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ABSTRACT The Square Kilometer Array (SKA) is an international initiative for developing the world’s
largest radio telescope with a total collecting area of over a million square meters. The scale of the operation,
combined with the remote location of the telescope, requires the use of energy-efficient computational
algorithms. This, along with the extreme data rates that will be produced by the SKA and the requirement
for a real-time observing capability, necessitates in-situ data processing in an edge style computing solution.
More generally, energy efficiency in the modern computing landscape is becoming of paramount concern.
Whether it be the power budget that can limit some of the world’s largest supercomputers, or the limited
power available to the smallest Internet-of-Things devices. In this article, we study the impact of hardware
frequency scaling on the energy consumption and execution time of the Fast Fourier Transform (FFT) on
NVIDIA GPUs using the cuFFT library. The FFT is used in many areas of science and it is one of the key
algorithms used in radio astronomy data processing pipelines. Through the use of frequency scaling, we show
that we can lower the power consumption of the NVIDIA A100 GPUwhen computing the FFT by up to 47%
compared to the boost clock frequency, with less than a 10% increase in the execution time. Furthermore,
using one common core clock frequency for all tested FFT lengths, we show on average a 43% reduction in
power consumption compared to the boost core clock frequency with an increase in the execution time still
below 10%. We demonstrate how these results can be used to lower the power consumption of existing data
processing pipelines. These savings, when considered over years of operation, can yield significant financial
savings, but can also lead to a significant reduction of greenhouse gas emissions.

INDEX TERMS Energy efficiency, high performance computing, real-time systems, parallel architectures,
fast Fourier transforms.

I. INTRODUCTION
The Fast Fourier Transform (FFT) is one of the most fun-
damental and widely used numerical algorithms in scientific
computing, with applications in a diverse range of areas such
as astronomy, image processing, audio and radar signal pro-
cessing, numerical solvers, such as partial differential solvers,
and mechanical systems [1]. The FFT is also an integral
part of many data processing pipelines, and is an important

The associate editor coordinating the review of this manuscript and

approving it for publication was Byoung Wook Choi .

part in both image- [2]–[5] and time-domain [6]–[11] radio
astronomy.

The upcoming, next-generation radio telescope, the Square
Kilometer Array (SKA), will employ such complex data pro-
cessing pipelines to deliver science products that will provide
new and exciting insights into our Universe.

Previous studies, for example [12], estimate that the SKA
will require an exascale size high performance comput-
ing (HPC) system to provide us with such scientific products.
Where, the computational footprint of the FFT, depending on
the data processing task, may occupy [13] up to 47% of the
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overall computational footprint measured in floating-point
operations per second (or FLOPS). This makes the FFT a
critical algorithm for the SKA.

Processing the data captured by the SKA possess many
challenges. The SKA will produce extremely large volumes
of data at unprecedented rates. Furthermore, the telescope
itself must be located in a radio-quiet area due to its extreme
sensitivity. This makes the persistent storage of all data not
viable and transportation of these data to a well equipped
(and suitably powered) data center impractical. Finally, some
science cases such as the study of Fast Radio Bursts (FRBs),
necessitate near real-time data processing. Meaning that data
has to be processed close to the instrument itself. These con-
straints present significant challenges to software and system
engineers, they demand high fractions of peak performance
of the hardware, whilst maintaining the best possible energy
efficiency of both software and hardware.

To address the need to minimize the power consumption
of the locally installed hardware, close attention must be paid
to the energy efficiency of the data processing algorithms,
specifically the FFT. Given the emphasis on lower power
consumption in HPC in general, the ability to compute the
FFT more efficiently is of interest to many computational
domains.

The near real-time processing constraint means that the
execution time of the data processing algorithms must not
be increased significantly. An increase in the execution time
might lead to either failure to process data on time and hence
a loss of scientifically important data or increased capital and
operational costs as more hardware would be needed to meet
the real-time requirement.

Motivated by this, we have studied the impact of dynamic
frequency scaling (DFS) on the energy efficiency and exe-
cution time of the FFT on NVIDIA GPUs using the cuFFT
library [14]. The GPU is the fastest and most energy efficient
choice of hardware for image domain radio astronomy as
shown by [15], with FPGAs a close second. There are other
FFT libraries for GPU’s, notably, the clFFT library which
uses the OpenCL framework. clFFT is not a vendor supported
library and was shown by [16] to be slower than cuFFT
on NVIDIA GPUs thus we have not considered it for this
work.

Our exhaustive study, conducted on a range of state-of-
the-art GPUs shows that careful tuning of the core clock
frequency can save, in the case of the A100 GPU, up to 47%
(compared to the boost core clock frequency) of the energy
consumption of the FFT (for V100 GPU it is 60%). This
saving can have a significant impact on two fronts: financial
savings in recurrent costs, and the associated reduced CO2
emission.We also show that these carefully tuned frequencies
can be replaced with a single frequency that is specific to
each model of GPU and chosen floating-point precision,
whilst still being able to save on average up to 43% of the
FFT energy consumption for the A100 GPU or 50% for
V100 GPU.
The main contributions of this work are:

• We have performed an in-depth investigation of cuFFT
library’s power consumption and execution time and
how it changes with core clock frequency for a wide
range of problem sizes and numerical precisions (FP16,
FP32 and FP64) on five NVIDIA GPUs.

• We identify an optimal core clock frequency with the
highest energy efficiency for all problem sizes and
numerical precisions and have shown that a single mean
optimal frequency per GPU model gives similar power
savings regardless of problem size.

• We demonstrate how these results can be used to lower
the power consumption of existing data processing
pipelines.

Whilst this work has been motivated by the SKA radio
telescope, the conclusions of the work are applicable to any
computational task that employs cuFFT running on NVIDIA
GPUs.

II. BACKGROUND
Power consumption in HPC is being solved on multiple
levels. From construction at the level of the cluster to new
energy efficient hardware. The power consumption of spe-
cific hardware depends on execution time, the time taken to
finish a calculation, and also on the utilization of the hardware
(memory, cache, computing cores). The software itself also
plays an important role in power consumption. Energy can
be saved through proper software design, making software
stable [17] and through the use of appropriate algorithms.

However, concerns regarding energy efficiency in themod-
ern computing landscape are not solely limited to HPC. Edge
computing is becoming an increasingly important research
area driven by the explosion of Internet-of-Things devices.
The basic premise of edge computing is to capture and pro-
cess data as close to their sources as is possible by utilizing
light weight processors. Because edge computing aims to pro-
cess data locally, it minimizes wider latency and bandwidth
needs and allows for real-time feedback. It is estimated that
by 2025 around 150 billion devices will be connected and
creating data in real-time [18], with the FFT playing, not only
an important role in the communication between devices,
but also in processing collected data. Hence optimizing the
energy efficiency of the FFT on edge devices is of importance
from an environmental perspective. This has motivated us to
include NVIDIA’s Jetson Nano in our selection of hardware
since it represents NVIDIA’s low power edge computing
solution.

The idea behind DFS, which is part of the dynamic voltage
and frequency scaling (DVFS) method, is to make hardware
more energy efficient under different loads by adjusting hard-
ware performance which is achieved by changing clock fre-
quencies to fit the application running on it. By decreasing the
clock frequency of a component we decrease its performance
while increasing its utilization and thus decreasing the power
consumption of a given component. For example, Trefethen
and Thiyagalingam [19] have investigated possible energy
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savings when running software on CPUs with a different
number of threads, compilers and CPU clock frequencies.

Applications can be broadly separated into two classes of
performance, the first is where an application or algorithm
is compute-bound. This is where the performance bottleneck
of the application is the compute resource. This can be the
number of floating-point operations which can be performed
per second (FLOPS), but also the number of instructions
which can be issued per second. The second broad category
is memory bandwidth bound applications, where we have
enough compute resources but we cannot supply the data
through the memory bus to the computing cores quickly
enough. In this case the performance is then limited by the
memory bandwidth. This bandwidth limitation can occur at
any level in the computers memory hierarchy, for example
this might be at the level of access to the GPU main memory
(called device memory), or at the level of one of the caches.
We have investigated the cuFFT library using the NVIDIA

Visual Profiler (NVVP). This shows that for all investigated
problem sizes GPU kernels used by the cuFFT library are
device memory bandwidth bound.

A. FFT ALGORITHM
The one-dimensional discrete Fourier transformation (DFT)
of a signal x is given by

Xl =
N−1∑
n=0

xn exp
[
−i2π

nl
N

]
, (1)

where Xl is the l-th element of a transformed signal, xn is the
n-th element of an input signal, and N is the transformation
length or the FFT length.

The cuFFT library [14] uses the Cooley-Tukey algorithm
[20] for FFT sizes that can be decomposed as multiples of
powers of primes from 2 to 127 and Bluestein’s algorithm
[21] otherwise. For longer FFT lengths the cuFFT library
uses multiple GPU kernels to compute the entire FFT, which
can be seen by studying the cuFFT library using the NVVP.
In many cases, the Fourier transform is calculated more
quickly if the FFT length is increased by padding to a more
optimized length as was shown by [22].

The two-dimensional Fourier transformation is given by
the formula

Xl,k =
M−1∑
m=0

N−1∑
n=0

xn,m exp
[
−i2π

(
nl
N
+
mk
M

)]
, (2)

where xn,m, Xl,k is now an element of a matrix of size N ×M .
The sums in this equation can be evaluated independently
which allows us to decompose the two-dimensional Fourier
transformation into two sets of one-dimensional Fourier
transformations. This is routinely done and it is indeed what
cuFFT does when calculating higher-dimensional (2D, 3D)
Fourier transformations as shown by the NVVP. Thus by
investigating the energy efficiency of the one-dimensional
Fourier transformation we are also investigating the energy
efficiency of the higher-dimensional Fourier transforms.

FIGURE 1. A schematic of the GPU architecture.

B. GPU ARCHITECTURE
The GPU design methodology is different to that of a CPU.
A CPU architecture is aimed at low latency computations,
but also has lower throughput. In other words, the CPU can
execute a wider range of complicated algorithms quickly, for
example a complicated branching code, but the number of
concurrently running tasks is small. A GPU architecture has
high latency but also high throughput, on a GPU one can
execute thousands of simple tasks concurrently but each task
takes longer to complete.

The GPU architecture, which is, in simplified form, shown
in Fig. 1, is divided into the memory block and the compute
block. The compute block is further divided into caches and
streaming multiprocessors (SM) which are responsible for
executing the computations. The SMs are further divided
into specialized units such as floating-point cores or special
function units (which are responsible for complex operations
such as computing transcendental functions). The memory
hierarchy on theGPU is distributed between these two blocks.
The device memory which runs at the memory clock fre-
quency has the lowest bandwidth on the GPU card and it is
the memory that the CPU (host) can read/write into via the
PCIe bus. The L2 cache is shared between the SMs, the L1
cache is private to each SM and the shared memory is shared
amongst a group of threads called a threadblock. The L2,
L1 and shared memory bandwidth is proportional to the core
clock frequency, thus by using a lower core clock frequency
we also decrease the bandwidth of these caches. The core
clock frequency, as well as the memory clock frequency, can
only be set to predefined values.
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Different GPUs may use different memory modules.
Amongst the tested GPUs were GPUs with GDDR memory
modules (P4, Jetson Nano) which allow us to change the
memory clock frequency, but alsoGPUswithHBM2modules
(Titan V, V100, A100) which do not allow us to change the
memory clock frequency.

When measuring the power consumption and performance
of the GPU it is important to keep the GPU utilized. For
example, the NVIDIAV100 GPU has 80 streaming multipro-
cessors (SM)where each SM is able to run up to 2048 threads.
This gives more than 150 thousands threads which can exe-
cute concurrently. Thus in our measurements, we have used
a fixed amount of data containing a different number of
individual Fourier transforms to keep the GPU utilized for
all tested FFT lengths.

C. REAL-TIME PROCESSING
Data processing can be composed of a single step but more
often is a series of processing steps which together form a
data processing pipeline.

The ability of the application to process data in a real-
time processing scenario can be described by the real-time
ratio. The real-time ratio is calculated as S = ta/tp, where
ta is the time needed to acquire a given amount of data by
the telescope, sensor, etc. and tp is the time taken to process
that data. The time required to process the data must also
include the time spent transferring data to the GPU and back
which could represent a significant part of the processing
time. When S ≥ 1 the pipeline is processing data in real-time
or quicker and when S < 1 the pipeline is not managing to
process data in real-time. If we assume that our toy pipeline
has a real-time ratio of S = 1 that pipeline is processing
the data in time but has no performance buffer to call on if
needed. In such a case any increase in the execution time
leads to S < 1 and in order to process data in real-time again
we must add more hardware to share the processing load.
This situation is however unrealistic and a real-world pipeline
would have a performance buffer to call on in the case of an
unexpected event. We must also keep in mind that an increase
in hardware does not necessarily equate to the same increase
in a pipelines performance. The parallelization of a given task
might be non-trivial, for example, communication between
GPUs could be a limiting factor. In our case this approxima-
tion is appropriate as Fourier transformations which can fit
into thememory of the GPU can be easily distributed amongst
the GPUs.

In this work we consider two situations. The first is where
the real-time processing pipeline exists and where the spare
performance can be used to increase the energy efficiency
of the pipeline. In the second case, we are interested in how
much additional hardware is needed to process data in real-
time at the best energy efficiency.

III. RELATED WORK
As of November 2019, the first two positions in the
top 500 list of supercomputers are held by systems that use

GPUs. Within the top ten, five systems contained GPUs.
In the Green 500 list, GPUs are used in eight out of the top
ten supercomputers. A clear demonstration that it is important
to understand the power consumption, energy efficiency and
potential energy savings for GPUs using DVFS.

The different approaches of how to measure the power
consumption, power and performance modeling and also the
results of DVFS for selected applications were reviewed by
Mei el al. [23]. The authors note that the effect of DVFS
depends not only on the architecture but also on the charac-
teristics of the GPU application. They have found the optimal
frequency for 42 GPU applications and found that 12 of
them benefited from an increased core frequency compared
to the default whereas for 30 applications the optimal fre-
quency was lower than the default core frequency, and values
of these optimal frequencies were different for most GPU
applications. The authors called for a deeper investigation
into their differences. A useful review of the DVFS tech-
nique is provided by Mittal and Vetter [24]. The review by
Bridges et al. [25] looked into the modeling of the power
consumption by GPUs.

A number of published studies have investigated the
reliability of power measurements using internal sensors.
Burtscher et al. [26] published their experience of using
built-in sensors when measuring the power consumption of
NVIDIA K20 GPUs. They described several issues that they
encounteredwhen using these sensors and suggestedmethods
to correct for these. The accuracy of the built-in sensors was
investigated by Fahad et al. [27] who found that the average
mean error using an abstract model of a GPU is about 10%
compared tomeasurements using external powermeters. This
error value was confirmed by Arafa et al. [28] who measured
the energy consumption of almost all PTX instructions for
four generations of NVIDIA GPUs. They have found that
the Maxwell and the Turing generations of GPUs have high
energy consumption when compared to the Pascal and the
Volta generations of NVIDIA GPUs which are found to be
more energy efficient.

There are a number of papers where authors have
used DVFS in the context of GPUs [23], [29]–[43].
Guerreiro et al. [36] classified GPU applications into
four different categories which describe their behavior
when DVFS is applied. These categories are an exten-
sion of the compute-bound, memory-bound distinction.
Zamani et al. [39] have investigated energy savings by lower-
ing voltage below save limits while detecting and correcting
errors which arises from undervolting. The undervolting
on GPUs was also explored by Mendes et al. [43], where
authors have achieved lower energy consumption without
performance degradation and in some cases with better per-
formance. Wang and Chu [40] introduce a fine-grained ana-
lytical model for estimation of the execution time of different
GPUkernels. They have also investigated thememory latency
and its dependency on core and memory frequency.

The early work on GPU power consumption and DVFS
was performed by Jiao et al. [37]. They investigated the
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behavior of several GPU applications which included the
FFT algorithm, however, the cuFFT library was not studied
because there were better performing FFT implementations
at the time. The FFT algorithm was part of the benchmark
used by Guerreiro et al. [36]. The FFT was also indirectly
included in Mei et al. [23] as part of the convolution, and
in Tang et al. [38] where the author investigated the effect of
DVFS on deep learning applications.

In relation to radio astronomy and the SKA, there are
several works. Price et al. [44] made a detailed investigation
into power consumption, voltage and frequency scaling of
the GPU implementation of the correlator for the SKA. The
power consumed by the GPU in the domain of radio astron-
omy was investigated by Romein [45]. The performance of
the cuFFT library was investigated by Jodra et al. [46] along
with its power consumption. However, increases in energy
efficiency due to frequency scaling were not investigated.

IV. EXPERIMENTAL SETUP AND EVALUATION
The code that we have used1 for measurements of the energy
efficiency of the FFT algorithm consists of a basic implemen-
tation of the NVIDIA cuFFT library [14].

The code first generates input data as pseudo random num-
bers on the host and then we transfer the data from the host to
the device via the PCIe bus. The code runs the FFT algorithm
on the GPUmultiple times whilst the power used by the GPU
is measured as described below. The measurements gained
from multiple runs are used to calculate a relative standard
deviation which we use to represent the measurement error in
the results presented. We provided the GPUwith enough data
to ensure that it is fully utilized. The Fourier transform used
was an out-of-place one-dimensional transform as provided
by cuFFT. When the FFT algorithm ends the measurement of
the power is stopped. Thus only the power consumption of the
FFT algorithm on the GPU is measured. The calculated result
is transferred back to the host. The result is then compared to
the result from the same transformation again performed by
the GPU, but this time using the GPU’s default settings. This
is done to ensure correctness.

To technically achieve the above scenario we log the time-
stamp, power consumption, current core clock frequency
and current memory clock frequency. For that we use the
NVIDIA System Management Interface (nvidia-smi) for
all GPU cards except the Jetson Nano, where we have used
the tegrastats utility. For both we have specified the
measurement interval to be 10ms as our tests have showed
that a setting of time sampling below 10ms does not lead
to an improvement in the time resolution of our data. The
actual time between samples varied and the actual achieved
sampling rate from the driver is on average 14.2ms for all
tested FFT lengths and cards. This sampling rate fulfills
the criterion of at least 15 ms (66.7 Hz) recommended by
Burtscher et al. [26] to accurately measure the energy con-
sumption of real-world kernels.

1can be found at https://github.com/KAdamek/cuFFT_benchmark

TABLE 1. List of the allowed core clock frequencies from maximal fmax up
to minimal fmin frequency for all cards and their corresponding frequency
step size (fstep). The size of the frequency step alternates between values
shown in the column fstep with the exception of the Jetson Nano.

For the localization of the FFT algorithm and establishing
the execution time we have used the nvprof utility where
we have included the timestamp. Finally we log the beginning
and end of each GPU kernel execution to a file. This way
we produce two files containing all of the needed metrics
for all possible combinations of core clock frequencies for
a specific FFT length, bit precision and GPU card. The final
combination (via the timestamp comparison) of these files is
done by using a simple R script. Here we compute all other
metrics including energy efficiency, optimal clock frequency,
mean optimal core clock frequency and computational perfor-
mance. In the script we also verify that the current core clock
frequency is the same as the requested one, and compare
the measured execution time from nvprof with the log
timestamps of the nvidia-smi query. Using this method
we have found that, for the Titan V, the core clock frequency
is capped to 1335MHz by the driver2 during the computation,
but during the copy of the results is set to a higher core
clock frequency (1837 MHz). For frequencies lower than
1335 MHz, no capping is observed. An example of the GPU
kernel power consumption and active core clock frequency,
which was localized using log file timestamps, is shown for
the V100 GPU in Fig. 2 (top). An example of the frequency
capping on the Titan V GPU is shown in Fig. 2 (bottom).
The choice of clock frequencies for both the memory bus

and the computational cores are limited to a set of supported
frequencies defined by the hardware itself. The supported
core clock frequency can easily be changed by the driver
API. The allowed clock frequencies of the device memory
bus are limited or not changeable depending on the mem-
ory type. Since the cuFFT library is completely limited by
device memory bandwidth this suggests that lowering the
memory frequency would not lead to substantial increases
in the energy efficiency. Thus, we have not changed the
memory clock frequency in this work. Moreover the High
Bandwidth Memory (HBM) which is present on the newest
GPU cards (Titan V, Tesla V100, Tesla A100) operates on a
fixed memory clock frequency. The ranges and step sizes of
the core clock frequencies that we have used are summarized
in Table 1.
The energy for a specific core clock frequency is defined

as

Ef =
∑
i

Pi · ti, (3)

2driver version 450.36.06
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FIGURE 2. Parts of the log file with the GPU kernel highlighted (red dots)
by the R script between the two non-computing parts of the GPU run
(grey line dots) showing the reported power consumption. The blue line
corresponds to the measured core clock frequency. Specifically, the data
displayed are from measurements on the Tesla V100 (top) and Titan V
(bottom) for an FFT length of 214, single precision and the core clock
frequency set to 1020 MHz (Tesla V100) and 1912 MHz (Titan V).

where Pi corresponds to the reported power for a sample
index i and ti is the time between the current sample and the
previous one. Then the energy efficiency for a specific core
clock frequency is given as

Eef = Cp · t/Ef , (4)

where t corresponds to the time of the whole run of the
computation, Ef is the energy and Cp is the computational
performance in FLOPS given by

Cp =
[
5N log2(N ) · Nb · NFFT

]
/t, (5)

where Nb is the number of FFT runs of length N and NFFT
is the number of FFTs computed per run. The number of
Fourier transforms performed (NFFT) depends on the FFT size
as follows

NFFT = MGB/(N · B), (6)

whereMGB is the desired amount of memory used for FFTs in
GB and B is the byte size of the input data type. The optimal
core clock frequency for a specific FFT length is then found
as the one with the minimal consumed energy.

We define the increase in energy efficiency as

Ief = Eef,o/Eef,d, (7)

FIGURE 3. Measurement error (V100 GPU at the top, Jetson Nano at the
bottom) for all tested FFT lengths at all tested core clock frequencies.

where Eef,o and Eef,d are the energy efficiencies for the opti-
mal frequency and the boost frequency respectively (given
by (4)).

The measurement error, that is the relative standard devi-
ation, for the V100 GPU and the Jetson Nano is shown
in Fig. 3. We have observed that the measurement error,
in general, is around 5% for all cards except the Jetson
Nano. The GPU cards use instrumentation amplifiers for the
current/voltage/power monitors, hence the potential error in
the measurement is expected to be around 3–5% [47]. The
results of our power measurement correspond to the expected
characteristics of the on-board chips.

For Fourier transformations of higher radices (7+) or for
Fourier transformations which use the Bluestein algorithm
we observe a measurement error of up to 5%. The measure-
ment error increases with decreasing core clock frequency
and increasing number of GPU kernels used for the FFT
calculation.

The measurement error for the Jetson Nano is usually
below 15% for all FFT lengths, and is below 10% for power-
of-two FFT lengths. The highest measurement error that we
have observed is for Bluestein FFT lengths. For these lengths,
cuFFT uses multiple kernels (for N = 1392 eleven GPU
kernels are used) thus the high measurement error is due
to the different loads these GPU kernels exert on the GPU
and also the differing power consumption between them. The
Bluestein FFT lengths represent a marginal case. Due to large
measurement errors for Bluestein FFT lengths on the Jetson
Nano we have not included these measurements into our
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calculations of mean optimal frequency. However, we present
these results for the sake of completeness.

For the measurement of the execution time we have used
theNVIDIAVisual Profiler. Using this we have found that the
measurement error for the execution time was below 0.3%.

Using propagation of uncertainty the error of the energy (3)
is dominated by the measurement error of the power con-
sumption. Based on that, the error in the increase in energy
efficiency (7) is given by

σR(Ief) =
√
2σR(Eef), (8)

where σR is the relative error and we have assumed that the
relative error in Eef,o and Eef,d are equal. This gives an error
for the increase in the energy efficiency of 7% for all GPUs
except the Jetson Nano where the error is 21%. These values
represent the worst case scenario since most of measurement
errors are well below these values.

V. RESULTS
For our investigation, we have used five different NVIDIA
GPUs from four recent architecture generations, namely
Tesla A100 (Ampere), Tesla V100 (Volta), Tesla P4 (Pas-
cal), Jetson Nano (Maxwell) and Titan V (Volta). The rele-
vant hardware specifications can be found in Table 2. The
Tesla A100, Tesla V100, and Tesla P4 are aimed at scientific
applications, the P4 GPU also offers improved energy effi-
ciency for its generation. The Jetson Nano is a low-powered
all-in-one solution for autonomous systems. The Titan V and
Jetson Nano are consumer grade GPUs.

GPUs have two different frequency settings: a base and a
boost core clock frequency. If not stated otherwise, we have
used the boost core clock frequencies. This is because the
GPU’s default behavior is to perform calculations at the boost
core clock frequency. This is indeed what is observed when
the GPU is set to default mode and we run our cuFFT code.

We have measured the complex-to-complex (C2C) one-
dimensional transform for three different floating-point preci-
sions; double (FP64), float (FP32) and half (FP16). The Tesla
P4 and the Jetson Nano GPUs have limited support for the
double precision format. Furthermore, the Tesla P4 do not
support the half (FP16) floating-point precision. In addition,
when using half precision (FP16), the cuFFT library supports
only power-of-two FFT lengths.

We have investigated various FFT lengths but focused on
lengths that are powers-of-two because FFT algorithms are
not only best suited to processing such lengths, but also offer
superior execution time performance with powers-of-two
lengths. When calculating non-power-of-two FFT lengths it
is often faster [22] to pad the data which needs to be Fourier
transformed to the nearest higher power-of-two FFT length
and then Fourier transform.

First, we present execution times for processing a fixed
amount of data tfix which offers an insight into the level of
optimization provided by the cuFFT library. The memory
requirements to store the data needed for the Fourier trans-
form grows linearly with the FFT length N and the number

FIGURE 4. The execution time tfix (for FP32) required to process a fixed
amount of data for different FFT lengths. The discontinuities in the
execution time indicate a change of optimized GPU kernel that is used to
calculate the FFT. Results for the Jetson Nano are for one quarter of the
memory size.

of floating point operations performed grows as O(N logN ).
Since the cuFFT library is limited by the device memory
bandwidth, the execution time is dominated by the time
required to transfer the data to computing cores and to store
the result back to the device memory. In the ideal case the
algorithm would read and store the data only once. How-
ever, due to the limited size of the cache, at some point the
implementation needs to store or read additional data from
the device memory. These additional accesses will increase
the execution time. If the algorithm processes a fixed amount
of input data the contribution of the initial read and store
of the results remains constant. Therefore an increase in the
execution time will indicate a change of the GPU kernel.

If we fix the amount of data that is processed then the
number of FFTs performed NFFT depends on the FFT length
as given by (6). The execution time of a single FFT within a
batch is given as tt = tfix/NFFT. The execution time tfix for
processing a fixed amount of data for various FFT lengths
is shown in Fig. 4 for FP32 and in Fig. 5 for FP16 and
FP64 precision. The execution time for the Jetson Nano is
for 1/4 of the amount of data so the comparable value of
tfix is tfix = 4t̂fix. This is due to the low amount of available
memory on the card.

The execution time tfix increases in proportion to the length
of the Fourier transform. However, we see regions of the
same execution time with sudden increases after specific FFT
lengths. These abrupt changes represent a transition from one
optimized GPU kernel to another as is shown by the NVIDIA
profiler. We must take these changes into account in our anal-
ysis since these GPU kernels might behave differently. When
the execution time tfix does not increase for a given range of
problem sizes (for example from FFT length N = 32 to N =
8192) it means that the higher number of floating-point oper-
ations which come with a larger problem size utilizes GPU
resources other than the device memory bandwidth. Given
that the Tesla P4 and Jetson GPUs do not fully support all
tested floating-point precisions the execution time of Fourier
transformations on these GPUs exhibit different behaviors.
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TABLE 2. GPU card specifications. The shared memory bandwidth is calculated as
BW(bytes/s) = (bank bandwidth (bytes))× (clock frequency (Hz))× (32 banks)× (# multiprocessors).

FIGURE 5. The execution time tfix (for FP16 and FP64) required to process
a fixed amount of data for different FFT lengths. The discontinuities in
execution time indicate a change of optimized GPU kernel that is used to
calculate the FFT. Results for the Jetson Nano are for one quarter of the
memory size.

In this work, results are presented per FFT batch, which
is the number of FFT’s of a given length which fit into the
fixed amount of memory that we have chosen to work with.
However, most of our results, such as energy efficiency, are
independent of the number of FFTs calculated provided that
theGPU is fully utilized. The execution time for different core
clock frequencies is denoted by tf. The execution time with
boost frequency is denoted as td and is taken as the execution
time for the default settings. Furthermore, we have focused
our discussion on the V100 GPU as it is currently widely used
and the most available scientific GPU and the Jetson Nano as
it represents NVIDIA’s low power edge computing solution.
We point out any deviations from these behaviors in the other
tested GPUs when they occur.

A. FREQUENCY SCALING
First, we present the behavior of the execution time with
changing core clock frequency. This is shown as a ratio of
execution time tf over default execution time td in Fig. 6,
which shows all tested configurations for FP32 precision.

There are three distinct behaviors, the execution time is:
a) decreasing at first;
b) slightly increasing;
c) increasing notably with each frequency decrease.

In the case of the V100 GPU, the first two behaviors a) and
b) are in the majority. For a few specific FFT lengths (notably
for N = 8192) we have observed behavior c). We have

FIGURE 6. Ratio of the execution time tf over the default execution time
td measured for the V100 GPU and the Jetson Nano. Every investigated
FFT length is shown and represented by a single line.

observed this behavior throughout multiple measurements
and always for the same FFT lengths. Other tested GPUs
behaved similarly to the V100 GPU.

The Jetson Nano exhibits a different behavior, where most
of the configurations belong to case c) with notable peaks
which are present for Bluestein FFT lengths.

The energy consumed per FFT batch calculated by equa-
tion (3) with fixed length N = 16384 for different GPUs is
shown in Fig. 7. For the measurement, we have used a batch
of 16384 FFTs (in the case of FP32 this represents 2 GB of
input data) in order to fully saturate the GPU. Notably, the
energy per FFT batch on the Titan V GPU does not change
above 1335 MHz. This is because the card does not run at
the user selected frequency but is capped by the driver to
1335 MHz.

As the core clock frequency decreases the power consump-
tion of the GPU changes non-linearly. This is shown in Fig. 8
for the V100 GPU and the Jetson Nano.

The frequency at which the energy per FFT batch reaches
a minimum was selected as the optimal frequency. The opti-
mal frequency is different for each tested FFT length for a
given GPU and precision. The optimal frequency expressed
as a percentage of the default core clock frequency for all
precisions is shown in Fig. 9. The optimal frequency for
the A100 varies more than other GPUs due to the shallow
minimum where the greater range of core clock frequencies
has a similar energy efficiency, this can be seen in Fig. 7.
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FIGURE 7. The energy consumed per FFT batch changes with core clock
frequency. The minimum, emphasized by a black star for each tested GPU,
represents the most efficient configuration and the value of the optimal
frequency. Note that the Jetson Nano processes one quarter of the data
compared to other GPUs.

FIGURE 8. Averaged power consumption as a function of core clock
frequency for all tested FFT lengths. The Jetson Nano is shown
independently as its behavior is different from the rest of the tested GPUs
which are represented by the V100 GPU.

FIGURE 9. Value of the optimal frequency expressed as a percentage of
the boost clock frequency. The value of the optimal frequency is
consistent through different precisions with the exception of the Tesla P4
GPU.

B. ENERGY SAVINGS
To acquire the following results we have selected the
optimal frequency for each FFT length and measured the
consumed power to calculate the energy efficiency using

FIGURE 10. Floating-point operations per second per Watt (GFLOPS/W)
for optimal frequency. The colored region shows the improvement from
the default frequency.

equation (4). The energy efficiency expressed as the number
of GFLOPS/W is shown in Fig. 10.
The change in the execution time for the optimal frequency

with respect to the default execution time as a percentage is
shown in Fig. 11. The change in GFLOPS is shown in Fig. 12.
The peaks visible in Fig. 11 correspond to FFT lengths which
displayed case c) type behavior of the execution time (Fig. 6).

The increase in the energy efficiency (7) with respect to the
boost core clock frequency is shown for different precisions
in Fig. 13.

We see that the optimal frequency of different FFT lengths
as shown in Fig. 9 is roughly the same for a given GPU
and precision across all tested FFT lengths. Furthermore, the
optimal frequency is roughly the same across all numerical
precisions for a given GPU with the exception of Tesla P4
GPU and the A100 GPU. Based on this we have calculated
a mean optimal frequency for a given GPU and precision
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FIGURE 11. Increase in the execution time for optimal frequencies as a
percentage of the default execution time td.

TABLE 3. Mean optimal core clock frequencies.

by averaging optimal frequencies which achieves a similar
increases in energy efficiency for all measured FFT lengths.
The increase in energy efficiency using the mean optimal
frequency is shown in Fig. 14. The values of mean optimal
frequencies are listed in Table 3.

When considering existing pipelines, it is also interesting
to study the relationship between the increase in energy effi-
ciency and the increase in the execution time. This relation-
ship indicates the cost (in units of execution time) of any

FIGURE 12. Floating-point operations per second (GFLOPS) for optimal
frequencies. The colored region shows the change from the default
frequency.

increase in energy efficiency. This is shown for theA100GPU
in Fig. 15, for the V100 GPU in Fig. 16 and for the Jetson
Nano in Fig. 17. In these figures, we have selected seven
equally spaced frequencies (closest possible match) starting
with the boost core clock frequency and ending with the
mean optimal frequency and presented the achieved increase
in energy efficiency and the increase in the execution time.
The values of both the increase in energy efficiency and the
execution time for a given core clock frequency differ for each
FFT length.

As discussed in section II-A the cuFFT library uses decom-
position of higher dimensional Fourier transforms into a set
of one-dimensional transforms. We have also measured the
increase in energy efficiency of the higher-dimensional FFTs
using the same procedure as for one-dimensional FFTs. The
measured increase in energy efficiency of power-of-two FFTs
on the V100 GPU is shown in Fig. 18. The results for other
GPUs are similar.
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FIGURE 13. The increase in the energy efficiency for optimal frequencies
with respect to the boost core clock frequency for all tested FFT lengths.
The two peaks observed in the Jetson Nano data are due to the use of the
Bluestein algorithm.

FIGURE 14. The increase in the energy efficiency for the mean optimal
frequency with respect to the boost core clock frequency for all tested FFT
lengths. The two peaks observed in the Jetson Nano data are due to the
use of the Bluestein algorithm.

FIGURE 15. Trade-off between an increase in energy efficiency in percent
(represented by a number in each cell) and an increase in execution time
(represented by a color) for the A100 GPU.

C. INTEGRATION INTO EXISTING PIPELINES
To demonstrate the applicability of the mean optimal fre-
quency in existing pipelines we have employed part of the
data processing pipeline3 used for the detection of pulsars in

3Source code for this pipeline is on GitHub
https://github.com/KAdamek/cuFFT_energy_efficiency_example

FIGURE 16. Trade-off between an increase in energy efficiency in percent
(represented by a number in each cell) and an increase in execution time
(represented by a color) for the V100 GPU.

FIGURE 17. Trade-off between an increase in energy efficiency in percent
(represented by a number in each cell) and an increase in execution time
(represented by a color) for the Jetson Nano.

FIGURE 18. Increase in energy efficiency of power-of-two FFT on the
V100 GPU.

time-domain radio astronomy data. The pipeline uses several
computational steps: FFT, power spectrum calculation; mean
and standard deviation calculation; and the harmonic sum.
All pipeline stages are performed on the GPU and the core
clock frequency was changed only during the cuFFT library
execution.

The harmonic sum adds the value of higher harmonics of
the pulsar in the power spectrum to the pulsar’s expected
fundamental frequency thus increasing the signal-to-noise
ratio of the pulsar in the power spectrum. The harmonic sum
can add up to 32 higher order harmonics which decreases the
FFT execution footprint in the pipeline’s total execution time.
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TABLE 4. Increase in energy efficiency for different configurations of our
toy data processing pipeline for V100 GPU.

FIGURE 19. Measured power consumption (top) and core clock
frequency (bottom) for part of a radio astronomy data processing
pipeline.

To change the frequency for just the cuFFT library during
the pipeline execution we have used the NVIDIA Manage-
ment Library (NVML) [48]. This approach, however, has
limitations because the library is fully supported only on
scientific (Tesla) NVIDIA GPUs. The measured power con-
sumption and the core clock frequency for the V100 GPU
are shown in Fig. 19 and the increase in energy efficiency for
different configurations of the pipeline is listed in Table 4.
The usage of the NVML library is simple. Before the GPU

kernel execution the core clock frequency is (for a given
GPU) set using nvmlDeviceSetGpuLockedClocks
providing maximum and minimum core clock fre-
quency. When the calculation is finished the GPU
core clock frequency is returned to default by calling
nvmlDeviceResetGpuLockedClocks.

The FFT length used for the computation was N = 5 · 105

which was not used in our measurements or in our calculation
of the mean optimal frequency.

D. PROFILING
For profiling, we have used the NVIDIA visual pro-
filer (NVVP) and the V100 GPU. Based on the different
behavior of the execution time tfix shown in Fig. 4 we have
selected three representative power-of-two FFT lengths (N =
8192, N = 16k, N = 2M) which are calculated by different
kernels. The profiling results for these kernels are shown in
Fig. 20. For our study of compute utilization we have used
two indicators. The first is the compute utilization as reported
by the NVVP, the second metric is the issue slot utilization,
which tells us how many instruction slots are used. The next
quantity displayed in Fig. 20 is the device memory bandwidth

utilization (device MBU). Fig. 20 also shows the normalized
execution time from fastest to slowest to provide context for
the other displayed quantities.

VI. DISCUSSION
The dependency of the execution time on the core clock fre-
quency is shown in Fig. 6. This displays the three previously
discussed behaviors a), b) and c). However, the Jetson Nano
only exhibits the third type of behavior c). All other GPU’s,
represented by the V100 GPU, exhibit a composition of all
three behaviors with cases a) and b) being dominant.

The behavior in case a), might be due to reduced cache
contention which slightly increases the hit rate of the uni-
fied cache as shown by NVVP. However, it might also be a
systematic error caused by measurement using the NVIDIA
driver, which is based on the GPU core clock frequency.
Similar behavior was observed by Mendes et al. [43] on the
AMD Vega 10 Frontier Edition GPU, where for default core
clock frequencies and voltage the power cap of the GPU is
surpassed, which activates the GPU protection mechanisms,
this halts the execution until the power is reduced. For lower
core clock frequencies or lower voltages, the GPU protection
mechanism is not activated, resulting in higher performance.
This behavior might be architecture dependent and may not
apply to NVIDIA GPUs; however, our power measurements’
time resolution did not allow us to confirm this.

In the case b), the memory latencies are not hidden by
computations thus the execution time is dominated by the
time required to load data from memory, i.e. it is governed by
the memory clock frequency which is not changing thus the
execution time remains mostly unchanged. The slow increase
in the execution time is due to lower rate of issuing memory
requests.When the core clock frequency is low enough for the
application to be compute bound the execution time becomes
dominated by computations and there is a direct dependency
of the execution time on the core clock frequency. How the
device memory latency is hidden and how it changes with the
ratio of core andmemory clock frequency is described in [40].

This is also supported by the analysis of the performance
counters from NVVP which shows that an increase in the
execution time at a particular critical frequency is due to the
saturation of the number of issued instructions (see Fig. 20).
This leads to a reduction in memory requests to the device
memory which, in turn, leads to poor latency hiding of the
device memory accesses. Therefore most of the threads are
waiting for data but there are not enough threads with data to
utilize the floating-point operation units. Thus the floating-
point operation utilization remains mostly unchanged.

The sharp increase in the execution time tfix for low fre-
quencies, which are present in all cases, are due to the change
of the P-state to a state corresponding to the idle status of the
GPU with reduced voltage which reduces the available GPU
resources severely.

Lastly, case c) occurs due to the high utilization of one
of the caches. Since the cache bandwidth decreases with
the core clock frequency each decrease in frequency lowers
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FIGURE 20. Profiling results for the V100 GPU using the NVIDIA visual profiler. Longer FFT lengths use more than one GPU kernel
to calculate the Fourier transform which are numbered.

the bandwidth which is already fully utilized leading to a
decrease in performance.

The average power consumption shown in Fig. 8, tells
us why, even with longer execution times, we can improve
energy efficiency. The rate of the decrease in power con-
sumption is higher than the rate at which the execution time
increases. This is especially visible around f = 1000Hz for
the V100 GPU and about f = 450 Hz for the Jetson Nano.
These frequencies roughly coincide with the mean optimal
frequency for the given GPUs.

A. REAL-TIME PROCESSING
The energy efficiency is shown in Fig. 10, the change in the
execution time is shown in Fig. 11 and the change in GFLOPS
is shown in Fig. 12.

In the language of costs, Fig. 11 is equivalent to the
increase in capital costs as an increase in execution time
directly translates into more hardware needed in order to
meet the constrains of real-time data processing. On the other
hand, the increase in energy efficiency (Fig. 10) is related
to operational costs, where better energy efficiency translates
into lower operational costs. However we must bear in mind
that operational costs include cooling, facility management,
etc. which could be increased by the requirement for more
hardware due to longer execution times.

For FP32 precision we see that the new A100 GPU
(Ampere architecture) is clearly more energy efficient than

all other GPUs from older generations. It is almost 30%-
50% more efficient than the V100 GPU for power-of-two
FFT lengths below 16k. The Jetson Nano is also more energy
efficient than the V100 GPU for almost all FFT lengths. Its
energy efficiency is, for very short (N ≤ 256) FFT lengths,
equal to the energy efficiency of the A100 GPU.

When we look at the change in the execution time we see
that the Jetson Nano requires approximately 60% more time
to finish compared to the execution time at the boost core
clock frequency. With one extreme case where the execution
time is 140% longer. This means on average 60% more
hardware to achieve real-time data processing with the best
energy efficiency.

This behavior is not reproduced by the V100 GPU or the
A100 GPU where the increase in energy efficiency is not,
for the most part, at the expense of the execution time. The
change in the execution time for both GPUs is below 5%.
There are more significant increases in execution time for the
non-power of two FFT lengths which can cause increases of
up to 20% in execution time. Small changes in the execution
time on both the V100 GPU and the A100 GPU offers a
possibility to improve existing real-time processing pipelines
without substantial change in hardware.

We see similar behavior for the V100 GPU and the A100
GPU at FP64 precision. The slow-down in execution time suf-
fered by both GPUs due to the lower core clock frequencies
is within 5%. The execution time for most of the non-power
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of two FFT lengths does not increase above 20%. The Tesla
P4 GPU and the Jetson Nano do not fully support FP64
precision. This manifests in less significant improvements
in GFLOPS/W, much higher execution times and a decrease
in GFLOPS. In the case of the Jetson Nano we would have
to double the number of cards in order to process data in
real-time.

At FP16 precision we have four GPUs which support this
precision: A100 GPU, V100 GPU, Titan V GPU and the
Jetson Nano. Regarding energy efficiency, the A100 GPU is
the most energy efficient GPU. The V100GPU and the Jetson
Nano are comparable but the V100 GPU is the overall more
energy efficient GPU of the two. When we look at the change
in execution time we see that both the A100 GPU and the
V100 GPU typically have a 10% increase or less, but at some
FFT lengths the increase could be much higher, e.g. for V100
GPU 50% increase for N = 64 or for the A100 GPU 20%
increase for higher FFT lengths (N = 64k+). This behavior
means that we have to be more careful about potential energy
savings since at some FFT lengths the increase in execution
time might be too high for real-time data processing. The
change in execution time of the Jetson Nano is again large and
we would need to have almost twice the number of GPUs to
process data in real time at the best possible energy efficiency.

B. INCREASE IN ENERGY EFFICIENCY
The increase in the energy efficiency for the optimal fre-
quency is shown in Fig. 13. The corresponding figure for
the mean optimal frequency is Fig. 14. The difference in the
increase in energy efficiency for the boost core clock fre-
quency between the optimal frequency and the mean optimal
frequency is, for the A100 GPU, 4 percentage points. That
is, an average increase in energy efficiency for the optimal
frequency which is tuned for each FFT length is 47%whereas
the average increase in energy efficiency for the mean opti-
mal frequency is 43%. For the V100 GPU this difference
is 5 percentage points (61% and 56%). For both the V100
GPU and the A100 GPU this holds for all FFT lengths and
precisions with a very limited number of exceptions for FP16
precision. This allows us to use one core clock frequency
and achieve similar energy savings without determining the
optimal frequency for each FFT length. A similar result is
observed for the Jetson Nano with the exception of Bluestein
FFT lengths which are responsible for the peaks in the results.

The dependency between the increase in energy efficiency
and the change in the execution time for FP32, shown in
Fig. 16 for the V100 GPU but more notably in Fig. 17 for
the Jetson Nano, is non-linear. We see that we can achieve an
interesting increase in energy efficiency even for increases in
execution time which are below 10%.

Lastly, our practical test with our example data process-
ing pipeline shows that integration of the DVFS techniques
into existing pipelines is possible with minimal changes to
the codebase. The NVML library allows us to target only
the duration of the cuFFT library call within the pipeline
and thus reduce power consumption. The increase in energy

efficiency (for the boost core clock frequency) are summa-
rized in Table 4 corresponds to the expected values based on
the FFT execution time footprint within the pipeline. For the
first configuration with 2 harmonics, the FFT execution time
corresponds to 60% of the total execution time. The average
increase in energy efficiency for V100 GPU with boost core
clock frequency (based on Fig.14) is about 50%. Considering
the FFT execution time footprint we should get 30% increase
in energy efficiency which is indeed what we have measured.
This behavior is consistent with other configurations of the
pipeline.

VII. CONCLUSION
We have measured the power consumption when calculating
the Fourier transformation at different numerical precisions
(FP32, FP64, FP16) on NVIDIA GPUs using the NVIDIA
cuFFT library and quantified the possible energy savings
when DVFS techniques are used. For each tested GPU, pre-
cision, and a wide range of FFT lengths, we have found the
optimal core clock frequency to minimize power consump-
tion. We have also measured the change in execution time
of the Fourier transform when DVFS is applied, which is an
important consideration for real-time data processing because
this can increase when the core clock frequencies of the GPU
are modified.

We have presented the achieved energy efficiency in
GFLOPS/W. Along with this we have presented the increase
in energy efficiency when using our optimal core clock fre-
quency compared to the boost and base core clock frequency
for each GPU.We have also presented the increase in the exe-
cution time of the Fourier transform when DVFS is applied.

The decrease in power consumption and change in the exe-
cution time depends on the GPU used. The average increase
in the energy efficiency for FP32, FP64, and FP16 precisions
compared to the boost core clock frequency is 40% for the
A100 GPU and 60% for the V100 GPU. The increase in the
execution time for both GPUs is below 5% (with few excep-
tions as outlined). The Jetson Nano offers higher increases in
energy efficiency to that of the V100 GPU. On average 70%
for FP32, 55% for FP64 and 70% for FP16 but at the expense
of execution time which increases by more than 60%. For
the P4 GPU and the Titan V GPU we have not achieved a
significant increase in energy efficiency.

Our results have shown that theAmpere architecture (A100
GPU) is significantly more energy efficient for all numerical
precisions than the V100 GPUwhich represents the compara-
ble scientific GPU from the previous Volta generation. When
the V100 GPU is compared to the Jetson Nano the V100 GPU
is less energy efficient at FP32 precision. For short and long
FFTs at FP32 precision the Jetson Nano is almost 50% more
energy efficient than the V100 GPU. For FP16 precision the
V100 GPU has similar energy efficiency as the Jetson Nano.
The Jetson Nano does not fully support double precision thus
the V100 GPU is significantly more energy efficient at this
precision.
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We have shown that values of optimal core clock frequen-
cies for all tested FFT lengths for a given GPU and numeri-
cal precision are similar, with few exceptions. This allowed
us to define a mean optimal core clock frequency unique
to each tested GPU and precision, but is the same for all
FFT lengths. Using the mean optimal core clock frequency,
we have achieved a similar energy efficiency when compared
to the energy efficiency achieved with the optimal core clock
frequency for each tested FFT length. For the A100 GPU the
difference is only 4 percentage points and for the V100 GPU
the difference is 5 percentage points. For the other GPUs the
loss is similar.

We have also presented the practical implementation of
these results in our example data processing pipeline which
is available as an open source code. We have demonstrated
how to change the core clock frequency of the GPU to
the mean optimal core clock frequency using the NVIDIA
Management Library and demonstrated a decrease in power
consumption which is in agreement with the results presented
in this work.

Finally we have highlighted how, from an environmental
perspective, increasing the energy efficiency of the FFT algo-
rithm will be an important consideration for edge computing
and IoT.
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