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ABSTRACT As a core step in clustering analysis, distance measurement results can influence clustering
accuracy. Existing measurement methods are mostly based on cluster feature information. However, these
cluster features may be insufficient and result in losing data information for clusters containing a number of
objects. To improve measurement accuracy, we make full use of the distribution characteristics of objects in
clusters, i.e., we use descriptive statistics and the Wilcoxon-Mann-Whitney rank sum test in nonparametric
statistics to measure distances during clustering. Furthermore, we propose a two-stage clustering algorithm
to improve clustering analysis performance. In terms of avoiding preliminarily assuming the number of
clusters, with the proposed distance measurement method, the clustering algorithm can discover clusters
with arbitrary shapes and improve clustering accuracy. Experiments with multiple datasets compared with
other clustering algorithms illustrate the accuracy and efficiency of the proposed clustering algorithm.

INDEX TERMS Clustering analysis, distance measurement, nonparametric statistics, Wilcoxon-Mann-
Whitney rank sum test.

I. INTRODUCTION
As a basic data mining strategy, clustering analysis is signifi-
cant for discovering the characteristics of data aggregation,
which is an unsupervised process [1]–[3]. When the data
distribution is unknown, the clustering method is effective at
obtaining the inherent distribution of data [4]–[6]. To ensure
the reliability of acquiring data aggregation features, it is nec-
essary to ensure the reliability of clustering. Clustering relia-
bility is reflected in the method finding clusters of any shape
and that the number of clusters generated is not limited by
input parameters. The accuracy of the clustering results also
affect the reliability of the analysis of the inherent distribution
of the data, that is, the more accurate the clustering results
are, the higher the reliability of the data aggregation feature
discovery is [7]. Although there are different ways to obtain
data groups, such as the partitioning clustering method, hier-
archical clustering method, density-based clustering method,
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grid-based method and so on, the implicit concepts of these
clusteringmethods are similar: they are based on the distances
between objects through multiple iterations to ensure the
clustering quality. K-means [8], [9] adjusts the clusters and
their mean values based on the distances between objects and
clusters mean values in each iteration. DBSCAN [10], [11]
aggregates the objects that are directly density-reachable
from the core object in each iteration to generate new clusters.
Therefore, the primary difference is how to divide objects
into clusters during the clustering process. In this unsu-
pervised analysis, the main basis of assigning an object to
a cluster is the distance measurement, including distance
between objects, distance between the object and the cluster,
and distance between clusters. K-means divides objects into
clusters based on the distances between objects and clus-
ters. The judgment of directly density-reachable objects in
DBSCAN is also based on the distances between objects.
In addition, cluster merging is determined by the distances
between clusters in agglomerative hierarchical clustering. It is
obvious that the accuracy of distance measurement is of great

19776 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7668-3392
https://orcid.org/0000-0003-0735-2917
https://orcid.org/0000-0002-2673-9909


Y. Cheng et al.: Clustering Analysis Method With High Reliability Based on Wilcoxon-Mann-Whitney Testing

importance in effective clustering. That is, the accuracy of
distance measurement is the key to impacting the reliability
of obtaining data aggregation features.

The existing distance measurement between objects can
be divided into multiple methods according to the attribute
types and the application scenes, such as Euclidean distance,
Manhattan distance,Minkowski distance, Jaccard coefficient,
cosine measure and so on [12]–[16]. In addition, the distances
involving clusters are mostly measured based on the infor-
mation reflecting cluster features. For instance, K-means and
K-medoids [17], [18] choose the mean value or a represen-
tative object as the feature of a cluster, and they assign an
object to a cluster whose feature is closest to it. DBSCAN and
OPTIS [19] consider the core object as the cluster feature and
decide whether to assign an object into a cluster according to
whether it is density-reachable to the core object [20]–[24].

The objects in each cluster are the prime factors truly
reflecting the cluster features, and thus the distance between
clusters can be calculated through the distances between
objects in the clusters, such as the minimum distance, the
maximum distance, and the average distance. However,
a large number of objects may affect the efficiency of distance
measurement. Therefore, to improve the computation speed
and scalability, Birch [25] used zero moments, first moments
and second moments to generate a three-dimensional vector,
which is represented as a cluster feature to summarize cluster
information and to compute the distance between clusters for
hierarchical clustering. However, it is not sufficient to simply
describe the cluster information by using the representative
objects or the statistics. The existing cluster features represent
the aggregation features of clusters containing a number of
objects, and there is a loss of information reflecting the
data characteristics of clusters to a certain extent. Then, the
distance measurement would contain a certain deviation and
thus affect the accuracy of clustering results.

Obviously, the distance measurement is a core step in clus-
tering. An effective information extraction that represents the
data features of clusters is the key to ensuring measurement
accuracy, so it is also important to ensure the accuracy of
clustering. Therefore, researchers have attempted to extract
effective information about cluster features. Reference [26]
extracted specific adjacent objects of centroids to summarize
clustering information. A group of representative objects was
used, but the adjacent objects were insufficient to reflect the
general data features. Reference [27] defined a core set to
measure distances using the Birch concept. Although they
chose a number of objects as representative cluster informa-
tion, this was also insufficient and resulted in information
loss. The distribution of data in clusters can reflect the general
cluster data features. Reference [28] obtained the distribution
features of clusters based on a probability density function.
However, this method presupposed the data distribution. It is
difficult to make a clear assumption about data distribution
because of the sparse knowledge about the overall informa-
tion. Incorrect assumptions can result in inaccurate distance
measurements and clustering results.

Nonparametric statistical methods [29]–[33] can be used
to estimate distribution structures based on direct data infor-
mation rather than a hypothesis of the specific form of an
overall distribution. TheWilcoxon-Mann-Whitney (W-M-W)
rank sum test method [34]–[38] is a nonparametric statistical
method used to judge whether any two sets come from the
same population. In the clustering process, if two sets repre-
sented by two clusters are from the same population, they can
be grouped into one cluster. Therefore, through this method,
we can reserve the original cluster information features, ana-
lyze the dissimilarity between clusters directly based on the
distribution features of their data, and then determine whether
to merge them into one cluster without a hypothesis of the
overall distribution form.

To resolve the above problems, we try to make full use of
the characteristics of data, so we use W-M-W rank sum test
to measure the differences between clusters, which could lay
a foundation for obtaining more accurate clustering results.
In addition, we also propose an improved hierarchical cluster-
ing method to increase clustering effectiveness. This method
has minimal requirements for domain knowledge when deter-
mining input parameters. It could also help to discover clus-
ters with arbitrary shapes and improve clustering accuracy.
Experiments on multiple datasets are used to verify the valid-
ity of the proposed algorithm, which is a key to ensuring the
reliability of obtaining data aggregation features. An exper-
iment on a real dataset illustrates the practicability of the
proposed method and further proves that this method can
facilitate the reliability of obtaining the inherent distribution
of data.

II. DISTANCE MEASUREMENT BASED ON
NONPARAMETRIC STATISTICS
In data mining, especially in cluster analysis, distance mea-
surement is the core step in data analysis. Its accuracy can
directly affect the validity of data analysis results. There
are multiple metric methods based on different data types,
such as Euclidean distance, Manhattan distance, Minkowski
distance, Jaccard coefficient, cosine measure and so on.
In clustering analysis, objects are divided into clusters, or two
similar sets are grouped into one cluster during the clustering
processes. These operations are based on distance measure-
ments, which include distances between objects and clusters
as well as distances between clusters. Obviously, these dis-
tances involve clusters. To ensure the objectivity and accuracy
of measurements, it is necessary to consider the distribution
features of objects in the clusters with little loss of data
information. To achieve this purpose, this paper will measure
distances based on the distribution characteristics of data in
clusters.

A. DISTANCE BETWEEN OBJECTS AND CLUSTERS BASED
ON DISTRIBUTION CHARACTERISTICS
In traditional clustering methods, the distances between
objects and clusters are often transformed into the distances
between objects and cluster features. These features can
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FIGURE 1. Comparing a one-dimensional object with two sets.

include cluster mean values, representative objects of clus-
ters, core sets of clusters and so on. As mentioned above,
these single descriptive features can lose the data information
in the clusters to some extent. In addition, the distribution
characteristics of objects in one cluster can be seen as its
general cluster feature. The difference between clusters can
refer to the difference between their object distribution char-
acteristics. We thus assign an object into a cluster with a
minimum distance from another object. Then, the distribution
characteristics of objects in the clusters will have a greater
impact on distance measurement and should be considered.

The distribution characteristics of objects in a cluster
must be considered when measuring distances. We take the
one-dimensional data in Fig. 1 as an example. There are two
sets A and B in Fig. 1. We want to determine the closer
set and assign object ’a’ to that set. According to traditional
clustering methods, we can compare either the difference
between ’a’ and the mean value of A and B or the difference
between ’a’ and the centroid of A and B. The former uses
the mean value as the statistical feature of the set, while the
latter selects a central point as the representative of the cluster.
In Fig. 1, when the mean value is used to represent the set
feature, the difference between the two sets is not significant.

An object a = 3 is more similar to set A. However, from
the perspective of the distributions of these two sets, the
dispersion degree of set B is lower, that is, its objects are more
aggregated. In addition, object ’a’ is more likely to belong to
set B when considering distributions.

It is apparent that the mean value, as one statistical feature
of a set, cannot completely reflect the distribution, while other
representatives may not reflect the distribution characteristics
of all objects in a cluster. Therefore, these measurement
methods cannot objectively calculate the differences between
objects and clusters. Thus, the use of one statistic is insuffi-
cient to represent the general characteristics of data in a set.

For a more accurate and objective result, we need to assign
an object into a cluster while considering distribution char-
acteristics of the data in the cluster. The methods that can
describe the distribution features of a set include probability
distribution functions and descriptive statistics. It is very time

consuming to compute the probability distribution function of
objects for each cluster, whereas multiple descriptive statis-
tics can describe the statistical characteristics of a set from
different perspectives; thus, statistics can be used to repre-
sent the distribution characteristics. Therefore, this paper will
measure the distance between objects and clusters based on
specific statistical features of a set.

If an object belongs to a cluster, it has similar characteris-
tics to other objects in this cluster. That is, the distribution
characteristics of this cluster will not change significantly
after the object is assigned into it. We consider different
descriptive statistics of a cluster when measuring distances
between an object and a cluster and then analyze whether
these statistics have changed significantly after the object is
added to the cluster. We thus determine the right cluster with
the smallest change of the statistics and below a threshold.

In descriptive statistical analysis, statistics such as the
mean, variance, and quantile can be used to measure the
average values, central tendency and location information of
data in a set, respectively. These statistics describe the data
information for position and dispersion of a set and actually
represent the distribution characteristics of a data set.

We begin with one-dimensional data to discuss the method
of determining the relationship between an object and a clus-
ter with the above descriptive statistics. Then, we extend this
method to multidimensional data. We match the object and
descriptive statistical features of the cluster in each dimension
and analyze the differences between the object and the cluster
in an effective way.

Let o1 be the one-dimensional object to be assigned, where
the existing clusters are C = {C1,C2, . . . ,Cn}. The distri-
bution feature of cluster Ci (1 ≤ i ≤ n) can be described
by a triple DFi = <µi, σi,mi>, where µi, σi and mi are
the mean value, variance and median, which represent the
average value, dispersion and the center position of cluster
Ci, respectively. If the object is assigned toCi, the distribution
feature of Ci will be DF ′i = <µ′i, σ

′
i ,m
′
i>. In addition,

the variation of distribution feature can be calculated as
Equation (1).

1i =
∣∣µ′i − µi∣∣+ ∣∣σ ′i − σi∣∣+ ∣∣m′i − mi∣∣ (1 ≤ i ≤ n) (1)

If o1 belongs to cluster Cω, its impact on the distribution
feature of Cω should be relatively small, i.e., the value of1ω
should be the smallest and within a certain threshold.

For instance, assume there are three clusters: C1 =

{4.7, 5.1, 4.8, 5.4, 5.5, 4.4, 5},
C2 = {5.9, 5.2, 6, 5.5, 5.8, 6.1, 5.7}, and C3 =

{5.8, 6.3, 6.1, 7.1, 5.6, 6.7, 6.5}. The triples representing
their distribution features are DF1 = <4.99, 0.39, 5>,
DF2 = <5.74, 0.29, 5.75> and DF3 = <6.3, 0.52, 6.3>,
respectively. The object to be added is o1 = 5.7. The
threshold of variation for the distribution feature is δ = 0.1.

We can obtain the triples DF ′1 = <5.07, 0.44, 5.05>,
DF ′2 = <5.74, 0.29, 5.75>, and DF ′3 = <6.22, 0.53, 6.2>
if o1 is assigned to C1, C2 and C3, respectively. Their varia-
tions on the distribution feature are 11 = 0.18, 12 = 0.07
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FIGURE 2. Allocating an object into a cluster based on distribution feature DF .

and13 = 0.19, respectively, where12 has the smallest value
and12 < δ. It can be concluded that o1 is more likely to come
from the same distribution with data in C2. Then, o1 can be
assigned to C2.
If we extend the above method to multidimensional data,

we need to determine the relation between the object and the
cluster distribution feature in each dimension as described
above. Then, we can integrate the analysis results on each
dimension to determine the cluster having the smallest varia-
tion in distribution feature after the object is added to it. This
cluster is more similar to the object than the others.

Let o2 be the d-dimensional object to be assigned, andC =
{C1,C2, . . . ,Cn} be the existing clusters. The distribution
feature of cluster Ci (1 ≤ i ≤ n) can be described by a d-
dimensional triple as Equation (2).

DFi = {DFi1, . . . ,DFid }

= {< µi1, σi1,mi1 >, . . . , < µid , σid ,mid >} (2)

During the analysis, we can calculate the distribution fea-
ture in the k-th (1 ≤ k ≤ d) dimension of each cluster:
DF ′ik = <µ′ik , σ

′
ik ,m

′
ik> (1 ≤ i ≤ n), when o2 is assumed

to be divided into each cluster. In addition, the variation for
the distribution feature in the k-th dimension can also be
calculated as Equation (3).

1ik =
∣∣µ′ik − µik ∣∣+ ∣∣σ ′ik − σik ∣∣+ ∣∣m′ik − mik ∣∣ (3)

Then, the variation in all dimensions is
1i =

∑
d j = 11ij. Let Cω be the cluster that o2 is most

likely to be assigned to. Its variation value 1ω should be the
smallest and within a certain threshold.

Fig. 2 shows the process of allocating the cluster for a two-
dimensional object, when there are two clusters as candidates.
After comparing the variation of distribution feature DF for
cluster C1 and C2 once we test that the object is allocated

into these two clusters, we can assign the object to cluster
C1 because there is a smaller change of DF, and we consider
that it is more likely to have the same distribution with objects
in C1.
The above method of assigning an object to the most

similar cluster is described in the following ocd() algorithm.
We can compute the variation of the distribution feature for
each cluster with the assumption that an object is grouped
into every cluster. The cluster having the minimum variation
value and less than the threshold is the one most matching the
object in statistical characteristics. If all the variation values
are greater than the threshold, the object is more likely to be
an outlier.

Then, we take data shown in Fig. 3 as an example
to specify the method of assigning objects into clusters
based on distribution features. The 4-dimensional object is
o2 = (5.7, 4.4, 1.5, 0.4). There are three clusters: C1, C2
and C3. Their distribution features, as represented by 4-
dimensional triples, are DF1 = {<4.99, 0.39, 5>, <3.29,
0.24, 3.3>, <1.46, 0.15, 1.4>, <0.27, 0.13, 0.2>}, DF2 =
{<5.74, 0.31, 5.8>, <2.83, 0.29, 2.9>, <4.3, 0.34,4.2>,
<1.37, 0.25, 1.4>}, and DF3 = {<6.3, 0.52, 6.3>, <3.04,
0.24,3>, <5.37, 0.48, 5.1>, <2.06, 0.22, 2>}, respectively.
If the threshold of variation for distribution features δ = 0.8,
we can obtain the new triples: DF ′1 = {<5.07, 0.44, 5.05>,
<3.425, 0.45, 3.35>, <1.46, 0.14, 1.45>, <0.29, 0.12,
0.2>}, DF ′2 = {<5.74, 0.29, 5.75>, <3.025, 0.62,
2.95>, <3.95,1.04,4.15>, <1.25,0.41,1.35>}, and DF ′3 =
{<6.22, 0.53, 6.2>, <3.21,0.53, 3.1>, <4.89, 1.44, 5.1>,
<1.85, 0.62, 2>}.
If we assume the object is assigned to these clusters, the

variations with the former are 11 = 0.665, 12 = 2.075,
and 13 = 2.8. Obviously, 11 is the minimum and less than
the threshold δ. Taking into account all four dimensions, the
object is more likely to be from the same distribution as
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Algorithm 1 ocd(o, C , δ)
Input: o, a d-dimensional object to be assigned;

C = {C1,C2, . . . ,Ck}, the existing cluster set;
δ, the threshold of variations about distribution features;

Output: Cω, the cluster that o belongs to;
Steps:
1) Let 1m = 11, c = 0;
2) for i := 1 to n:
3) calculate DFi = {DFi1, . . . ,DFid };
4) calculateDF ′i if o is assumed to be grouped into cluster

Ci;
5) calculate 1i =

∑d
j=11ij;

6) if (1i < 1m &&1i < δ) then:
7) 1m = 1i;
8) c = i;
9) Cω = Cc.

cluster C1. Therefore, it can be assigned to C1. This result
is different from the above one-dimensional analysis, since
object o2 is described by the four dimensions, and its assign-
ment is based on distribution features for all dimensions
rather than one dimension.

B. DISTANCE BETWEEN CLUSTERS BASED ON RANK SUM
TEST
The main purpose of measuring the distance between clusters
is to merge similar clusters into one cluster. The similarity in
unsupervised data analysis is based on distancemeasurement,
while from a statistical perspective, the objects in two clusters
that are similar are considered more likely to come from the
same distribution. The W-M-W rank sum test method is a
nonparametric statistics method. It can test whether two sets
of samples are from the same population without requiring
toomany samples and a prehypothesis about data distribution.

This approach can provide an objective conclusion. There-
fore, based on the W-M-W rank sum test method, we will
determine whether to merge two clusters by testing whether
the objects in the two clusters derive from the same popula-
tion. If from the same population, they can bemerged into one
cluster; otherwise, the two clusters will exist as two separate
clusters.

For any two clusters C1 and C2, their numbers of objects
are nC1 and nC2, respectively. The upper limit number of
objects used in the rank sum test is nδ . When nC1, nC2 ≤ nδ ,
all objects in these clusters can be used in the rank sum test
to determine whether they are from the same distribution;
otherwise, we will take nδ samples randomly from the two
clusters for the test.

Then, we take one-dimensional objects as examples to
describe how to decide whether two sets need to be merged
through theW-M-W rank sum test. If the objects contain mul-
tidimensional data, we need to analyze each dimension per
the method. Objects in two clusters from the same population

FIGURE 3. Four-dimensional clusters to be assigned.

can be identified bywhether these two groups of data are from
the same distribution in each dimension.

Let C ′1 = {x1, x2, . . . , xm} and C ′2 = {y1, y2, . . . , yn}
be the sample sets from cluster C1 and C2 involved in the
test, where pdf (meanj), and (1 ≤ j ≤ K ) are their object
numbers, respectively. On the basis of the W-M-W rank sum
test method, we test whether two sets are from the same pop-
ulation by using sample information without a hypothesis of
data distribution. Then, we conduct a hypothesis test with the
sample data. If it is validated, the null hypothesis is accepted;
otherwise, the null hypothesis is rejected. Even though there
is a hypothesis used in this method, it is used to make a
relatively objective conclusion based on data information
rather than as a basis for subsequent analysis.

We designate the null hypothesis as the sets x1,
x2, . . . , xm ∼ F(x − µ1) and y1, y2, . . . , yn ∼ F(x − µ2)
have a similar distribution, without regard to data symmetry.
Then, the problem for merging two sets can be transformed
into the problem to be tested: H0: µ1 = µ2 ↔ H1: µ1 6= µ2.
This is a bilateral test problem. The null hypothesis is that the
two sets have no significant difference, come from the same
distribution, and can be merged. The alternative hypothesis
is that the two sets have significant differences, are from
different distributions and cannot be merged. During the
analysis, we need to mix x1, x2, . . . , xm and y1, y2, . . . , yn
together and assemble these (m + n) numbers in ascending
order. The rank of a sample is its position in this ordering
sequence. In this mixed ordering sequence, letWX be the sum
of ranks (rank sum) of objects from C ′1, whileWY is the rank
sum of the objects from C ′2.
We use the statistics min{WXY , WYX} for this validation

problem, where WXY and WYX are shown as Equation (4).
WXY is the number of samples from C ′2 whose values are
greater than the values from C ′1, while WYX is the opposite.

WXY = mn+
m(m+ 1)

2
−WX

WYX = mn+
n(n+ 1)

2
−WY (4)

If two sample sets have the same distribution, the ranks of
the samples should be randomly mixed. If they have different
distributions, one of the rank sums should be greater than the
other. Therefore, the rank is used to calculate the statistics,
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FIGURE 4. The process of measuring distances between clusters based on
W-M-W rank sum test.

and this method can be used to analyze whether two sets
are from the same population without assuming a sample
distribution.

In addition, Z = WXY−mn/2√
mn(m+n+1)/12

→ N (0, 1). Then, we can

calculate the value of p with the corresponding m and n. This
p-value is the minimum significance level needed to reject
null hypothesis according to the test statistics calculated by
the samples [39]–[41]. Then, for a given significance level α,
we can obtain the analysis result of the hypothesis testing by
comparing p and α. If p > α, the null hypothesis is accepted,
which indicates that there is no significant difference between
the data in these two clusters, and they can be merged. If
p ≤ α, the null hypothesis is rejected, that is, the data in the
two clusters are more likely to come from different distribu-
tions and cannot be merged.

Fig. 4 describes the specific steps for determining whether
two one-dimensional data sets have significant differences
based on the above validation method. To sum up, firstly,
we construct the two sets of objects to be tested. And we
designate the null hypothesis that the two sets come from the
same distribution. Then, mix objects in these two sets and
assemble them in ascending order, and compute the statistic
Z used in rank sum test. In the hypothesis testing, we compute
the value p which is the minimum significance level to reject
null hypothesis, and then compare p and significance level α.
When p ≤ α, the null hypothesis is rejected, that is, the
data in the two sets are more likely to come from different
distributions.

The time complexity of the process isO(n2δ ), where nδ is the
threshold for the number of objects in one cluster involving
the rank sum test method. Even if the cluster has a large
number of objects, nδ samples can be taken randomly to
constitute the data set to be tested for further analysis. The
feasibility of this sampling method is based on the W-M-W
rank sum test method, which is still feasible even with a
small sample. Although not all of the objects are used in
the analysis, the random sampling of objects will reflect the
distribution characteristic to some extent. In addition, the test
is based on a nonparametric statistical method. This takes
full advantage of the sample data information rather than
analyzing the information based on a hypothesis about data
distribution. The approach tests whether two clusters are from
the same distribution according to the data itself. That is,
it analyzes the similarity between clusters from a statistical
test perspective. This objectivity ensures the accuracy of
the measuring results. Traditional distance metrics are also
based on data information and calculate the distance between
objects in clusters.

However, the distance values are not the final results of the
measurement. They are used to analyze whether two clusters
are similar and need to be merged through the comparisons
of the distance values.

Therefore, whether two clusters are similar is a relatively
comparative result. The distance measurement method pro-
posed in this paper has certain advantages in accuracy and
efficiency.

For multi-dimensional data, we assume the dimensions
are mutually independent. Thus, multi-dimensional data need
to be analyzed for each dimension as above. Once there is
a significant difference to be tested in one dimension, this
indicates that the data are from different populations on this
dimension. It is difficult to illustrate that objects in two clus-
ters have similar features because they are already different
in one dimension. Thus, it can be determined that objects in
two clusters have significant differences. There is no need to
merge these clusters. This process is described in the ccd()
algorithm. Its time complexity is O(dnδ2).

Taking C1 and C2 in Fig. 3 and another cluster C∗ as
an example, we can illustrate the method for determining
whether two clusters need to be merged based on theW-M-W
rank sum test method. Fig. 5 describes the analysis process.

Clusters C1 and C2 in Fig. 5 need to be tested for each of
four dimensions. Each value of p is less than the significance
level α.

The figure illustrates that these two clusters have a sig-
nificant difference in all of four dimensions. It can thus be
determined that C1 and C2 are from two different populations
and cannot be merged. However, in the test cluster C1 and
C∗ in four dimensions, the p-values are all greater than the
significant level α. That is, there is no significant difference
between C1 and C∗, and they can be merged into one cluster.
Obviously, our proposed method can obtain a more objec-

tive result than traditional distance metrics because it directly
determines whether to merge two clusters based on the

VOLUME 9, 2021 19781



Y. Cheng et al.: Clustering Analysis Method With High Reliability Based on Wilcoxon-Mann-Whitney Testing

FIGURE 5. Example of measuring distances between clusters based on W-M-W rank sum test.

Algorithm 2 ccd(C1, C2, nδ , α)
Input: C1, C2: d-dimensional clusters to be tested;

nδ: the threshold of the number of objects in one cluster
processed by rank sum;

α: the significance level;
Output: mb, whether exists significant difference between C1
and C2;
Steps:
1) mb = 0;
2) if (|C1| > nδ or |C2| > nδ):
3) Draw nδ samples randomly from C1 or C2;
4) Mix these two sets to be tested:

C ′m = {x1, x2, . . . , xm, y1, y2, . . . , yn};
5) for i := 1 to d :
6) Make the (m+ n) numbers of i-dimension in ascending
order;
7) Calculate the statistics U = min{WXY ,WYX };
8) Compute the critical value p;
10) if (p ≤ α):
11) mb = 1; //C1, C2 have significant difference
12) break;
13) end for

distribution characteristics of the data rather than based on the
comparison of distance values. In fact, these data are derived
from aUCI dataset—Iris—and the data inC1 andC∗ are from
the same class, while data in C1 and C2 are from different
categories, thus illustrating the accuracy and validity of our
method.

III. A DATA DISTRIBUTION FEATURE-ORIENTED
HIERARCHICAL CLUSTERING ANALYSIS METHOD
Combined with the above distance measurement method,
we propose a two-step hierarchical clustering algorithm to
avoid assuming the number of clusters preliminarily, dis-
cover clusters of arbitrary shapes and improve clustering

accuracy. The above distance measurement methods are the
key for proposing such a clustering algorithm. In this hierar-
chical clustering algorithm, the distance metrics proposed in
Section 2 are used to assign objects to the proper clusters and
determine whether to merge clusters.

In the first step, K-means is used to generate a number
of clusters as the initial clusters by dividing objects in the
original data set. We don’t need to determine the final clus-
ter number in this step. We can set the parameter ’k’ of
K-means to a larger value, and then obtain multiple initial
clusters. There may exist similar distribution features among
these initial clusters. Therefore, in the second step, we use
a hierarchical clustering to merge similar clusters generated
in the first step, and assign their objects into the same clus-
ter. During this step, we determine whether two clusters
are similar and need to be merged based on Algorithm 2.
This operation continues until all clusters are determined
to have significant differences between each other, where
the data in different clusters are likely to come from differ-
ent populations. Then, the clustering process finishes. This
two-step hierarchical clustering algorithm is described as
follows.

The time complexity of obtaining the initial cluster is
O(tkdn), where t is the number of iterations, k is the number
of initial clusters, d is the dimension of the data, and n is
number of objects. Based on the above analysis, the time
complexity of the merging step is O(t ′k2dn2δ ), where ρ is
the number of iterations for the merging step. Therefore, this
two-step hierarchical clustering algorithm based on nonpara-
metric statistics has a time complexity of O(tkdn+ t ′k2dn2δ ),
where k, nδ � n. Obviously, the proposed algorithm is
effective. The final number of clusters is generated based on
the distribution features of the data rather than a presumed
value. In addition, the accuracy of the distance metric pro-
posed in Section 2 can facilitate ensuring the accuracy of
the results generated by the proposed unsupervised clustering
algorithm.
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Algorithm 3 NPSC(D, k , δ, nδ , α)
Input: D = {x1, x2, . . . , xn}, dataset;

k , the number of the generated initial clusters;
δ, the threshold of variations about distribution features;
nδ , the threshold of the number of objects in one cluster

processed by rank sum;
α, the significance level;

Output: C = {C1,C2, . . . ,CK ′}, the clustering result;
Steps:
(1) Generate initial clusters

1) choose k objects from datasetD to be the initial cluster
centers, then we can obtain C t

= {C1,C2, . . . ,Ck};
2) repeat
3) for i := 1 to n do
4) Cω = ocd(xi,C, δ);
5) assign object xi into cluster Cω;
6) end for
7) update the distribution features of k clusters as

Equation (5):

DFj = {DFj1, . . . ,DFjd }
= {< µj1, σj1,mj1 >, . . . , < µjd , σjd ,mjd >}

1 ≤ j ≤ k

(5)

8) compute the objective function: E =
∑k

j=1 DFj;
9) until the objective function E converges.

(2) Merge similar ones in initial clusters {C1,C2, . . . ,Ck}
1) Let K ′ = k;
2) repeat
3) for i := 1 to K ′ do
4) for j := i+ 1 to K ′ do
5) mb = ccd(Ci,Ci, nδ, α);
6) if (mb = 1) then:
7) Ci and Cj have significant difference, do not

merge them;
8) else if (mb = 0) then:
9) Ci and Ci do not have significant difference,

merge them into one cluster;
10) end for
11) Let K ′ be the number of clusters after merging

operations;
12) until there exist significant differences between any

two clusters.

IV. EXPERIMENTS
We select three two-dimensional data sets and several UCI
data sets to verify the validity of the proposed clustering
algorithm based on the W-M-W rank sum test method.
In addition, we compare this approach with the K-means,
DBSCAN, Birch, UPGMA [26], and Fast [27] algorithms to
assess the run time and accuracy of the clustering results. The
results will illustrate the effectiveness and practicality of our
algorithm.

For the datasets with marked categories, we use the exter-
nal indices Purity and Entropy [42] to evaluate the accuracy
of the clustering results. Let C = {C1, . . . ,CK ′} be the

clustering result, and P = {P1, . . . ,Pl} represents the given
categories of data, where K ′ is the number of generated
clusters and l is the number of original categories. Then,
Purity and Entropy can be calculated as:

Purity: Purity =
K ′∑
i=1

1
N

max
j
(nji),

Entropy: Entropy =
K ′∑
i=1

ni
N
(−

1
log l

i∑
j=1

nji
ni

log
nji
ni
),

where N is the number of objects in the dataset, nji is the
number of objects divided into the i-th cluster which belong
to the j-th category in the original dataset, and ni is the number
of objects divided into i-th cluster. The higher the purity is, the
more accurate the clustering result is. The lower the entropy
is, the more accurate the clustering result is. Ideally, Entropy
= 0.0 and Purity = 1.0.

A. TWO-DIMENSIONAL DATASETS
We select three two-dimensional graphic data sets—
Aggregation, Spiral and Flame—to verify that the proposed
method can discover clusters with arbitrary shapes. These
datasets contain similar spatial data within the same cate-
gory (clusters), not only simple spherical clusters. They can
also be visualized. Therefore, these datasets can be used to
validate the capacity of discovering clusters with arbitrary
shapes. Fig. 6 shows the visualized clustering results of three
two-dimensional datasets obtained by our proposed NPSC
algorithm. It can be seen that NPSC can identify the clusters
of data, that is, it can discover clusters with arbitrary shapes.

This result is mainly attributable to the distance measure-
ment method used in the proposed algorithm. It determines
the similarities between clusters based on the distribution
features of the data rather than traditional distance metrics.
This method can merge similar clusters according to the
characteristics of the data based on the nonparametric sta-
tistical hypothesis test method without a hypothesis of data
distributions. In addition, this approach can be used in the
second step of the proposed clustering algorithm. A number
of closely similar clusters are generated in the first step of
the clustering process. Then, clusters with similar distribution
features can be discovered based on our proposed distance
measurement method. In addition, the similar clusters are
merged into on clusters.

These characteristics make the proposed clustering method
better suited to discover nonspherical clusters.

B. UCI DATASETS
Then, we cluster the UCI datasets shown in Table 1 and
compare the results with other clustering algorithms to verify
the effectiveness and accuracy of our proposed algorithm.

Fig. 7 compares the accuracy of the clustering results
based on the evaluation indices Purity and Entropy. Obvi-
ously, NSPC obtains relatively higher Purity values and lower
Entropy values than the other algorithms. Although there
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FIGURE 6. Clustering results for two-dimensional datasets obtained by
NPSC.

TABLE 1. UCI datasets.

are multiple choices for the input parameters of comparative
algorithms, which may help to obtain more accurate clus-
tering results, our proposed algorithm still has advantages.
Because our algorithm doesn’t need to set parameters that
directly affect the accuracy of clustering result. The clustering
result mainly depends on the data distribution. So compared
with the other algorithms, our algorithm could obtain rela-
tively steady and accurate results, without depending on the
parameters directly. This indicates that NSPC can be more
likely to obtain more accurate clustering results.

This is mainly due to the proposed distance measure-
ment method, where the unsupervised clustering analysis
determines the generation of clusters based on the results
of distance measurement. The proposed method does not
assign objects into clusters based on the relatively compar-
ative distances, such as in K-means or Birch. It also does not
depend on the neighborhood radius parameter to determine
the density of clusters as in DBSCAN.

NSPC does not need to entirely depend on the numeri-
cal distance measurement results as traditional methods do.
It is based on a nonparametric statistical hypothesis testing
method and determines whether clusters are similar accord-
ing to the distribution features of the data.

UPGMA and Fast have improved the shortcomings inher-
ent in traditional clustering methods. However, UPGMA still
extracts cluster features based on neighboring objects, that is,
it also depends on the distances to some extent. While NSPC
draws samples in each cluster randomly during the similarity
analysis between clusters, these samples reflect the distribu-
tion features of clusters to some extent. Fast uses a probability
density function to obtain the distribution features of clusters.
However, this method needs to make assumptions about the
data distributions, and these assumption are more likely to not
match the real data distributions. Therefore, its results obtain
a lower Purity value and a higher Entropy value compared
with NSPC. These results illustrate that our proposed distance
metric can obtain more accurate clustering results.

Fig. 8 compares the run time results between these clus-
tering algorithms on the UCI datasets. K-means exhibits high
efficiency due to its linear time complexity. NSPC has a run
time close to Birch, which is also a hierarchical clustering
method. In addition, NSPC has a relatively high efficiency
compared to the other algorithms. UPGMA needs to obtain
neighboring objects and then calculate clustering features,
and Fast needs to calculate probability density distribution
functions for clusters. These operations require considerable
computation time.

Clearly, our proposed algorithm can not only obtain rel-
atively accurate clustering results but also provide high
efficiency.

This is due to the use of our proposed distance metric,
which is based on the distribution features of data during
clustering.

This approach also relies on our proposed two-step cluster-
ing process, which can help to ensure the accuracy and effec-
tiveness of the clustering. Because we use several descriptive
statistics to represent data distribution features in a cluster
when measuring distance between an object and a cluster,
we analyze the distribution feature variations once the object
is assigned to a cluster. Therefore, we can obtain a more
objective similarity result between the object and a cluster.
We use the W-M-W rank sum test method to measure dis-
tances between clusters. This avoids inaccuracies when deter-
mining whether to merge clusters according to less objective
comparison values in traditional metrics. This approach also
ensures the efficiency of the clustering process by not using
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FIGURE 7. Comparison of accuracy for clustering results on UCI datasets.

TABLE 2. Telephone traffic dataset.

all objects in the clusters. The two-step process assures that
the number of generated clusters will not depend on a preas-
sumed value. This determines when the clustering process is
terminated through the analysis of data distribution based on
a nonparametric statistical hypothesis test. The final number
of clusters does not need to be relative to the initial number
set by the parameter.

C. REAL DATASET
We further verify the effectiveness of our proposed algorithm
on a real dataset in a communication field. The dataset in
Table 2 contains the data of user call volume in an hour
covered by every base station in a city.

Based on this telephone traffic dataset, we first compare
the clustering accuracy with other clustering algorithms. Sec-
ond, based on the clustering results, we analyze the user
behavior patterns for every day in the regions covered by
each base station. That is, different clusters have different
data distribution features, which are reflected as different user
calling behaviors in this city. In addition, we can further ana-
lyze the regional functions of the city through different user
data.

By comparing our approach with the results obtained by
the other methods, we can verify the effectiveness of our
proposed algorithm. Through the user behavior patterns and
regional function discovery based on the clustering results,
we can illustrate the practicability of the method.

The original data label information is difficult to obtain
in most practical application domains, especially in a

FIGURE 8. Comparison of run time for clustering results on UCI datasets.

communication field that consistently generates data. There-
fore, we use the relative evaluation indices Dunn [43] and
DB [44] to analyze the clustering accuracy on this real
dataset [45]. These two indices can be calculated as:

(1) Dunn = min
i=1,...,nc

{ min
j=i+1,...,nc

(
d(ci,cj)

max
k=1,...,nc

diam(ck )

)
}, where

diam =
∑

i=1,...,n
∑

op,oq∈C
d(op,oq)/n

(2) DB = 1
nc

∑nc
i=1max

j 6=i

(
Ci+Cj
d(Ci,Cj)

)
Both datasets measure compactness within clusters and

the separation between clusters. We can evaluate the relative
validity of the clustering results through a comparison of their
index values. The greater the Dunn value is, themore accurate
the clustering result is, while DB performs in an opposite
manner.

Fig. 9 shows a comparison of the clustering results on this
real dataset based on different clustering algorithms.

This figure shows that with the use of distribution features,
the clustering results generated by our proposed algorithm
have larger index Dunn values and smaller DB values, i.e.,
our results are relatively more accurate.
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FIGURE 9. Comparison of clustering accuracy on traffic dataset.

FIGURE 10. The distribution characteristics of clusters generated on a real
dataset.

This result occurs because the attributes of the real dataset
are numerical, which are ideal for obtaining distribution fea-
tures. Our proposed clustering algorithm takes advantage of
the data distribution features and obtains a relatively more
accurate clustering result.

We can also describe the distribution diagram for the clus-
tering result based on our proposed algorithm,which is shown
in Fig. 10. The figure illustrates that with the application
domain knowledge, the generated significant different clus-
ters correspond to different types of regional functions in the
city, i.e., the official region, residential region and market
region. These regions have unique distribution features that
give them different functions. For example, the telephone
traffic always increases and maintains a certain volume in the
official region during working hours because of the nature
of the work. Telephone traffic has relatively lower values in
the daytime and higher values after working hours in the
residential areas. We can thus develop service mechanisms
for the base stations in these different regions based on the
clustering results.

From the above experiments, we find that our proposed
clustering algorithm can generate clusters with arbitrary
shapes and is applicable to datasets of many types, including
UCI datasets and telephone traffic data. These results illus-
trate that the proposed method has a higher reliability when
used to discover inherent data distribution characteristics.

V. CONCLUSION
To ensure the reliability of obtaining inherent data distri-
bution, a distance metric is proposed based on descriptive

statistics and nonparametric statistical methods. The distance
measurement method based on nonparametric statistics could
take full advantage of the data distribution features, obtain
clusters in a more straightforward and objective way com-
pared with traditional distance metrics. In addition, a two-
step hierarchical clustering algorithm is also proposed. The
proposed clustering algorithm can avoid the presumed initial
number of clusters with its two-step characteristics; the final
number of clusters does not need to be relative with the
initial number set by the input parameter. It can also dis-
cover clusters with arbitrary shapes and obtain more accurate
results due to the distance metrics: it determines the similari-
ties between clusters on the basis of data distribution features.

Therefore, the proposed distance measurement method can
provide stronger support for unsupervised clustering analysis.
In addition, the clustering algorithm can be used to analyze
data with unknown category information. They both facilitate
ensuring the reliability of obtaining data aggregation features,
which is illustrated by experiments on different datasets.
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