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ABSTRACT To improve distribution and convergence of the obtained solution set in constrained
multi-objective optimization problems, this paper presents an adaptive ε-constraint multi-objective evolu-
tionary algorithm based on decomposition and differential evolution (ε-MOEA/D-DE). First, an adaptive
ε-constraint strategy based on both evolution generation and constraint violation is designed to make better
use of excellent evolution individuals and improve population diversity. Then, an adaptive differential
evolution (DE) mutation strategy with full utilization of infeasible individuals is proposed to increase search
efficiency and avoid falling into the local optimum. Finally, a replacement mechanism is suggested to take
advantage of the infeasible individuals in the population with better objective function values and constraint
violation degree, and thus both diversity and convergence are well coordinated. A comparative experiment
with four other excellent constrained multi-objective algorithms was implemented on standard constrained
multi-objective optimization problems (CF series), and the results showed that the diversity and convergence
of our algorithm were both improved.

INDEX TERMS Constrained many-objective optimization, ε-constrain handling techniques, differential
evolution algorithm, MOEA/D.

I. INTRODUCTION
In practical engineering applications, there are many con-
strained multi-objective optimization problems (CMOPs)
[1], [2] in which multiple objectives and constraints need to
be optimized. Without a loss of generality, CMOPs can be
formulated as formula (1):

minimize F (X) = (f1 (X) , f2 (X) , . . . , fm (X)) ,

subject to

{
gi (X) ≤ 0, j = 1, 2, . . . , p
hi (X) = 0, j = p+ 1, p+ 2, . . . , p+ q

where X =
(
x1, x2, . . . , xn

)
∈ Rn, x i ∈

[
L i,U i

]
(1)

whereX is the decision vector; x i is the i-th decision variable;
L i and U i are the lower and upper bounds of x i, respectively;
n is the number of decision variables;Rn is the decision space;
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fi(X) is the objective function; m is the number of objective
functions; gi(X) is the j-th inequality constraint;hj(X) is the
(j − p)-th equality constraint; p is the number of inequality
constraints, and (q− p) is the number of equality constraints.
The constraint violation of individual X on the j-th constraint
is calculated as formula (2):

Cj (X) =

{
max

(
0, gj (X)

)
, j = 1, . . . , p

max
(
0,
∣∣hj (X)− δ∣∣) , j = p+ 1, . . . , p+ q

(2)

The feasible region� of a CMOP is a subspace of the decision
space Rn, and it can be defined as formula (3), where Rm

is called the objective space. The attainable objective set is
defined as the set 2 = {F(X)|X ∈ �} [2].

� =
{
X ∈ Rn

∣∣Cj (X) = 0, j = 1, . . . , q
}

(3)

As a promising method to solve the CMOPs, con-
strained multi-objective evolutionary algorithms (CMOEAs)
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consist of two aspects, multi-objective evolutionary algo-
rithms (MOEAs) and constraint handling techniques [3].
In recent decades, a variety of MOEAs have been developed,
such as a decomposition-based archiving approach for multi-
objective evolutionary optimization [4] and multi-objective
particle swarm optimization algorithm [5], [6], and MOEA
based on decomposition (MOEA/D) [4], [7], [8] is one of
the most attractive algorithms. Many studies have shown
its advantages with high search ability and high compati-
bility on unconstrained multi-objective optimization prob-
lems. Zhang et al. proposed an efficient decomposition-based
archiving approach (DAA) [4] inspired from the decomposi-
tion strategy for dealing with multi-objective optimization.
At each generation, only one non-dominated solution lying
in a subspace is chosen to be used for updating the exter-
nal archive in consideration of its diversity. When solving
CMOPs, many infeasible solutions are generated during the
optimization process because of the constraints, and thus con-
straint handling techniques are needed to measure the advan-
tages and disadvantages of feasible solutions and infeasible
solutions. The current constraint handling techniques mainly
involve penalty function method, stochastic ranking, feasibil-
ity rule, multi-objective optimization, ε-constraint, and dual
population storage [9].

Although MOEA/D has shown excellent performance on
problems without constraints, few constraint handling tech-
niques have been combined with MOEA/D to solve CMOPs.
Jan and Zhang introduced a penalty function into MOEA/D
using differential evolution (DE) (CMOEA/D-DE-ATP) [10]
for penalizing infeasible solutions, and a dynamic thresh-
old strategy is used to control the penalty coefficient, and
thus more infeasible regions near the feasible solutions are
explored to improve the population diversity, but it requires
setting six other parameters. Jain et al. proposed C-MOEA
based on dominance (C-MOEA/D) [11], in which the com-
parison between the offspring and the corresponding parent
is made according to the following rules: 1) The feasible solu-
tion is always better than the infeasible solution. 2) The indi-
vidual with a better objective function value wins when the
compared individuals are feasible solutions. 3) The smaller
constraint violation is taken seriously when two individuals
are both infeasible solutions. However, C-MOEA/D’s neglect
of the valid information carried by the infeasible solutions
reduces the search space and causes it to fall into prema-
ture convergence on highly constrained problems. Li et al.
extended MOEA/DD, denoted as C-MOEA based on domi-
nance and decomposition (C-MOEA/DD) [12], to solve con-
strained optimization problems. By introducing an infeasible
solution with the largest constraint violation into the pop-
ulation update procedure when it is associated with an
isolated subregion, C-MOEA/DD also makes use of the
infeasible solutions, which is important for population
diversity. Fan et al. proposed an angle-based constrained
dominance method, named MOEA/D-ACDP [13], which
adopts the angle information of the objective functions to
enhance the population diversity in the infeasible region.

In MOEA/D-ACDP, for two infeasible solutions, if the angle
of the solutions is greater than a given threshold, then they
are considered to be non-dominated by each other. For a
feasible solution and an infeasible solution, if the angle of
the solutions is less than the given threshold, then the feasible
solution is better; otherwise, they are non-dominated. These
studies made use of the infeasible solutions in the comparison
and selection procedure, but none of them introduced an
excellent infeasible solution into the mutation and crossover
operators.

The ε constrained differential evolution (εDE) [14] pro-
posed by Takahama and Sakai is the first try to combine
the ε constrained method and DE. And, the εDE with an
archive and gradient-based mutation (εDEag) [15] proposed
by Takahama and Sakai is a representative constraint han-
dling method. It has three contributions: (a) In order to
improve the stability, the parent can generate another child
when the previous one is not better than the parent, and,
in order to keep the diversity and efficiency, an archive is
utilized which has many individuals initially and is updated
using defeated individuals in survivor selection of DE.
(b) In order to improve the usability, the parameter value
is automatically set based on the state of an initial archive.
(c) In order to improve the efficiency, the ε level
is increased in order to enlarge searching region and
find individuals with better objective values. Furthermore,
Takahama and Sakai presented εDEkr [16] by combining
the ε-constraint with the estimated comparison. Bu et al.
suggested SRS-εDEag [17], which selects the infeasible indi-
viduals for gradient-based repair. An improved version of
εDEag was proposed named εDE-PCGA [18], which com-
bines with pre-estimated comparison gradient based approx-
imation. Saul et al. proposed a memetic algorithm [19],
in which DE is used as the global search algorithm, and
local search is implemented by a mathematical programming
method. Asafuddoula et al. combined the ε-constraint with
MOEA/D, which adaptively decides the ε level based on the
number of violated constraints and the number of feasible
solutions [20].

To improve the distribution and convergence of the
obtained solution set in CMOPs, a DEmutation operator with
infeasible solutions in MOEA/D is proposed in this paper.
The main contributions of this paper can be summarized as
follows:

¬ We propose an adaptive ε-level strategy based on both
evolution generation and constraint violation, which
can make better use of the information of excel-
lent infeasible individuals and improve population
diversity.

 We present an adaptive DE mutation strategy to
increase search efficiency and avoid falling into the
local optimum.

® We suggest a replacement mechanism to take full
advantage of the infeasible individuals with a better
objective function for coordinating both diversity and
convergence of population.
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The rest of the paper is structured as follows: Section II
provides some background knowledge. Section III introduces
the proposed method. Section IV presents the experiment
descriptions, results, and discussion. Section V concludes this
paper and identifies some directions for future studies.

II. RELATED WORK
A. MOEA/D
A MOP is decomposed into many single-objective optimiza-
tion problems by MOEA/D. Single-objective optimization
problems are formulated by scalarizing functions using uni-
formly distributed weight vectors ω(i = 1, 2, . . . ,N ), where
N is the population size. Popular scalarizing approaches
include weighted sum, weighted Tchebycheff, and bound-
ary intersection approaches. In this paper, we use the
penalty-based boundary intersection (PBI) approach [10].
The scalar of the PBI function can be formulated by formu-
las (4) and (5) as follows:

minimize gPBI
(
X |ω,Z∗)

= d1 + θd2,

subject to X ∈ � (4)

d1 =

∥∥∥(F (X)− Z∗)T ω

∥∥∥
‖ω‖

,

d2 =

∥∥∥∥F (X)− (Z∗ + d1 ω

‖ω‖

)∥∥∥∥ (5)

where the reference point Z∗i = min
{
gPBIi (X) |X ∈ �} ,

i = 1, 2, . . . ,m is the best objective vector in the current
population, θ is the parameter of the PBI, and its range is
θ ≥ 0.

B. THE DE PROCESS
Differential evolution [21] has been widely utilized in many
fields due to its numerous advantages, including simplicity,
efficiency, and ease of implementation. It includes three main
evolutionary operators: mutation, crossover, and selection.
The mutation operator produces a mutation vector V i =(
v1i , v

2
i , . . . , v

n
i

)
corresponding to target vector X i through

the base vector X r1 and the difference vector (X r2 − X r3).
Besides, V i is shown as formula (6).

V i = X r1 + F × (X r2 − X r3) (6)

where F is the scaling factor, and indices r1, r2, r3 are
diverse integers uniformly chosen from the set {1, 2, . . . ,N }.
The crossover operator is applied to the target vector X i

and its mutant vector V i, and the generated trial vector U i =(
u1i , u

2
i , . . . , u

n
i

)
is implemented as formula (7).

uji =

{
vji, rand (j) ≤ CR

x ji , otherwise
(7)

where uji is the j-th dimension of U i; and the crossover
probability CR is a single parameter within the interval [0, 1],
which controls the fraction of vector components inherited
from the mutation vector. The target vector X i is compared
with its trial vector U i according to the selection strategy.

C. ε-CONSTRAINT
The ε-constraint [14] compares a pair of individuals with
relaxed constraints. If the constraint violation values formu-
lated as formula (8) of the two individuals are equal or both
less than a pre-set number ε (ε ≥ 0), which is controlled as
formula (9) [15], then the individual with a better objective
value wins; otherwise, the one with the smaller constraint
violation wins. In this equation, parameter t is the iteration of
the population; Tc is the control generation, set as 0.2Tmax;
cp controls the reducing speed of ε, which is set as 5; and
initial ε level ε (0) is the constraint violation of the top θ -th
individual Xθ in the initial search points.

G(X ) =
∑p

i=1
max (0, gi (X))

+

∑q

j=1
max

(
0, |hj(X)|

)
(8)

ε (t) =

{
ε (0)× (1− t/Tc)cp , 0 < t < Tc
0, t > Tc

ε (0) = G (Xθ ) (9)

III. INFEASIBLE SOLUTIONS-BASED MOEA/D
In this section, a constrained handling technique, called ε-
MOEA/D-DE, is proposed to better balance diversity and
convergence based on making use of infeasible solutions.
First, we propose an adaptive ε-level based on both the gener-
ation and the constraint violation value. Then, a replacement
mechanism proposed takes full advantage of the infeasible
individuals in the population with a better objective function
and avoids the other individuals by a one-to-one comparison.

A. ADAPTIVE ε-CONSTRAIN HANDLING TECHNIQUES
Comparing feasible and infeasible solutions is a fundamental
issue in constrained evolutionary optimization. Diversity and
convergence can both be enhanced by allowing infeasible
solutions to take part in the evolution [11]. By adjusting
parameter ε, the ε-constraint coordinates feasible solutions
and infeasible solutions. In prior work, the value of ε either
simply changed because of the iteration increase or for con-
straints. None of the previous studies investigated the ε value
being influenced by both the iteration and the type of con-
straints. In this part, an adaptive ε-level is proposed consid-
ering both the generation and the constraint violation value.

In Figure 1, the triangles denote infeasible solutions,
the dots denote the feasible solutions, the red dotted lines dis-
play the Pareto front (PF) without constraints, the blue curve
is PF with constraints, the gray areas represent the feasible
regions, and the slashed areas are the ε-constrained-regions.
As shown in Figure 1 (a), in the early stage, the number of
infeasible solutions may be much larger than the number of
feasible solutions. In order to quickly explore the feasible
regions, more infeasible solutions should be participated in
the evolution, so the ε-constrained-regions should be large.
The greater the proportion of infeasible solutions, the larger
the level of ε should be. As shown in Figure 1 (b), as the
iteration progresses, the proportion of infeasible solutions
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FIGURE 1. Adaptive ε-constrained level.

in the population gradually increases. The population needs
to approach the feasible PF while exploring new areas, the
ε-constrained-regions need to be gradually reduced. In the

later stage, there are increasingly more feasible individuals
to ensure the convergence of the population, and it is worth
noting that the final task of evolution is to achieve feasible
Pareto solutions; thus, the population needs to be promptly
guided by the constrained PFs. Therefore, in this case, there
needs a large proportion of feasible solutions, and then the
ε value should gradually tend towards zero as the evolu-
tionary generation increases. Based on the above discussion,
the improved ε level is calculated by formula (10), where it
is adaptive based on both the evolutionary generation and the
constraint value.

ε (t) =

{
ε (0)× (1− t/Tc)cp , 0 < t < Tc
0, t ≥ Tc

ε (0) =
Nin
N

∑N

i=1
G (X i) (10)

where cp controls the reducing speed of ε set which is as 5,
referred to [15], Tc is the control generation, which is cal-
culated as formula (11), and Nin is the number of infeasible
solutions.

Tc = t,
1
N

∑N

i=1
G (X i (t)) ≤ 0.01 (11)

B. REPLACEMENT MECHANISM
The ε-constraint utilizes a one-to-one replacement mecha-
nism that may result in the loss of a part of the Pareto
solutions. The one-to-one replacement may miss an indi-
vidual who has a constraint violation value slightly larger
than ε but has the best objective function value. The replace-
ment mechanism proposed in this part aims at taking full
advantage of the infeasible individuals in the population
with a better objective function and avoiding individuals
by a one-to-one comparison. For example, in Figure 2 (a),
the triangles denote the ε-constrained-feasible solutions with
larger objective function values, and the dots denote the
ε-constrained-feasible solutions with smaller objective func-
tion values. This distribution indicates that the dots are better
for the evolution. very likely on the boundary of the feasible
region. In Figure 2 (b), the triangles denote the solutions with
larger constraint violation values, and the dots denote the
solutions with smaller constraint violation values. As shown
in the figure, by avoiding such solutions, many feasible and
infeasible solutions may be generated near the ε-constrained
regions, which provides an advantage in searching for the
optimal infeasible individuals, many feasible and infeasible
individuals may be generated near the feasible region. Thus,
an archive A is introduced to store the effective infeasible
individuals. During each generation t , for a target vector
X i,t in population P t , a trial vector U i,t is generated by DE
mutation and crossover operators. Here, f

(
U i,t

)
(f
(
X i,t

)
)

and G
(
U i,t

)
(G
(
X i,t

)
) are the objective function value and

the constraint violation, respectively, at a point U i,t (X i,t ).
To ensure infeasible solutions with better objective functions
are included to approach the true constrained PFs,X i,t is com-
pared with U i,t based on the proposed replacement rule as
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FIGURE 2. The effects of the effective infeasible solutions.

follows: If the constraint violation values of U i,t and X i,t are
equal or both less than ε (t) (formulated as equation (10)), and
if f

(
U i,t

)
< f

(
X i,t

)
or if G

(
U i,t

)
< G

(
X i,t

)
, then U i,t will

replace the compared target vector X i,t , this can be described
as formula (12); otherwise, if the constraint violation values
of U i,t and X i,t are more than ε (t), G

(
U i,t

)
> G

(
X i,t

)
and

f
(
U i,t

)
< f

(
X i,t

)
, then X i,t cannot be replaced and U i,t

FIGURE 3. The DE mutation operator named DE/rand-infeasible-
neighborhood.

should be stored into the predefined archive A. This can be
described by formula (13).

Ui,t replace Xi,t ⇔
f
(
U i,t

)
< f

(
X i,t

)
,G

(
U i,t

)
, G

(
X i,t

)
≤ ε (t)

f
(
U i,t

)
< f

(
X i,t

)
, G

(
U i,t

)
= G

(
X i,t

)
G
(
U i,t

)
< G

(
X i,t

)
.

(12)

U i,t stored in A⇔ f
(
U i,t

)
< f

(
X i,t

)
,

G
(
U i,t

)
,G

(
X i,t

)
> ε (t) ∧ G

(
U i,t

)
> G

(
X i,t

)
(13)

C. DE MUTATION OPERATOR WITH INFEASIBLE
SOLUTIONS
In this section, a DE mutation operator, named DE/rand-
infeasible-neighborhood, is proposed to introduce effective
infeasible solutions into producing the mutant vector V i,t .
As shown in Figure 3, to utilize the information carried by
infeasible solutions to guide the population exploring the
constraint boundaries and jumping out of an isolated feasible
region, an infeasible solution (denoted as XPI ,t ) is introduced
into the mutation operator to form the difference vector. The
proposed DE mutation operator is calculated as formula (14).

V i,t = X r1,t + F1,t ×
(
XPI ,t − X r2,t

)
+F2,t ×

(
X r3,t − X r4,t

)
(14)

where four different indexes r1, r2, r3, and r4 are randomly
selected from the neighbor of X i,t , and, to learn information
from the infeasible solutions, index PI is selected from the
achieve A, scaling factors F1,t , and F2,t is used to control the
two difference vectors in different evolution periods.

In the early stage of evolution, the population may contain
only infeasible solutions, and, in this scenario, the population
should quickly approach feasible regions to find feasible
solutions. Infeasible solutions with a better objective value
can be exploited to expand the exploration range, as discussed
in Sections III-A and III-B, the scaling factor F1,t should be
large while the F2,t should be small. The parameter F1,t , F2,t

17600 VOLUME 9, 2021



B.-J. Liu, X.-J. Bi: Adaptive ε-Constraint Multi-Objective Evolutionary Algorithm Based on Decomposition and DE

is controlled as in formula (15).

F1,t = Fmin + (Fmax − Fmin)×

(
2− exp

(
t

Gmax
× ln 2

))
F2,t = Fmin + (Fmax − Fmin)×

(
exp

(
t

Gmax
× ln 2

)
− 1
)

(15)

where t is the iteration, Gmax is the maximum number of t ,
and Fmin, Fmax are the ranges of F1,t and F2,t . As the iteration
t increases from 0 to Gmax, F1,t changes from Fmax to Fmin,
while F2,t varies from Fmin to Fmax.

D. PROCESS OF THE PROPOSED ALGORITHM
For ease of understanding, in this section, firstly, the proposed
algorithm, an adaptive ε-constraint multi-objective evolu-
tionary algorithm based on decomposition and differential
evolution (ε-MOEA/D-DE), is briefly described.
For the step 2: 4) Update of Solutions, firstly, the indexes

in set Bi are put into a temporary set S, and a temporary
index c is set to 0. Afterwards, the follow-up procedure is
done, until c = nr or S is empty, to decide whether the solu-
tions in the neighbor associatedwithX i can be replaced by the
offspring U i:
If the constraint violation value G of U i equals that of

X j, j ∈ S, and the PBI function value gPBI of U i is
smaller than that of X j, then replace X j by U i, and c plus
one.

If both G (U i) and G
(
X j
)
are smaller than ε (t), and

gPBI (U i) is smaller than gPBI
(
X j
)
, then replace X j by U i,

and c plus one.
IfG (U i) is smaller thanG

(
X j
)
, then replaceX j byU i, and

c plus one.
If any of the above cases does not happened, then retain

X j, and, if gPBI (U i) is smaller than gPBI
(
X j
)
simultaneously,

then store U i into the achieve A.
It is worth noting that the index j is selected from set S

randomly, and is delete from set S after the above comparison.

IV. EXPERIMENTAL SETUP
This section describes four experimental designs that were
developed for investigating the performance of the proposed
algorithm, the experiment I is to analyze the effects of
the scaling factors, Fmin and Fmax; the experiment II is to
verify the adaptive ε-level, the experiment III is to verify
the replacement mechanism and the DE mutation operator,
and the experiment IV is to verify the proposed algorithm
ε-MOEA/D-DE. First, we provide the experimental environ-
ment. Then, we describe the benchmark problems used in
empirical studies. Afterwards, we introduce the performance
metrics used for evaluating the performance of an evolu-
tion multi-objective optimization (EMO) algorithm. Finally,
we briefly describe the parameters used in the four exper-
iments, and we provide the experimental results and an
explanation.

Algorithm 1 ε-MOEA/D-DE
Input:
1) a CMOP;
2) Gmax : the maximum number of iterations
3) N : the number of the subproblems;
4) a set of N weight vectors: ω1,ω2, . . . ,ωN ;
5) T : the size of the neighborhood of each weight vector;
6) Fmin, Fmax: the ranges of the scaling factors;
7) CR: the crossover probability;
8) θ : the parameter of PBI function;
9) nr: the maximal number of solutions replaced by an

offspring.
Output: A set of constrained non-dominated feasible solutions.
Step 1: Initialization:

1) Set the iteration t = 1;
2) Decompose the CMOP into N sub-problems associated
with ω1,t ,ω2,t , . . . ,ωN ,t ;
3) Generate an initial population Pt = {X1,t ,
X2,t , . . . ,XN ,t }, where X i,t is the current solution to the
i-th subproblem. The j-th dimension xji,t of Xi,t is

produced by xji,t = Li + rand (t)× U i, j = 1, 2, . . . , n;
4) Compute the Euclidean distance between any two
weight vectors and obtain T closest weight vectors
to each weight vector. For each i = 1, 2, . . . ,N ,
set Bi = {i1, i2, . . . , iT }, where ωi1,t , ωi2,t , . . . , ωiT ,t
are the T closest weight vectors to ωi,t ;
5) Initialize Z∗ = (z1, z2, . . . , zm);
6) Initialize the achieve A = ∅.

Step 2: Population update
For i = 1, 2, . . . ,N , do:
1) Production: Generate the mutant solution V i,t by
the DE/rand-infeasible-neighborhood mutation operator,
then perform a crossover operator with probability CR to
produce a new solution U i,t ;
2) Repair: If any element of U i,t is out of the boundary,
its value is reset to be randomly selected value inside the
boundary;
3) Update of Z∗: For each j = 1, 2, . . . ,m, if zj > gPBIj(
U i,t

)
, then set zj = gPBIj

(
U i,t

)
;

4) Update of Solutions: Set c = 0, S = Bi, and then do
the following:
4.1) If c = nr or S is empty, go to Step3. Otherwise,
select an index j from S randomly;
4.2) Calculate the constraint violation values and the
PBI values of X j,t and U i,t :
4.2.1) if G(U i,t ) = G(X j,t ) and gPBI (U i,t

∣∣ωj,Z∗) ≤
gPBI

(
X j,t

∣∣ωj,Z∗), then set X j,t = U i,t and c = c+ 1;
4.2.2) if G

(
U i,t

)
,G

(
X j,t

)
≤ ε (t) and gPBI (U i,t

∣∣ωj,
Z∗) ≤ gPBI

(
X j,t

∣∣ωj,Z∗ ), then set X j,t = U i,t and
c = c+ 1;
4.2.3) otherwise, if G

(
U i,t

)
< G

(
X j,t

)
, then set

X j,t = U i,t and c = c+ 1;
4.2.4) if not any of the above cases and f

(
U i,t

)
<

f
(
X j,t

)
, then store U i,t into the achieve A;

4.3) Remove j from S and go to 4.1).
Step 3: Termination: If t ≥ Gmax, output Pt = {X1,t ,X2,t ,

. . . ,XN ,t }. Otherwise, go to Step 2.
Step 4:t = t + 1. Set A = ∅.
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A. BENCHMARK PROBLEMS
The PC configuration of the system in the experiments was
as follows: Windows 10; RAM: 2 G; CPU: G620; CPU
2.60 GHz; computer language: SCILAB 6.1. As a basis
for the comparisons, some well-known test problems, as
CF1-CF7 [22], were involved in the experiments.

In the CF1-CF7 series, the number of decision variables is
ten, and the number of objectives is two. The corresponding
PF lies in fi ∈ [0, 1]. The test problems relate to the PF
that has discrete points (CF1), convex (CF2), concave (CF3),
continuous (CF4, CF5), disjointed (CF1, CF2, CF3), and
differently scaled (CF2, CF3, CF4, CF5).

B. PERFORMANCE METRICS
In this empirical work, we consider the following two widely
used performance metrics. Both can simultaneously measure
the convergence and diversity of obtained solutions. Conver-
gence describes the closeness of the obtained Pareto front to
the true PFs. On the other hand, Diversity depicts how the
solutions in the obtained Pareto are distributed.

1) Inverted generation distance (IGD) metric [23]: Let
P∗ be the ideal Pareto front set, and C is an approximate
Pareto front set achieved by the evolutionary multi-objective
algorithm. The IGD metric denotes the distance between P∗

and C . It is defined by formula (16). The lower is the IGD
value, the better is the quality of S for approximating the
whole Pareto front set.

IGD =

∑
y∗∈P∗ d

(
y∗,C

)∥∥P∗∥∥
d
(
y∗,C

)
= min

y∈C

{√∑m

i=1

(
y∗i − yi

)2} (16)

2) Hypervolume (HV) Metric [24]: TheHV is them dimen-
sional volume of the region enclosed by the obtained Pareto
front set and a dominated point r in the objective space. A high
HV indicates a good Pareto front set in both the convergence
toward Pareto front and the diversity to approximate a wide
range of Pareto front. The reference point for computing the
HV is set to r = (1.2, 1.2, . . . 1, 2) and the HV value is
computed by formula (17).

HV (P) = vol

(⋃
X∈P

[f1 (X) , r1]× . . .× [fm (X) , rm]

)
(17)

where vol (·) indicates the Lebesgue measure.

C. EMO ALGORITHMS FOR COMPARISONS
To verify the adaptive ε-level proposed in Section III-A, three
state-of-the-art EMO algorithms were considered, includ-
ing εDE [14], εDEag [15], and SRS-εDEag [17], for com-
parison. Since εDE, εDEag and SRS-εDEag are proposed
for constrained single problems, for a fair comparison, all
these algorithms were carried out under the framework of
MOEA/D and only those strategies of ε-constraint handling
techniques could be used, and the DE operator was carried
out by equations (6) and (7).

To verify the replacement mechanism proposed in
Section III-B and the DE mutation operator proposed in
Section III-C, four most representative algorithms were used
for comparison: CMOEA/D-DE-ATP [10], C-MOEA/D [11],
C-MOEA/DD [12] and MOEA/D-ACDP [13].
To verify the proposed algorithm ε-MOEA/D-DE,

three algorithms were considered, including C-MOEA/DD,
MOEA/D-ACDP, C-FRORI [7], and C-NSGA-III [11], for
comparison. It should be noted that C-FRORI was incorpo-
rated into NSGA-II.

D. PARAMETER SETTINGS
For a fair comparison, parameters of different algorithms are
set to be the same, and the parameters used in all the four
experiments are listed in Table 1.

TABLE 1. The parameter setting of four experiments.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. PARAMETER ANALYSIS
The parameters F1 and F2 have a direct impact on the evo-
lution. Therefore, in this section, how Fmax and Fmin affect
the results is discussed on test problems CF1-CF7. In exper-
iment I, which is an orthogonal experimental design, Fmax
ranges from 0.5 to 1 with the step length set as 0.1, and,
Fmin ranges from 0.5 to 1 with the step length set as 0.1. Two
settings are selected to show the effects, one is the extremist
setting and the other one got the best IGD values. Table 2 sum-
marizes the IGD metric statistics based on 50 independent
runs for each test instance with these two settings. In setting 1,
Fmin = 0, Fmax = 1, and, in setting 2, Fmin = 0.3,
Fmax = 0.9.
As shown in Table 2, although F1 and F2 control the

search scope, theymodulate the exploration ability of feasible
and infeasible solutions. The variation of these parameters
conducts little influence on the evolution. For example, F1,t
decreased during the execution of the algorithm, thus lead-
ing to a transition from exploration to exploitation of the
infeasible solutions. The larger scaling factor value intro-
duces better diversity, but it hampers the convergence. In con-
trast, although the smaller scaling factor value speeds up the
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TABLE 2. The comparison of IGD for three algorithms to verify the proposed adaptive ε-level.

convergence, it weakens the diversity and the algorithm may
fall into the local optima.

B. COMPARATIVE EXPERIMENT ON ADAPTIVE ε-LEVEL
This section, first, discusses the stability of the adaptive
ε-level method, then, comparative experiments were car-
ried out between the proposed adaptive ε-level method and
the three best-performing ε-constrained algorithms on the
CF1-CF7 series test problems.

To verify the stability of the adaptive ε-level method,
3 independent runs were randomly selected out of 50 inde-
pendent runs, and the IGD convergence curve for the rep-
resentative CF1, CF3, CF5, and CF7 problems were given
in Figure 4–7.

FIGURE 4. IGD convergence curve for CF1.

We can conclude from Figs. 4–7 that the proposed adaptive
ε-level method does not affect the stability of the algorithm
although the ε-level constantly changed, since the IGD values
decreased steadily with the iteration for all the test problems.
The adaptive ε-level method investigated the ε value being
influenced by both the iteration and the type of constraints,
which considered both the generation and the constraint vio-
lation value, and, lead the algorithm more stable.

Tables 3 compares the IGD statistics (all 50 independent
runs). To detect the statistical differences systematically, a
multiple-problem a Wilcoxon’s test at a 0.05 significance
level [25] was implemented between the proposed adaptive

FIGURE 5. IGD convergence curve for CF3.

FIGURE 6. IGD convergence curve for CF5.

FIGURE 7. IGD convergence curve for CF7.

ε-level method, εDE, εDEag and SRS-εDEag. It should be
noted that ‘+’ indicates that the proposed adaptive ε method
was significantly better than the comparative algorithms,
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TABLE 3. The comparison of IGD for three algorithms to verify the proposed adaptive ε-level.

‘≈’ means the difference was not statistically significant, and
‘−’ signifies that the proposed method was inferred to the
comparative ones.

Table 3 shows the minimum, maximum, mean, and stan-
dard deviation values of the IGD calculated by εDE, εDEag
and SRS-εDEag, and the proposed adaptive ε-level. The
results in boldface indicate the best results. Table 3 shows
that the adaptive ε-level statistically found a substantially the
best min of the IGD on the test problems CF1, CF2, CF3,
CF4 and CF5, and obtained the best results in terms of max
and mean of IGD values on all the test problems, and found
the best standard deviation of the IGD on all the test problems
apart from CF2. εDEag and SRS-εDEag are essentially two
advanced algorithms based on εDE. The εDEag proposed a
scheme of automatically setting the control parameter cp of
the ε level simply based on the generation. SRS-εDEag adap-
tively decided the ε level based on the number of violated con-
straints and the number of feasible solutions only. Although
the ε-constraint coordinates feasible solutions and infeasible
solutions, the generation and the constraint violation value

are considered separately. However, the proposed adaptive
ε-level method investigated the ε value being influenced by
both the iteration and the type of constraints. As a result,
the adaptive ε-level can get better mean and standard devi-
ation than the comparison mechanism.

C. COMPARATIVE EXPERIMENT ON A REPLACEMENT
MECHANISM AND DE MUTATION OPERATOR
This section discusses the experiments carried out between
the replacement mechanism and the mutation operator pro-
posed in Section III-B, C with the four most representative
replacements and mutation operators on the CF1-CF7 series
test problems. Note that, the ε value is set as the original
model (controlled as formula (9)). Table 4 compares the IGD
statistics (all 50 independent runs). Moreover, to test the
statistical differences, a Wilcoxon’s test at a 0.05 significance
level was conducted between the replacement mechanism
and the DE mutation and CMOEA/D-DE-ATP, C-MOEA/D,
C-MOEA/DD, and MOEA/D-ACDP.
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TABLE 4. The comparison of IGD for four algorithms to verify the replacement mechanism and DE mutation.

Here, ‘+’ indicates that the proposed adaptive ε method
was significantly better than the comparative algorithms, ‘≈’
means that the difference was not statistically significant, and
‘−’ signifies that the proposed method was inferred to the
comparative ones.

Table 4 shows the minimum, maximum, mean, and stan-
dard deviation values of the IGD calculated by MOEA/
D-DE, C-MOEA/D, C-MOEA/DD, MOEA/D-ACDP, and
the proposed method. The results in boldface indicate the
best results. For the min values, the proposed method got
the best results on all the test problems apart from CF7; for
the max values, the proposed method obtained the best results
on CF3, CF5, and CF7; for the max values, the proposed
method obtained the best results on CF3, CF4, CF5, and
CF7; and for the standard deviation values, the proposed
method got the best results on all the test problems apart from
CF5. CMOEA/D-DE-ATP approach is based on a penalty
function concept that requires two penalty parameters, and
the suitable parameters are different for different test prob-
lems. In C-MOEA/D, the feasible solution is favored over
the infeasible solution, so the infeasible solution with good
diversity is not fully utilized. In C-MOEA/DD, infeasible
solutions are preserved when they are associated with the

isolated region, which contribute to escape from the locally
feasible regions. However, in the mating selection, the fea-
sible solution is still favored over the infeasible solution
and the infeasible solution with good diversity is not fully
utilized.MOEA/D-ACDP adopts the angle information of the
objective functions to enhance the population diversity in the
infeasible region, but the feasible solution is still favored over
the infeasible solution and the infeasible solution with good
diversity is not fully utilized. In the proposed replacement
mechanism and themutation operator, the infeasible solutions
are fully applied in both stages. As discussed above, utilizing
the information carried by infeasible solutions can guide the
population exploring the constraint boundaries and jumping
out of an isolated feasible region, as a result, the proposed
replacement mechanism and the mutation operator have good
convergence and distribution, and can achieve better conver-
gence accuracy.

D. COMPARATIVE EXPERIMENT ON THE WHOLE
ALGORITHM
This section discusses experiments that were carried
out between the proposed ε-MOEA/D-DE and the four
best-performing algorithms on the CF1-CF7 series test
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TABLE 5. The comparison of IGD for four algorithms to the proposed ε-MOEA/D-DE.

problems. Tables 5 and 6 compare the IGD and HV statistics
(all 50 independent runs).

Moreover, to test the statistical differences, a Wilcoxon’s
test at a 0.05 significance level was conducted between
the proposed method and C-MOEA/DD, MOEA/D-ACDP,
C-FRORI, and NSGA-III. Here, ‘+’ indicates that the pro-
posed adaptive ε method was significantly better than the
comparative algorithms, ‘≈’ means that the difference was
not statistically significant, and ‘−’ signifies that the pro-
posed method was inferred to the comparative ones.

Tables 5 and 6 show the minimum, maximum, mean,
and standard deviation values of IGD and HV calculated by
C-MOEA/DD, MOEA/D-ACDP, C-FRORI, NSGA-III, and
the proposed ε-MOEA/D-DE. The results in boldface indi-
cate the best results.

Table 5 shows that the ε-MOEA/D-DE statistically found
all the best min values of the IGD on the test problems;
obtained the best results in terms of max values on all the test
problems expect CF5 and CF7; found the best mean values
of the IGD on all the test problems apart from CF2 and
CF7; got the best standard deviation values of the IGD on
all the test problems apart from CF5 and CF6. A higher

HV indicates a good Pareto front set in both the conver-
gence toward Pareto front and the diversity to approximate
a wide range of Pareto front. As shown in table 6, the
ε-MOEA/D-DE statistically found all the best min values
of the HV on the test problems apart from CF4; obtained
the best results in terms of max values on all the test prob-
lems expect CF5; found the best mean values of the HV on
all the test problems apart from CF2 and CF5. In general,
ε-MOEA/D-DE performed better on convergence and distri-
bution than the comparison algorithm. C-NSGA-III utilizes
the Deb constraint dominance principle, and preferentially
selects feasible solutions to generate offspring populations
in matching selection, although it inherits NSGA-III’s high
convergence and distribution performance in unconstrained
MOPs, but in the whole evolution process, it emphasizes that
feasible solutions are dominant, while ignoring the useful
information carried by infeasible solutions, which affects the
convergence accuracy and convergence speed of the algo-
rithm. For C-FROFI, an archive is introduced to store the
effective infeasible individuals, which lead to a primary rale
for the constraint violation in environment selection, in the
mating selection, the feasible solution is still favored over
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TABLE 6. The comparison of HV for four algorithms to the proposed ε-MOEA/D-DE.

the infeasible solution and the infeasible solution with good
diversity is not fully utilized. As a result of the fully appli-
cation for infeasible solutions in both stages. the proposed
ε-MOEA/D-DE got good convergence and distribution, and
can achieve better convergence accuracy.

FIGURE 8. Obtained solutions by ε-MOEA/D-DE for CF1.

In order to see the convergence and distribution more
intuitively, Figures 8-14 present the non-dominated solutions
obtained by ε-MOEA/D-DE on the test problems CF1-CF7.

FIGURE 9. Obtained solutions by ε-MOEA/D-DE for CF2.

These solutions were selected from the final population of
the run with the best IGD and HV among the 50 independent
runs.
ε-MOEA/D-DE obtained good convergence on the test

problems CF1 and CF2 from Figure 8 and 9. In Figure 10, the
PF of the test problem CF3 was discontinuous and concave,
and thus it could be more difficult than all the other test
problems to solve. The three algorithms did not completely
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FIGURE 10. Obtained solutions by ε-MOEA/D-DE for CF3.

FIGURE 11. Obtained solutions by ε-MOEA/D-DE for CF4.

FIGURE 12. Obtained solutions by ε-MOEA/D-DE for CF5.

FIGURE 13. Obtained solutions by ε-MOEA/D-DE for CF6.

converge to the PF. Thus, these algorithms needed to fur-
ther strengthen the exploration and exploitation capability.
In Figure 11 and 12, ε-MOEA/D-DE acted relatively poorly
on test problems CF4 and CF5 because the non-dominated
solutions were not distributed evenly along the entire PF.

FIGURE 14. Obtained solutions by ε-MOEA/D-DE for CF7.

VI. CONCLUSION
In this paper, we suggested a constrained multi-objective
optimization algorithm, called ε-MOEA/D-DE. From the
perspective of the complementary advantages of dual pop-
ulation storage and ε-constraint, a novel constraint handling
technique, ε-truncation, was presented to coordinate diver-
sity and convergence by adaptively exploiting the feasible
Pareto solutions and the infeasible solutions with both a lower
constraint violation and a better objective value. Besides,
the improved crowding density estimation can evaluate the
distribution accurately and cut down the computation load
by selecting a part of the Pareto solutions and near solutions
to participate in the calculation. Moreover, for achieving a
better compromise between global exploration and the local
exploitation, exponential variation is introduced following
the crossover operation and mutation operation.

To validate the competitiveness, we conducted a
comprehensive experimental comparison with six state-of-
the-art algorithms that were subject to different kinds of tech-
nologies. Many benchmark test problems (CF1-CF7 series)
were selected to challenge the different capabilities of
the algorithms. The proposed ε-MOEA/D-DE successfully
found a well-converged and well-diversified set of solu-
tions over multiple independent runs. However, on some
CF-series test problems, ε-MOEA/D-DE encountered the
increasingly difficult task of maintaining diversity and con-
verging to the PF. Although different algorithms exhibited
their working on different problems, we observed that none
of these algorithms were capable of treating all the test
problems, which implies that a careful choice of algorithms
is still required at present when dealing with a complicated
CMOP.

Future work should extend ε-MOEA/D-DE to handle con-
strained many-objective problems by incorporating advanced
EAs. Moreover, we will apply ε-MOEA/D-DE to real-world
problems to further confirm its effectiveness.
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