisti-
cal models and ARIMA in Table 4, one-for-all and individual

TABLE 3. The number of customers (substations) for training (p) and for
test (q). N and K values used for N-way K -shot of meta learning are also
shown.

TABLE 4. Performance of statistical methods and ARIMA on the
residential dataset.

models in Table 5. The results of further improvement with
HPO are also shown in Table 5.
The three statistical models in Table 4 are very simple, but

Avg5 and Low4of5 offer outstanding RMSE and SMAPE
performances, respectively. ARIMA, however, performed
very poorly despite of using the data from a much longer time
period.

One-for-all learning models in Table 5 have shown a large
variance in performance depending on which model is used.
The best performing model turns out to be XGB that is the
only traditional machine learning model.

The evaluations of the ten individual learning models with-
out HPO are shown in Table 5. The first thing to notice
is the low performance of the traditional learning models.
For the residential dataset, each customer’s data spans seven
months but still the traditional version of individual learning
models did not perform very well. For the transfer learn-
ing, MLP and Resnet/LSTM showed good performance but
LSTMand Seq2Seq exhibited not so good performance.Meta
learning was evaluated for MLP only, and the performance
was reasonably good. Overall, transfer learning applied over
MLP provided the best performance among the ten individual
learning models.

Overall, transfer learning over MLP showed the best per-
formance among the nineteen models. Meta learning over
MLP also performed well, and it showed the second best
outcome in terms of RMSE.

It is also worth comparing the four MLP models. If we
look at the MLP row of Table 5, the following facts can
be observed. The one-for-all learning in the first column
performs fairly well. The traditional learning, however, ends
up with a significant loss in performance presumably because
of the smaller size of training data. Both transfer learning
and meta learning offer a superior performance even though
the improvement over one-for-all is relatively modest. The
limited improvement can be due to a few different reasons.
First possibility is the characteristics of the residential dataset.
Individualization can provide an extra benefit only if there
is a sufficient level of diversity among the customers. If not,
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TABLE 5. Performance of one-for-all and individual learning methods on the residential dataset.

FIGURE 5. RMSE and SMAPE of the most representative algorithms on
residential dataset.

the improvement through individualization can be limited. As
we will see later in the non-residential results, the gain can
be larger for other datasets especially when we consider the
seasonal variation. Second possibility is the model training,
and we explain the extra improvements that can be gained
with hyperparameter optimization in the following.

As mentioned in IV-C5, deep learning models can often
have a significant room for improvement. Deep learning
models can often have a significant room for improvement.
Here, we have considered only the MLP models for HPO,
where we have excluded the traditional model because of its
low performance in Table 5. For the HPO, we optimized the
parameters listed in Section IV-C5 with RMSE as the objec-
tive, and the final results are presented together in Table 5
shown inside parenthesis with asterisk mark. If we consider
Avg5 as the RMSE baseline and Low4of5 as the SMAPE
baseline, transfer learning over MLP decreased RMSE and
SMAPE by 7.66% and 0.78%, respectively. Meta learning
over MLP outperformed transfer learning, and it decreased
RMSE and SMAPE by 7.84% and 1.82%, respectively.

In Fig. 5, a visual summary is shown for the most repre-
sentative algorithms. Individualization through meta learning
achieves the best performance for both RMSE and SMAPE.
To double check that the performance difference is statis-
tically significant, paired t-test was performed. For all the
pair-wise comparisons, p < .001 was obtained confirming the
soundness of our result.

TABLE 6. Performance of statistical methods and ARIMA on the
non-residential (UCI) dataset.

B. NON-RESIDENTIAL DATASET
We have performed the same experiments using the UCI’s
non-residential dataset. The results are presented in Table 6,
Table 7.

As in the residential case, Low4of5 works very well, as
shown in Table 6, and we use Low4of5 as the baseline for
both RMSE and SMAPE. Because the non-residential dataset
is for substations where loads of numerous residential or
industrial customers are aggregated for each substation, the
RMSE values are orders of magnitude larger than the results
in Table 4.

One-for-all learning models in Table 7 shows a large vari-
ance in performance as in the residential case. In particular,
the Seq2Seq performed very poorly not only for one-for-
all but also for individual learning models. This indicates
that Seq2Seq couldn’t be trained well for the non-residential
dataset. LSTM also performed poorly, but it performed rela-
tively better for the individual learning models. In particular,
the poor performance of Seq2Seq indicates that Seq2Seq
couldn’t be trainedwell for the non-residential dataset. LSTM
also performed poorly, but it performed relatively better for
the individual learning models.

The evaluations of the ten individual learning models with-
out HPO are shown in Table 7. This time, the traditional
learning over MLP performs well where it works better than
Low4of5. However, transfer learning and meta learning over
MLP performs even better.

Overall, meta learning over MLP achieved the best perfor-
mance in terms of RMSE, and transfer learning over MLP
achieved the best performance in terms of SMAPE. As in the
residential case, the four MLP models can be compared to
derive similar analysis.

The best performance results after HPO are presented
together in Table 5 shown inside parenthesis with asterisk
mark. Compared to the baseline of Low4of5, transfer learning
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TABLE 7. Performance of one-for-all and individual learning methods on the non-residential (UCI) dataset.

FIGURE 6. RMSE and SMAPE of the most representative algorithms on
non-residential (UCI) dataset.

over MLP decreased RMSE and SMAPE by 13.02% and
12.36%, respectively. Meta learning over MLP decreased
RMSE and SMAPE by 15.17% and 9.8%, respectively.

In Fig. 6, a visual summary is shown for the most repre-
sentative algorithms. Individualization through meta learning
achieves the best performance for RMSE and individualiza-
tion through transfer learning achieves the best for SMAPE.
As in the residential dataset, we performed paired t-test and
confirmed that the difference in prediction load is statistically
significant (p < .001).

C. SENSITIVITY TO TEST PERIOD
The span of residential dataset was between January 2017 and
September 2017. Because we wanted to separate the training
period and test period as shown in Fig. 3, we have chosen the
last twomonths, August and September, as the test period. For
the non-residential dataset, the span was much longer and we
were able to include one full cycle of seasons, i.e. one year,
into the training period followed by August and September
as the test period. We intentionally made the test months to
be the same for both residential and non-residential such that
there is no difference in terms of seasonal effects.

For the residential dataset, transfer learning andmeta learn-
ing might have suffered from not having one full year of
seasons in the training data. Whereas the test period was
August and September, the training data did not contain any

FIGURE 7. SMAPE performance for choosing one month of test period
between June and December. Low4of5 and the three individual learning
models over MLP are plotted.

information from the previous year’s August and September.
Therefore, there was no way for the algorithms to learn
the load usage characteristics that are unique to the two
months. This problem could have been exacerbated for the
individual learning models that pay more attention to the
specific patterns of individuals. Furthermore, meta learning
might have been affected even more because it is supposed
to build an individualized predictor based on many possi-
ble rules that it has seen in the meta-training dataset. Non-
residential dataset’s span was long enough that it was possible
to alter the test period while still using the previous one
year as the training period. Therefore, we have repeated the
experiments with one month of test period where the test
period ranged between June and December. The results are
furnished in Fig. 7. Note that we have chosen only the main
four algorithms, Low4of5 and the three individual learning
models over MLP, for plotting. Clearly, Low4of5 is the worst
algorithm, whereas transfer learning and meta learning are
the best algorithms. Whereas we have chosen August and
September as the test period in subsection V-B, the perfor-
mance improvements over Low4of5 are much larger in June,
July, and October. Compared to the one-for-all learning, both
transfer learning and meta learning generally worked better
with one exception of December. In December, the perfor-
mance of transfer learning is degraded while the performance
of meta learning still continues to outstand. It turns out that
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December has extended holidays when electric load usage
patterns can dramatically change. For the change, transfer
learning failed to make proper adjustments and it became
even worse than one-for-all learning. Meta learning, however,
was able to better handle the change because it uses the input
of five training days as the example patterns of what to expect
on the sixth day. Overall, the average SMAPE improvement
of meta learning over Low4of5 was 12.25% for the seven
months shown in Fig. 7.

D. COLD-START PROBLEM
For the existing energy infrastructures, it can be typical to
have a sufficient amount of past data. For the emerging
sectors, however, only a limited amount of past data might
be available - a customer might have just moved in, a new
IoT meter might have been just installed, the existing sensors
might have been just upgraded to collect samples at a higher
frequency (e.g. upgrade from per hour data to per second
data), etc. In such cases, some of the customers might suffer
from lack of data, and this problem is called the cold-start
problem. Formally speaking, cold-start refers to the prob-
lem where computer-based information system is not able
to draw any inferences for users or items because of the
lack of gathered data [40]. There have been a few studies
to alleviate the impact of cold-start in STLF. For instance,
parallel forecasting models using generative adversarial net-
works were suggested in [41] and transfer learning models
were considered in [4], [42].

For a given target customer, transfer learning requires the
customer’s past data for individualization. Meta learning,
however, does not require the past data of the target customer
as can be seen in Fig. 4. To better understand its ramifica-
tion, we have performed an experiment where the amount
of available past data was controlled, and the results are
shown in Table 8. It can be seen that transfer learning’s per-
formance can be significantly degraded, especially for non-
residential dataset. Meta learning’s performance, however, is
not affected because it does not use the past data of the target
customer.

TABLE 8. Cold-start problem - when only a limited amount of past data is
available for a customer, transfer learning’s performance can be
significantly degraded while meta learning’s performance is not affected
at all.

VI. CONCLUSION
Short-term electric load forecasting (STLF) is essential for
effectively managing energy systems. A reliable analysis

through an accurate STLF can be used to secure stable energy
supplies or to meet dynamic demands. In this study, we
have investigated the potential of individualized modeling for
STLF. The latest deep neural network techniques, transfer
learning and meta learning, were adopted to implement indi-
vidualized STLF models for energy data. The individualized
models were evaluated on a residential dataset and a non-
residential dataset. The RMSE and SMAPE were evaluated,
and the proposed models outperformed the existing statistical
methods, ARIMA, one-for-all models, and the traditional
individual learning approach. Transfer learning and meta
learning have been known for many decades, but perhaps
we have finally reached the tipping point of harvesting their
practical advantages for many energy forecasting problems.
This has been made possible thanks to the rapid progress in
the deep learning research. The latest deep neural networks
are capable enough for modeling complicated patterns and
flexible enough for accommodating advanced concepts such
as individualization. It is a perfect time to exploit the latest
advances in deep learning. For instance, our meta learning
approach can learn a reliable and accurate individualized
model after just several days of data collection. This can be an
important advantage for operating managers like Distribution
System Operators (DSOs), because increasingly more energy
is being generated locally and connected newly to distribution
networks. Additional efforts should be made to identify the
key concepts in energy domain that could not be handled well
with the traditional methods but might be handled well with
the latest technologies.
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