
Received November 14, 2020, accepted November 21, 2020, date of publication January 20, 2021, date of current version March 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051196

Big Data and Machine Learning With
Hyperspectral Information in Agriculture
KENNETH LI-MINN ANG 1, (Senior Member, IEEE),
AND JASMINE KAH PHOOI SENG 2, (Member, IEEE)
1School of Science and Engineering, University of the Sunshine Coast, Petrie, QLD 4502, Australia
2School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia

Corresponding author: Kenneth Li-Minn Ang (lang@usc.edu.au)

ABSTRACT Hyperspectral andmultispectral information processing systems and technologies have demon-
strated its usefulness for the improvement of agricultural productivity and practices by providing useful
information to farmers and cropmanagers on the factors affecting crop status and growth. These technologies
are widely used in a range of agriculture applications such as crop management, crop yield forecasting, crop
disease detection, and the monitoring of agriculture land usage, water, and soil conditions. Hyperspectral
information sensing can acquire several hundred spectral bands that cover the electromagnetic spectrum
of an observational scene in a single acquisition. The resulting hyperspectral data cube contains a large
volume of spatial and spectral information. The hyperspectral sequence of images or video further increases
the data generation velocity and volume which lead to the Big data challenges particularly in agricultural
remote sensing applications. This paper is structured to first give a comprehensive review of representative
studies to provide insights into significant research efforts in agriculture using Big data, machine learning
and deep learning with the focus on frameworks or architectures, information processing and analytics
with hyperspectral and multispectral data. The potential for utilizing Big data, machine learning and deep
learning for hyperspectral and multispectral data in agriculture is very promising. The paper then further
explores the potential of using ensemble machine learning and scalable parallel discriminant analysis which
takes into consideration the spatial and spectral components for Big data in agriculture. To the best of our
knowledge, no similar review study on agriculture with Big data, machine learning and deep learning for
hyperspectral and multispectral information processing has been reported. Furthermore, the potential of
ensemble machine learning and scalable parallel discriminant analysis has not been explored in agriculture
information processing. Experiments and data analytics have been performed on hyperspectral data from
agriculture for validation. The results have shown the good performance of our approach.

INDEX TERMS Agriculture, big data, machine learning, parallel computing, hyperspectral, multispectral.

I. INTRODUCTION
The authors in [1] project that an increase of approximately
25% to 70% above current production levelsmay be needed to
meet the global crop demand in 2050. This makes it important
for farmers and crop growers to utilize emerging technologies
to improve productivity to feed the growing global popula-
tion. The technology and data driven economy and its focus
on developing intelligent instrumentation, sensing, robotics,
artificial intelligence (AI), machine learning, Big data and
data analytics is expected to play a transformative role in
agriculture to raise the rate of food production. Big data is
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increasingly being developed and deployed for many indus-
tries, professions, and trade sectors.

For the agriculture sector, Big data provides farmers
with useful and actionable information on weather and sea-
sonal patterns, rain and water cycles, fertilizer requirements,
and other critical information for harvesting and decision-
making. This enables farmers, agricultural suppliers and other
stakeholders to make smart decisions such as the cycles for
crops planting to increase profitability and the planning of
optimal harvesting times leading to improved farm yields.
To address the issues of the deployment of Big data in agri-
culture and Big data which are produced from large-scale net-
worked sensing systems, some authors [2], [3] have presented
some reviews for Big data in agriculture. The authors in [2]
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presented a review to develop insights into the usefulness of
Big data applications in smart farming and the related socio-
economic challenges. The authors in [3] presented a review
on some significant research efforts utilizing Big data for crop
protection focusing on weed management and control.

A major source of Big data for agriculture comes from
hyperspectral and multispectral information processing and
remote sensing systems. Remote sensing applications and
systems generate a huge amount of earth observation data
from many sources (e.g. satellite-based systems, unmanned
aerial vehicles (UAVs), ground-based structures) and con-
tribute significantly to the volume of Big data to be processed.
Agricultural remote sensing is one of the key enabling tech-
nologies to fulfill the potential for precision agriculture. Com-
pared to traditional agriculture approaches, remote sensing
approaches for agriculture has the advantages of consider-
ing the within-field variability for site-specific management
instead of uniform management for the sites [4]. The use-
fulness of agricultural remote sensing lies in its utilization
of global positioning location and geographic information to
produce the spatially-varied data for precision agricultural
information processing and deployment operations. Agricul-
tural remote sensing is a specialized field to produce the
image and spectral data in large volume, variety and complex-
ity to enable decision-making for farmers and crop growers in
many areas (e.g. decision support systems for irrigation and
fertilization, pest management, crop disease detection, and
monitoring of land usage, water and soil properties).

Agricultural remote sensing applications can utilize vari-
ous data sources including hyperspectral and multispectral
data. Hyperspectral and multispectral remote sensing can
acquire several hundred spectral bands that cover the elec-
tromagnetic spectrum of an observational scene in a single
acquisition. The resulting hyperspectral data cube contains a
large volume of spatial and spectral information. The hyper-
spectral sequence of images or video further increases the
data generation velocity and volume which lead to the Big
data challenges and increase the complexity for information
processing and analysis caused by the hyperspectral or multi-
spectral data. The vast amounts of generated data from hyper-
spectral and multispectral data sources require automated
modeling and analysis techniques such as machine learning.
The field of machine learning has been defined by [5] as hav-
ing the goal to program computers to use example data or past
experience to solve a given problem. The techniques which
have been developed for machine learning is particularly
useful to handle the volume and large-scale requirements for
Big data applications.

Examples of applications of machine learning in agricul-
ture can be found in [6]. These applications include crop
and yield prediction, disease and weed detection, species
recognition, soil and water management, animal welfare and
livestock management. crop quality for crop management,
animal welfare and livestock production for livestock man-
agement, water management, soil management, etc. Recent
techniques in the field of machine learning have resulted in

the development of advanced algorithms termed as deep neu-
ral networks (DNN) algorithms and approaches. The authors
in [7] defined DNN as computational models that are com-
posed ofmultiple processing layers to learn representations of
data with multiple levels of abstraction. DNN methods have
significantly improved the state-of-the-art inmany fields such
as speech recognition, visual object recognition, object detec-
tion, drug discovery and genomics.

This paper gives the following contributions. This paper
is structured to first give a comprehensive review of repre-
sentative studies to provide insights into significant research
efforts in agriculture using Big data, machine learning and
deep learning with the focus on frameworks or architec-
tures, information processing and analytics with hyperspec-
tral and multispectral data. The potential for utilizing Big
data, machine learning and deep learning for hyperspectral
and multispectral data in agriculture is very promising. The
paper then further explores the potential of using ensemble
machine learning and scalable parallel discriminant analy-
sis which takes into consideration the spatial and spectral
components for Big data in agriculture. To the best of our
knowledge, no similar review study on agriculture with Big
data, machine learning and deep learning for hyperspectral
and multispectral information processing has been reported.
Furthermore, the potential of ensemble machine learning and
scalable parallel discriminant analysis has not been explored
in agriculture information processing. Experiments and data
analytics have been performed on hyperspectral data from
agriculture for validation. The results have shown the good
performance of our approach.

The remainder of the paper is structured as follows:
Section II first gives a review of Big data and machine learn-
ing for hyperspectral and multispectral data in agriculture.
Section III presents the ensemble machine learning and scal-
able parallel discriminant analysis (EML-SPDA) for agricul-
ture applications and analytics. This section also presents
and gives details and discussions of experiments and data
analytics. Section IV concludes the paper with some remarks
on future works and challenges.

II. REVIEW OF BIG DATA AND MACHINE LEARNING
TECHNIQUES FOR HYPERSPECTRAL AND
MULTISPECTRAL DATA IN AGRICULTURE
The authors in [8] presented a review on the utilization
and deployment of Big data analysis in agriculture. The
authors in [3] focused on Big data and machine learning
for crop protection. The authors in [9] provided a review of
the research focused on the applications of data science and
machine learning which are relevant to agricultural systems.
The authors in [2] presented a review of Big data in smart
farming. These papers presented reviews on Big data or data
science related to agriculture, but none of them focused on
Big data and machine learning utilizing hyperspectral data
for agriculture. There are some authors [4], [10] which have
provided a general discussion on Big data in remote sensing.
It is noted that these review papers which either focus on
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(i) Big data or data science in agriculture or (ii) reviews on
machine learning [6] or deep learning [11] for agriculture.
Other related works on Big data and sensing systems in smart
cities and urban environments can be found in [12] and [13].
The remainder of this section gives an overview of technolo-
gies and surveys the potential of Big data, machine learning,
AI and deep learning with the focus on spectral, hyper-
spectral and multispectral data information and processing
for agriculture. The works have been summarized into four
categories: (1) Big data sources with spectral information;
(2) Big data with hyperspectral analytics in agriculture; (3)
Machine learning techniques for hyperspectral data analytics
in agriculture; and (4) Deep learning techniques for hyper-
spectral data analytics in agriculture.

A. BIG DATA SOURCES WITH SPECTRAL INFORMATION
(BIG SPECTRAL DATA)
Modern hyperspectral sensor technologies have the capabil-
ities of generating very high dimensional imagery with a
large number of spectral bands and signatures through the
use of sensor optics with a large number of bands and spectral
signatures. These technologies make it possible to distinguish
materials through spectral information and to provide detailed
information about the sensed scene. The sensor technologies
from satellite-based hyperspectral imaging systems are also
capable of covering vast areas of the earth with high spatial,
spectral and temporal resolutions. A hyperspectral image of
a single scene can be represented as a large volume three-
dimensional (3D) data cube with two spatial dimensions and
one spectral dimension.

Sequential scenes are comprised of multiple large volume
data cubes and pose significant challenges for Big data. For
convenience, we use the term Big spectral data to describe
Big data sources with spectral information. There are two
main sources for Big spectral data: (1) Big spectral data from
satellite imagery; and (2) Big spectral data from unmanned
aerial vehicles (UAVs). An example of Big spectral data from
satellite imagery is Sentinel-2. Sentinel-2 providesmultispec-
tral imaging (MSI) functionalities with spatial, spectral and
temporal resolutions, and also has two spectral bands in the
red-edge region for distinguishing the different agricultural
crops [14]. Table 1 shows a summary of satellites and its
hyperspectral/multispectral data capabilities from different
countries in the world. These medium-resolution and high-
resolution satellites generate huge volumes of hyperspectral
or multispectral data which are rapidly increased as Big data
or termed as Big spectral data. A second data source for Big
spectral data derives from unmanned aerial vehicles (UAVs).
As discussed by [15], there are two main classifications of
UAV platforms (fixed-wing UAVs and rotary-wing UAVs).
Rotary-wing UAVs can be further classified into helicopter
UAVs and multi-rotor UAVs. Examples of multi-rotor UAVs
are quadcopters, hexacopters and octocopters. These Big
spectral data from satellite imagery and UAVs require differ-
ent approaches for information processing and analytics due
to their volume, complexity and characteristics. These lead to

TABLE 1. Summary of satellites and its imagery capabilities.

many new challenges to be addressed in Big data information
processing for agriculture information processing.

B. BIG DATA WITH HYPERSPECTRAL ANALYTICS IN
AGRICULTURE
This sub-section discusses several representative studies for
the application of Big data with hyperspectral analytics in
agriculture. A summary of the representative works is shown
in Table 2. Agriculture relies on healthy soils to produce
quality crops and pastures. One of the real-world Big data
challenges initiates from the domain of soil spectroscopy
which aims to identify and establish soil spectral libraries
(SSLs) and signatures. The authors in [16] proposed an
evolutionary fuzzy rule-based system which was applied to
real world agricultural Big data. Their work utilized large
datasets (GEO-GRADLE and LUCAS SSL libraries) from
the area of soil spectroscopy. In this work, the authors pro-
posed a two-stage MapReduce scheme and several adapta-
tions for Big data processing. Their approach adapted an
evolutionary fuzzy rule-based algorithm for Big Data termed
as DECO3RUM. Their experimental work used real world
Big data with hyperspectral information from the area of soil
spectroscopy. The data samples were diverse and distributed
across a variety of soil and land cover types. The model was
evaluated in a Hadoop cluster and simulated on eight virtual
servers over a hardware configuration with two Intel Xeon
processors and 128GB of RAM.

The authors in [17] proposed a parallel computing
approach for hyperspectral identification and classification of
oilseed rape waterlogging stress levels. Their work combined
hyperspectral imaging and parallel computing to address the
challenges of agricultural Big data. In their study, hyperspec-
tral images of these siliques for two oilseed rape varieties
(NY 22 and NZ 19) were captured using Resonon Pika XC
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TABLE 2. Summary of representative works for big data with hyperspectral analytics in agriculture.

camera, followed by the exposure to three different water
logging stress levels (0, 3 and 6 days). Their implementation
used six servers, routing and switching devices to form the
parallel computing framework using Spark machine learning
library and HDFS (Hadoop Distributed File System). The
Spark library was used to program and develop two clas-
sification algorithms (artificial neural network (ANN) and
support vector machine (SVM)). The SVM used the one-
against-rest classifier for multiple binary classification. The
ANN and SVM were used as classifiers for the hyperspectral
data and images using the parallel computing platform. The
data from five spectral bands (512, 621, 689, 953 and 961nm)
were used as the inputs into the classifiers. For the multiclass
classification, the classification accuracy and F1 score of
the ANN were higher compared to SVM. For the binary
classification, the SVM gave higher accuracy and F1 score.
Their results indicated that the ANN was more suitable for
multi-class classification on the parallel platform whereas the
SVM performed better in binary classification problems.

The authors in [4] proposed a remote sensing data man-
agement approach using the four-layer-twelve-level (FLTL)
framework as shown in Figure 1. The FLTL is an adaptation
of the five-layer-fifteen-level (FLFL) framework proposed by
the authors in [20]. The FLTL structure gives a framework for
the management of remote sensing and Big data for precision
agriculture at regional and farm scales. The production of
crop maps is essential for crop classification and the identi-
fication of different crops. There are two challenges for crop
classification and identification due to the spectral similarity
and the huge size of the input data. The authors in [18] pro-
posed crop classification technique which combine various
features (spectral, spatial and vegetation index features) to
address the spectral similarity challenge for Big data in agri-
culture. Their technique involves dimensionality reduction
using PCA (principal component analysis), MNF (minimum
noise transform) in the first stage, followed by the support
vector machine (SVM) supervised classification. Their work
used six crops to perform the experimental evaluation (sugar

beet, cucumber, maize silage, onion, winter wheat, potatoes).
Their results showed that combining the vegetation index fea-
tures with the spectral and spatial features improved the clas-
sification accuracy to 98%. The authors in [19] proposed an
image classification approach for a study in Florida utilizing
unsupervised learning for hyperspectral agricultural images
termed as ISODATA (Iterative Self-OrganizingDataAnalysis
Technique Algorithm). Their experimental work used the
ENVI (Environment of Visualizing Images) [37] software for
geospatial imagery. After performing PCA, the ISODATA
algorithm was applied to classify the hyperspectral images
for various class types (Water, Shadow,Wet, Fertile soil, Land
and Forest). The performance was evaluated and the overall
accuracy of the classification process was 75.6%. Another
study proposed by the authors in [80] proposed a graph-
based learning approach termed as local geometric structure
Fisher analysis (LGSFA) for dimensionality reduction. The
authors showed that their approach was effective in revealing
the manifold structure for high-dimensional hyperspectral
data, and their experimental results demonstrated classifi-
cation results comparable to other state-of-the-art methods.
Further information on graph-based learning approaches for
hyperspectral information can be found in the survey paper
by the authors in [81].

C. MACHINE LEARNING TECHNIQUES FOR
HYPERSPECTRAL DATA ANALYTICS IN AGRICULTURE
In the field of agricultural remote sensing, hyperspectral
image classification has become an important topic. Hyper-
spectral data have complex characteristics and a nonlinear
relationship amongst the spectral bands and its various com-
ponentmaterials. Thismakes the accurate classification of the
sensed scene a challenging task. This subsection presents a
review of more recent works on machine learning techniques
for multispectral and hyperspectral data analytics in agricul-
ture. A summary of the representative works is shown in
Table 3.
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FIGURE 1. Framework for FLTL remote sensing data management [4].

The authors in [14] proposed a large-scale crop mapping
from multisource remote sensing images in Google Earth
Engine. There are three stages in their approach: (1) Har-
monic analysis onNDVI data combinedwith spectral features
obtained from satellites (Landsat-8 and Sentinel-2); (2) Uti-
lizing prior constraints of crop distribution and dominance;
and (3) Information processing with Google Earth Engine.
Their experiments used three crop types (wheat, rapeseed,
and corn) to evaluate their approach based on regression
tree classification techniques. Their results demonstrated an
overall accuracy of 84.25%. Their work also showed that
the distribution of the crops in the region of their study was
related to agricultural climate, topography and cultivation
practices. The authors in [21] proposed an approach to ana-
lyze crop fields evolution by utilizing spatial, spectral and
temporal S2-SITS data. Their approach consisted of three
major stages: (1) Building a vegetation map by combin-
ing the spatial and spectral data with temporal NDVI data;
(2) Constructing a NDVI time series for a crop field and
defining an adaptive regression model with a multilayer per-
ceptron neural network (MLP-NN); and (3) Extracting and
analysing the spatial-temporal information from the NDVI
time series. The performance of their approach was validated
by experiments carried out on S2-SITS data acquired over an
area located in Barrax, Spain.

The authors in [22] proposed a spatial-spectral classifica-
tion framework for Sentinel-2 time series data for land cover
mapping. Their approach utilized mathematical morphology
and image processing techniques to extract the spatial trends
from satellite image time series (SITS) data. These data were
then combined with the available spectral and temporal infor-
mation to improve the discrimination ability among different
land cover classes. The obtained spatial–spectral represen-
tation was classified with a random forest (RF) classifier.
Experiments were conducted on two study sites character-
ized by different heterogeneous land covers. The sites were
Reunion Island study site located in the Indian Ocean and
another site in the southwest of France. Their experimental
and analysis results have demonstrated the significance of the
proposed approach and the validity to combine the spatial and
spectral information for land cover classification.

The authors in [23] proposed a sparse kernel logistic
regression approach and an incremental learning technique
for import vector machines (IVM) for sequential classifi-
cation of hyperspectral data. Their approach included the
addition of new training samples and the deletion of non-
informative training samples to improve the classification
accuracy while maintaining memory and run-time efficien-
cies. The incremental learning strategy enables an efficient
update of the classifier model without a full re-training from
scratch to allow it to handle large data sets. Remote sensing
datasets were used to validate the performance of the incre-
mental IVM. The experiments aimed to classify 16 classes.
The performance of the IVM was also compared to the
SVM for classification accuracy. Their experimental results
demonstrated that the IVM and SVM performed comparably
in terms of classification performance. However, the number
of import vectors was lower when compared to the number
of support vectors and remains constant or only slightly
increases with an increasing number of training samples.

The authors in [24] proposed machine learning techniques
for crop classification using temporal multispectral satellite
images. In their approach, several machine learning mod-
els were investigated and applied to crop classification of
Sentinel-2 satellite image data. The selected study area was
the region of Andhra Pradesh in India. Themachinemodels in
their study included SVM, random forest, RNN with LSTM
and RNN with GRU.

Their results showed that the SVM produced the highest
classification performance of 95.9% with the ground sur-
veyed crop areas. The authors in [25] proposed a system
for the classification of rice seed varieties using RGB and
hyperspectral images. The spatial and spectral features were
extracted from the RGB images and hyperspectral image data
cubes. The high dimensional spectral feature sets were further
reduced using LDA [72]. Their work compared four combi-
nations of the spatial and spectral features: (1) Spatial only;
(2) Spectral only; (3) Combination of spatial and spectral
features; and (4) Combination of LDA features from spectral
data and spatial features. The random forest classifier with
the four schemes were used to perform the classification.
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TABLE 3. Summary of representative works for machine learning techniques for hyperspectral data analytics in agriculture.

The performances of the proposed approaches were evaluated
on a large dataset of 90 rice seed varieties with 96 seeds
per variety. The experimental results showed that the com-
bination of spatial features and spectral features could give

good classification performance and improve discrimination
ability to eliminate the impure species from rice seed samples.

The authors in [26] presented the research work for the
classification of glycyrrhiza by utilizing NIR hyperspectral
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imaging. The study used seed samples from three glycyrrhiza
varieties which were collected from four origins and two
planting patterns. The authors used spectral information col-
lected from 288 bands (948 nm to 2512 nm). The classifier
was developed using the SVM and PLS-DA (Partial Least
Squares Discriminant Analysis) models. Their experiments
showed that the SVMmodel gave classification accuracies of
93%. Their work demonstrated that NIR hyperspectral imag-
ing with model discriminant analysis could be used for the
identification of different glycyrrhiza varieties, origins and
planting patterns. The authors in [27] utilized machine learn-
ing methods for banana disease detection. The authors used
hyperspectral images with spectral wavelengths ranging from
364 nm to 1031 nm with a spectral resolution of 4.55 nm.
Three classes were considered for disease classification:
(1) Dead; (2) Dying; and (3) Healthy. Their approach utilized
morphological techniques from image processing to extract
the spatial and spectral features from the banana leaf samples
at both early and late stages. The SVM was used for the
classification task. Their experimental results demonstrated
that the hyperspectral images analysis classifier which was
trained by using the samples from banana leaves at late
infected stages could be better used to predict the disease in
the earlier infected banana leaves compared to utilizing the
raw spectral information.

The authors in [28] presented a novel spectral–temporal
response surface (STRS) approach by utilizing Bayesian
theory to interpolate spectral information into multispec-
tral imagery. They also compared their approach with two
earlier methods (direct interpolation and direct interpola-
tion with spectral dimension imputation) for constructing
the STRS. Their experimental results showed that the pro-
posed Bayesian STRS approach outperformed the two earlier
approaches. The Bayesian STRS gave correlations of 0.83
with leaf area index (LAI) and 0.77 with canopy chlorophyll
measurements compared to correlation values of 0.27 for LAI
and 0.09 for canopy chlorophyll measurements for the direct
interpolated STRS. The authors in [29] proposed an extreme
learning machine (ELM) classifier for mapping agricultural
tillage practices from hyperspectral remote sensing imagery.
The ELM is a single hidden layer feed forward neural net-
work. The authors implemented the kernel version of the
ELM termed as the kernel ELM (KELM). A spatial convo-
lution filter was adopted to generate the spatial and spec-
tral features by incorporating information from surrounding
pixels, which were used as the inputs into the KELM. The
authors conducted the experiments on airborne hyperspectral
images and their experimental results showed that the KELM
could outperform other traditional approaches like SVM and
random forest.

The authors in [30] proposed an approach to predict the
spread of powdery mildew on barley leaves by utilizing
hyperspectral image data. The authors used the cycle-
consistent adversarial networks (CycleGAN) which is a spe-
cial type of a generative adversarial network (GAN). The
GAN consists of two neural networks termed as the generator

G and the discriminator D. The CycleGAN consists of two
generators G and F . In their experiments, they analyzed
healthy barley leaves and leaves which were inoculated by
powdery mildew. Their experiments showed that their pre-
dictive model was able to forecast the disease spread from
the image time-series. The authors in [31] focused on the
prediction of sorghum biomass prediction utilizing remote
sensing data with high spatial and temporal resolutions. The
authors proposed two approaches to perform the biomass pre-
diction: (1) Nonlinear regression models to predict biomass
directly from remote sensing data based on features from
LiDAR point clouds and hyperspectral data. Two nonlinear
regression models support vector regression (SVR) and mul-
tilayer perceptron (MLP) were developed. The authors used
the parameter settings for SVR andMLP as described in [38];
and (2) Agricultural Production Systems Simulator using
remote sensing data to parametrize the crop model, and then
simulate the biomass. Evaluations were performed for both
approaches to demonstrate the usefulness of the approaches.

The authors in [32] proposed a self-training method and
utilized a spatial majority filtering technique to locate the
unlabeled samples that could assist in the SVM classifier
training. The approach utilizes the assumption that the class
labels of neighboring pixels are reliable and the authors
proposed a majority voting-based algorithm. The perfor-
mance of the algorithm is improved by considering the spec-
tral similarity between a center and its surrounding pixels.
The authors performed experimental results with agricultural
datasets (including Indian Pines and Salinas) and confirmed
the effectiveness of the approach for improving the classifica-
tion accuracy in cases when the number of labelled samples is
limited. The authors in [33] demonstrated that spectral images
of crops could be used to for nutrient deficiencies detection.
Their approach used multispectral cameras mounted on UAV
to predict the vine water status using neural network models.
In their investigation, they computed the Normalized Differ-
ence Vegetation Index (NDVI) from the spectral image data
for soil and plant classification. They utilized the multilayer
perceptron (MLP) to different spectral bands to predict the
relation between the information contained in the spectral
bands and the vine water status. Their experimental results
showed that plant stresses such as nutrient components could
be predicted with an accuracy of 0.68 to 0.87.

The authors in [34] proposed an approach using the
extreme learning machine (ELM) for soybean classification
from remote sensing hyperspectral images. In their approach,
the spectral data is transformed into a hyper spherical rep-
resentation and an image gradient is computed. The clas-
sification was performed by feedforward networks trained
with two methods: (1) ELM; and (2) Optimally Pruned
ELM (OP-ELM). In the ELM approach, the training con-
sisted of random generation of the hidden layer weights
followed by solving a linear system of equations by least
squares for the estimation of the output layer weights. The
authors used several classes (Perdiz, Monsoy 8544, Monsoy
9010, Kaiabi and Tabarana) in their evaluation of datasets.
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Their experimental results showed that the best results were
obtained with 70 bands which gave significant improvement
over previous results reported in the literature. Furthermore,
the OP-ELM gave improved results over other state-of-the-
art methods using only the information from one spectral
band. The authors in [35] provided a study of pixel-based
and object-based image analysis with machine learning algo-
rithms for the classification of agricultural landscapes using
SPOT-5 HRG imagery. The authors performed comparisons
using three supervised machine learning algorithms (decision
tree (DT), random forest (RF), and support vector machine
(SVM)). Their experiments showed that all the three clas-
sifiers were able to depict the broad land cover types with
acceptable accuracies. One finding was that the RF and SVM
classifiers were able to give better predictions of riparian,
wetland and crop land cover types compared to the DT classi-
fier which had more errors for these classes. Another finding
was that the object-based analysis required more computa-
tional time compared to the pixel-based analysis.

The authors in [36] proposed a machine learning approach
based on hyperspectral remote sensing and agricultural
factors (topography, soil, vegetation and meteorology)
for modelling alpine grassland forage phosphorus. Their
approach utilized the correlation factors (CFs) and correlation
bands (CBs) based on fifteen variables and four types of
spectral transformations (original spectral (OR), log spectral
(1/R), first derivative (FD) and continuum removal spectral
(CR)). The authors used three classifier models (artificial
neural network (ANN), support vector machine (SVM) and
random forest (RF)) in their approach for their experimental
evaluation. Their results showed that the FD and CR spectral
models could retrieve more feature bands located in the NIR
and SWIR regions than the Log (1/R) and OR spectral models
for the forage phosphorus estimation. Their work also showed
that the combination of IBs and other factors (longitude and
monthly mean temperature) increased the accuracy of the
forage estimation when compared with the models that used
IBs alone. The FD-IBs + SVM model gave the optimum
forage model and could account for 88% of the variation of
forage phosphorus in alpine grassland.

This sub-section has demonstrated the potential of deploy-
ing machine learning techniques for hyperspectral data ana-
lytics in agriculture. The representative works which have
been discussed show a wide variety of agriculture applica-
tions (e.g. crop mapping, prediction of plant diseases and
stresses, classification of species, canopymeasurements, etc.)
which would benefit by the combination of machine learning
techniques with hyperspectral data analytics. Some popu-
lar machine learning approaches which have demonstrated
potential for agriculture applications include the SVM, IVM,
MLP, ELM, discriminant analysis, random forest, etc.

D. DEEP LEARNING TECHNIQUES FOR HYPERSPECTRAL
DATA ANALYTICS IN AGRICULTURE
In recent years, deep learning approaches have demonstrated
significant improvements in the area of advanced machine

learning. Several deep learning approaches have been pro-
posed for solving problems including image classification
in agriculture. This subsection presents a review of some
recent representative studies on deep learning techniques for
multispectral and hyperspectral data analytics in agriculture.
A summary of the representative works is shown in Table 4.
The authors in [39] presented a technical tutorial on the state
of the art of deep learning approaches for remote sensing data.

There are different approaches that have been proposed for
deep learning networks such as CNNs (convolutional neural
networks), DBNs (deep belief networks), AEs (autoencoders)
and SCs (sparse coders). The CNN [40] is a multilayer net-
work architecture composed of several stages for hierarchical
representation and feature extraction. Each stage consists of
three layers: (1) convolutional layer; (2) nonlinearity layer;
and (3) pooling layer. The deep structure of CNNs allows the
networkmodel to function as highly abstract feature detectors
and to map the input features into representations that can
improve the performance of the subsequent classification.
The DBN [41] is a generative model that contain many layers
of hidden variables. The DBN is trained one layer at a time
in an unsupervised manner by restricted Boltzmannmachines
(RBMs). The AE [42] is a symmetrical neural network that is
used to learn the features from a data set in an unsupervised
manner by minimizing the reconstruction error between the
input data at the encoding layer and its reconstruction at the
decoding layer. The SC [43] is an unsupervised approach
for learning sets of overcomplete bases to represent data
efficiently to find a set of basis vectors which can be used
to represent an input vector as a linear combination of these
basis vectors.

The authors in [67] presented an overview on spa-
tial and spectral information fusion approaches and tech-
niques for hyperspectral image classification. In their work,
the authors grouped spatial-spectral information fusion
approaches into three categories: (1) segmentation-based
approaches where objects are used for classification; (2) fea-
ture fusion approaches; and (3) decision fusion approaches
where information from several classifiers are combined to
achieve the final classification strategy. The authors reviewed
different techniques in these categories. The performances
of various fusion methods were evaluated for classification
accuracy and running time on popular hyperspectral datasets
including Indian Pines and Salinas. The results showed that
the feature fusion methods could provide superior classifi-
cation accuracy compared to other methods at the cost of
requiring more computational and processing time.

The authors in [44] proposed a deep learning approach
for semantic segmentation termed as DeepLab to extract the
spatial features of hyperspectral images. The first principal
components were used as the label image for the DeepLab
training. Normalization was performed using the z-score on
the original spectral bands and the extracted spatial features.
The spectral and spatial information were combined using a
weighted fusion rule and passed into a SVM for classifica-
tion. The proposed approach had two significant advantages
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TABLE 4. Summary of representative works for deep learning techniques for hyperspectral data analytics in agriculture.
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when compared with other deep learning approaches:
(1) The spectral features are extracted at multiple scales; and
(2) The approach avoids reduction of the spatial resolution.
The work was validated and demonstrated the superiority of
the DeepLab feature extraction method particularly for small
scale classes which contains limited number of pixels. Other
examples of studies for using deep learning for hyperspec-
tral data analytics in agriculture can be found in [73]–[75]
and [77].

The authors in [45] proposed a deep learning feature
extraction and classification of spectral-spatial HSI using a
cross domain CNN model for classification. Their approach
used a guided filter to compute the filter output. The authors
used three principal components from the HSI as the guided
image. The resultant spatial feature maps at different scales
were combined to generate the hyperspectral data cube con-
taining the spatial features. The spatial feature vectors of each
pixel were reshaped to form a two-dimensional image which
was passed into the CNN for classification. The experimental
results showed that the approach gave good classification
accuracy and had a simple implementation while making full
use of the available spatial features.

The authors in [46] proposed a hybrid CNN and trans-
former architecture for crop classification on multitem-
poral and multispectral data. In their research, a dataset
with 65 acquiring dates were collected from Sentinel-2
A/B and Landsat-8 for a region in central California. Their
approach used two steps. The first step obtained scale-
consistent feature and position features from the multitem-
poral sequence. In the second step, the encoder module was
used to express the correlation of the sequence to obtain the
depth characteristics of the sequence. The proposed CNN-
transformer approach was evaluated on a dataset with a
crop matrix that included several crops (tomatoes, corn, rice,
grapes, alfalfa, sunflower, clover, almonds, walnuts and spe-
cialty crops (watermelons, carrots, onions, peas). The classi-
fication results showed that the proposed CNN-transformer
architecture resulted in a significant performance improve-
ment compared with other traditional methods such as ran-
dom forest, SVM, and other deep learning (multitemporal
CNN and CNN-LSTM) models.

The authors in [47] proposed an approach for hyperspec-
tral image classification using Hierarchical Stacked Sparse
Autoencoder (SSAE) networks to learn sparse feature rep-
resentations. The SSAE networks were applied to extract
the spatial and spectral features. The ATL (active transfer
learning) sampling method was used to select a subset of
the unlabeled samples for labelling and to add them to the
training set at each iteration. The authors performed a com-
prehensive evaluation on three popular hyperspectral data
sets including the Salinas Valley dataset which contains 204
bands. Experimental results demonstrated that the proposed
method gave promising performance compared with many
state-of-the-art approaches.

The authors in [48] proposed a deep learning framework
based on DeepLab for hyperspectral image classification

(HSIC). There are two stages in their approach for
spectral–spatial HSIC. The first stage extracts the spatial
features of HSI pixel-to-pixel at multiple scales and avoids
the reduction of spatial resolution. This is followed by the
weighted fusion of the spatial and spectral features. In the
second stage, these fused features are input into the SVM for
the final classification. The performance of their framework
was tested on two well-known public HSI datasets includ-
ing the Indian Pines dataset which lies in a predominantly
agricultural region and the University of Pavia dataset and
compared with some conventional deep learning techniques.
Their results revealed good classification performance and
that the proposed framework outperformed other deep learn-
ing methods, especially for small scale classes.

The authors in [49] proposed a fusion approach for the
identification of drug crops from remote sensing images.
Their data-driven approach to characterize these drug crops
takes into account the complementary information from the
NIR channel and false-colour image representations. The
different CNN architectures were applied to distinct image
representations, which were able to represent complemen-
tary characterizations of such crops. These representations
were then input to an ensemble of CNN classifiers using
multiple architectures. The approach was validated using
a dataset containing Cannabis Sativa crops in a Brazil-
ian region called the Marijuana Polygon. Their proposed
approach gave high mean F-measure, accuracy and low
false detections, and demonstrated a promising approach
for machine-learning approaches for drug crops detection
in remote sensing images. The authors in [50] proposed a
seasonal land cover and crop classification approach using
the Deep CNN (DCNN) architecture. Their work investigated
the pixel-based crops and land cover classification on sev-
eral dates for the same agricultural season from the Sentinel
satellite. The experiments were performed for some major
crops and land cover classification in Egypt. The architecture
used 10 spectral bands from the Sentinel-2 satellite imagery
during the winter season of 2016. The proposed architecture
was also compared with other techniques such as support
vector machines (SVMs), random forests (RFs) and k-nearest
neighbours (k-NNs). The results revealed that the DCNN
achieved about 89% average accuracy for major crops and
land cover classes.

The authors in [51] proposed a deep learning framework
with CNN and markov random fields (MRF) for spatial-
spectral classification of hyperspectral images (HSI). Their
approach can be summarised into two stages: (1) A CNN
model was built to learn the deep spectral features and the
classification of HSI and the class posterior probability dis-
tribution was estimated. The input into the CNNwas the pixel
vectors, thus the CNN is a pixel-classifier in the spectral
domain; and (2) The MRF-based multilevel logistic (MLL)
prior encoded the spatial information to regularize the clas-
sification result from CNN. The MRF-based loopy belief
propagation (LBP) was used to learn the marginal probability
distribution in HSI to derive the correlation for both the

36708 VOLUME 9, 2021



K. L.-M. Ang, J. K. P. Seng: Big Data and Machine Learning With Hyperspectral Information in Agriculture

spectral and spatial features. Their experiments used three
public datasets including University of Pavia dataset and
two agriculture related datasets (Indian Pines dataset and
Salinas dataset). Their approach was compared with some
state-of-the-art methods, and results revealed the good per-
formance of their approach. The authors in [52] proposed an
approach for generating rice variety distribution maps using
deep CNN learning in spectral and temporal domains for
Sentinel-2 data. In their work, the deep CNN network was
applied towards separating rice varieties at the Coleambally
Irrigation Area, NSW, Australia, during the 2016-17 rice
growing season. Five rice varieties (Reiziq, Sherpa, Topaz,
YRM 70 and Langi) were investigated. Their experiments
investigated the separability of the rice varieties based on
the spectral and temporal patterns. The temporal curves for
two spectral indices NDVI and LSWI were charted over the
growing period. The performance of CNNwas also compared
with SVM. Their results showed that the deep CNN gave a
classification accuracy of 92.87% compared to 57.49% with
the SVM. Amongst the varieties, Sherpa gave the highest
producer accuracy of 98%.

The authors in [53] proposed a deep learning-based regres-
sion approach to utilize hyperspectral data for the pre-
diction of cadmium residue in lettuce leaves. Their deep
learning approach consisted of stacked auto-encoders (SAE)
and partial least squares support vector machine regression
(LSSVR). Their approach was applied together with Vis-
NIR HSI technique to obtain depth features for cadmium
prediction in lettuce leaf. In their approach, the Vis-NIR
hyperspectral images of 1120 lettuce leaf samples were col-
lected from the region of lettuce leaf and pre-processed with
spectral pre-treatment methods. The authors used several
algorithms (Successive Projections Algorithm (SPA), Partial
Least Squares Regression (PLSR) and SAE) to locate the
optimum wavelengths. The LSSVR model was built based
on characteristic wavelengths. The results showed that the
deep learning approach showed good potential for detecting
heavy metal content in lettuce leaves. The authors in [54]
proposed a CNN model for classification of five varieties of
corn seedling cold damage recognition. Their approach aimed
to extract spectral features in the Vis-NIR range to estimate
the cold damage of corn seedlings. The pre-processing of
spectral data was performed using application of Gaussian
low-pass filter and Savitzky-Golay smoothing method com-
bined with its first-order derivative. The CNN modelling
using 3600 pixels were sampled from the region of interests.
The CNN used a ten-layer model for classification accuracy
and computational efficiency. Their results showed that the
proposed approach gave high correlation for different types
of corn seedlings given by the traditional chemical method
(W22 (41.8%), BxM (35%), B73 (25.6%), PH207 (20%)
and Mo17 (14%)), and demonstrated that spectral analysis
based on CNN modelling could provide a useful technique
for detecting cold damage in corn seedlings.

The authors in [55] developed a hyperspectral imagery
system using CNN to detect aflatoxin in peanuts using a

grating module, SCOMS camera, and electric displacement
platform. The authors used 146 hyperspectral images cubes
of 73 peanut samples before and after contamination by afla-
toxin. Their CNN architecture consisted of five hidden lay-
ers: (1) Input layer; (2) Convolution layer; (3) Sub-sampling
layer; (4) Convolution layer; and (5) Sub-sampling layer. The
output layer was a fully connected layer. Their approach gave
recognition rates of 96% and 90% on pixel and kernel levels
respectively, and gave better results comparedwith traditional
classifiers such as KNN, SVM and BP-ANN. The authors
in [56] applied the deep learning algorithm based on CNN to
classify agriculture and urban subclasses. The authors con-
sidered two modalities, hyperspectral data and LiDAR data
in their work. The hyperspectral data had the advantages of
being able to identify the surface objects based on their mate-
rial composition. However, it has the disadvantages of failing
the identification when two or more objects composed of the
same materials have different heights. On the other hand, the
LiDAR data had the advantages of being able to discriminate
the objects of different heights. The complementary nature
of both the data modalities are fused to increase the classifi-
cation accuracy. Their work used the dataset from National
Ecological Observatory Network (NEON) [68]. Using the
proposed methodology, a classified map was obtained with
an overall accuracy of 96% for the fused modalities.

The authors in [57] proposed a framework for predicting
Ethiopian wheat fungal outbreaks using hyperspectral satel-
lite imagery and deep feature learning. The authors compared
various deep learning models including Deep Neural Net-
works (DNNs), Recurrent Neural Networks (RNNs), Con-
volutional Neural Networks (CNNs) and Long Short-Term
Memory Networks (LSTMs) to automatically learn the spec-
tral features. They evaluated all models with the following
parameters (20-fold nested cross validation, minibatches of
16, dropout rate of 0.5, 40 histogram buckets, 16 filters of
size 3×3, 1 unidirectional LSTM layer with 512 hidden cells
and 64-unit fully connected layer). Their experimental results
demonstrated that the CNN and LSTMapproach significantly
outperformed that of traditional classifiers.

The authors in [58] proposed an approach for winter wheat
yield estimation from multitemporal remote images using
CNN. In their approach, they applied histogram dimension-
ality reduction and time series fusion to generate the input
layer for the CNN. The CNN was built to extract the fea-
tures of winter wheat growth from multitemporal MODIS
images for yield estimation in North China. It consisted of the
input layer, seven convolution layers, seven activation layers,
seven batch normalization layers, three dropout layers, two
full connection layers, and an output layer. Their work was
implemented by TensorFlow and the results showed good
performance and that the estimated yield of winter wheat
based on time-series remote sensing images was highly cor-
related with statistical data (Pearson r value of 0.82), and
demonstrated that the CNN could provide a useful reference
for estimating crop yield. The authors in [59] proposed a deep
learning approach by combining subspace feature extraction
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and CNNs for hyperspectral image classification. There were
twomajor steps in their approach: (1) Subspace-based feature
extraction to reduce the dimensionality of the hyperspectral
images by calculating the orthonormal basis of correlation
matrix for each class; and (2) CNN hyperspectral image clas-
sification using majority voting strategy applied to the output
of CNNs for each feature of certain classes. Experiments were
conducted on two real hyperspectral data sets including the
Indian Pines dataset covering the agricultural Indian Pines
test site in Northwestern Indiana. Their results showed that
the proposed strategy gave a performance improvement com-
pared to conventional feature extraction strategies. An overall
classification accuracy of 98.1% was obtained for the Indian
Pines dataset.

The authors in [60] proposed a novel Parallel Convolu-
tional Neural Network (PCNN) architecture for the pixel-
wise identification and discrimination of crop types using
AVIRIS-NG hyperspectral images. For band selection, two
techniques PCA and back traversal of pre-trained ANN were
used to identify an optimal set of bands having higher inter-
class separability and lower intra-class variability. To dis-
criminate different crop stages for the same crop type, two
different CNN models were trained separately using two sets
of crops. During the prediction phase, the results of both
models were combined in parallel to decide the final class
label based on the highest probability. Their experimental
results showed that the PCNN achieved slightly higher per-
formance than ANN on augmented test dataset consistently
after 5000 iterations with almost identical training parame-
ters. The PCNN achieved the best test accuracy of 99.1%,

The authors in [61] aimed to investigate the possibility to
separate one grapevine variety from an enlarged group of
other varieties when the number of samples was significantly
increased. Their work was used to separate samples of one
variety from 63 other varieties. The SVM and CNN classi-
fiers were applied to separate two varieties (Touriga Franca
(TFvar) and Touriga Nacional (TNvar)) from all the remain-
ing varieties. The built classifiers used the one-vs-all binary
type to indicate if a spectrum belonged to a certain variety or
not. Their work showed that it is possible to separate the leaf
spectra of TNvar or TFvar from the spectra of 62 other vari-
eties. In the case of TNvar, the SVM gave better classification
performance compared to the CNN. The SVM could classify
63% of the non-TNvar spectra and 81% of the TNvar spectra.
For TFvar, the CNN gave the best performance with the
non-TFvar and the TFvar spectra with correct classification
percentages of 91% and 93% respectively.

The authors in [62] utilized deep learning approaches
to detecting agricultural and non-agricultural land. Their
methodology was based on classification with CNNs and
transfer learning using AlexNet. The area of study con-
sisted of the Ionian islands in Greece. The study used two
datasets (EuroSAT and Demokritos) which were partitioned
into two categories (agricultural and non-agricultural). The
agricultural category included four class categories (Annual
Crop, Permanent Crop, Herbaceous Vegetation, and Pasture)

whereas the non-agricultural included another four class cat-
egories (Residential, Sea-Lake, Highway, and Forest). The
experimental results showed that the extra information used
for the training data that were unfamiliar to the Greek data
decreased the performance of the CNN. The authors in [63]
investigated approaches utilizing deep learning models for
classification of crop types from multi-spectral time series
data. In this work, the authors proposed approaches using
convolutional, recurrent and hybrid neural networks for eval-
uating the importance of spatial and temporal structures in
the data. Their experiments were conducted on imagery from
Sentinel-2. Their results showed that the hybrid configura-
tions which allocated most of the parameters (up to 90%) for
modelling the temporal structure of the multi-spectral data
gave the best performance.

The authors in [64] applied deep learning methods for
the prediction of the severity of late blight in potato crops
caused by Phytophthora infestans. Their work used a UAV
to capture images of different phenotypes of potato crops
with a multispectral sensor. The authors performed com-
parisons with other machine learning algorithms including
random forests, MLP and support vector regression. Their
results showed that the random forest and the CNN models
gave the best performance for the identification of infested
potato crops. The authors in [65] proposed a deep learning
method for spatial-spectral classification for hyperspectral
images based on the single gate recurrent unit (GRU). The
authors conducted experiments on the different input modes
in GRU of spectral information and investigated different
ways of fusing the spatial information. By comparing the
different utilization patterns with several spatial information
fusion methods, their approach demonstrated a higher per-
formance for accuracy and efficiency. Their experimental
results on datasets revealed that their approach outperformed
other traditional and deep learning methods, and also had
the advantages of extracting homogeneous discriminative
feature representations. The authors in [66] proposed a deep
metric learning (DML) neural network for the classification
of hyperspectral images. Their work aimed to decrease the
distances between same classes and increase the distances
between different classes bymultilayers nonlinear projection.
Their approach was different from other conventional metric
learning methods where the proposed DML method had the
capability to exploit the non-linear information between sam-
ples with multi-layers nonlinear transformation. The exper-
iments used three datasets (Indian Pines, Pavia University,
and Salinas) to validate the proposed spatial-spectral DML
method. Their experimental results showed that the proposed
approach could achieve classification performance which
were comparable with other metric learning or deep models.

This sub-section has demonstrated the potential of deploy-
ing deep learning techniques for hyperspectral data analytics
in agriculture. Several representative works which have been
discussed show that deep learning approaches significantly
outperformed that of traditional machine learning classifiers
for agriculture applications. The representative works which
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FIGURE 2. 3D cube representation for Big hyperspectral data.

have been discussed show a wide variety of agriculture appli-
cations (e.g. semantic crop segmentation and classification,
land cover classification, drug crops identification, agricul-
tural and non-agricultural land detection, grapevine identifi-
cation, prediction of crop diseases, etc.) which would benefit
by the combination of deep learning techniques with hyper-
spectral data analytics. Many studies employ the CNN deep
learning model. Other deep learning approaches which have
demonstrated potential for agriculture applications include
RNN, LSTM, DNN, DML, etc.

III. ENSEMBLE MACHINE LEARNING AND SCALABLE
PARALLEL DISCRIMINANT ANALYSIS FOR
HYPERSPECTRAL IMAGE CLASSIFICATION
The previous section (Section II) has given a comprehensive
overview of agriculture with Big data, machine learning and
deep learning for hyperspectral andmultispectral information
processing. There are several challenges which need to be
further addressed to achieve the potential of Big data and
hyperspectral information processing in agriculture: (1) The
need for efficient machine learning algorithms and classifiers,
and also to overcome the shortage of high-quality and labeled
training images (e.g. semi-supervised or weakly supervised
approaches); (2) The need for efficient and scalable compu-
tational architectures for efficient information processing; (3)
The need for standardization and ease of use for different
remote sensing formats and sensor resolutions particularly
for non-expert users; and (4) The need for data management
systems to support the efficient storing and indexing of geo-
graphical metadata.

As discussed in Section II and illustrated in Tables 3 and 4,
hyperspectral image classification is a popular and important

application for agriculture. This section gives brief discus-
sions and explores the potential of ensemble machine learn-
ing and scalable parallel discriminant analysis (SPDA) for
agriculture information processing towards the application
of hyperspectral image classification. A similar approach to
the proposed SPDA has been previously reported for human
emotion and sentiment classification from unstructured Big
data [69]. However, the potential of ensemble machine learn-
ing and scalable parallel discriminant analysis (EML-SPDA)
has not been explored in agriculture information processing.
The approach utilizes a tree-based conquer and divide mech-
anism with an ensemble of classifiers. This part of the paper
discusses the EML-SPDA to address Challenges (1) and (2)
for Big hyperspectral data for agricultural systems. A differ-
ence between the previous work and the proposed approach
is that the work in [69] was targeted towards two-dimensional
facial image data, whereas the proposed approach is targeted
towards large volume three-dimensional (3-D) hyperspec-
tral spatial-spectral data cubes (i.e. Big hyperspectral data).
The 3-D hyperspectral data cube structure requires a careful
arrangement of the data information processing to preserve
the spatial-spectral relationships and for the tree-based con-
quer and divide mechanism and parallel information process-
ing. The section first gives some discussions on the proposed
EML-SPDA approach and is then followed by details and
discussions on experiments and data analytics to validate the
approach.

A. DISCUSSIONS ON PROPOSED APPROACH
Figure 2 shows the 3-D cube representation for Big hyper-
spectral data. The hyperspectral cube comprises of two spatial
dimensions and one spectral dimension. The data in the cube
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FIGURE 3. Tree-based Conquer and Divide Mechanism.

is re-arranged (split) using a tree-based organization for the
conquer and divide mechanism for the parallel information
processing as shown in Figure 3. The mechanism first divides
the hyperspectral cube system into spatial-spectral localized
computational cells. The hyperspectral cube is first divided
into the horizonal planes called spatial-spectral planes and
each spatial-spectral plane is linearly separated into spatial-
spectral bands. The tree-based conquer and divide mech-
anism is then performed on these spatial-spectral bands.
The mechanism breaks the bands into smaller bands based
on multiple trees branched recursion. There are different
algorithms and techniques which can be applied to perform
the information processing using the proposed EML-SPDA
framework. For the hyperspectral image classification task,
we illustrate the conquer and divide approach using the linear
discriminant analysis (LDA) supervised machine learning
technique [72], [76], [78]. To perform the LDA using the
EML-SPDA approach, the 3-D hyperspectral cube is first
mapped into a two-dimensional array structure. Let X ∈
Rd×n = [X1,X2, . . . ,Xk ] denote the data matrix partitioned
into k classes in which Xi ∈ Rd×ni denotes samples from the
ith class, i = 1,2,. . . , k , and n =

∑k
i=1 ni. Using the notations

of Sw, Sb, and St to denote the within-class scatter matrix,
between-class scatter matrix, and total scatter matrix respec-
tively, the LDA class separability criterion can be formulated
as

G = argmax
G

Tr
(
GT SbG

)
Tr
(
GT SwG

) . (1)

Table 5 shows a summary of some notations used for the
EML-SPDA scheme.

Figure 4 shows the algorithm to perform the conquer and
divide mechanism for the EML-SPDA LDA implementation
using the RQ decomposition following a binary tree split-
ting and re-merging mechanism. The RQ decomposition is a
counterpart to the well-knownQR decomposition. The output
of a RQ decomposition for a m × n matrix is a diagonal

FIGURE 4. Algorithm for EML-SPDA LDA conquer and divide mechanism.

matrix R of size n × n and an orthogonal matrix Q of size
m× n. The first split stage divides the d × n data matrix into
even rows and odd rows containing two d /2×n sub-matrices.
The second split stage further sub-divides into four sub-
matrices containing d /4×n elements. The RQ decomposition
is then performed on each of the sub-matrices to complete the
splitting stage. For this EML-SPDA approach for LDA, on a
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FIGURE 5. Performance accuracy on Indian Pines dataset for different classifiers.

TABLE 5. Summary of notations for EML-SPDA.

multiprocessor computing platform, each RQ decomposition
can be allocated to be performed on a separate processing unit
to be computed in parallel. Note that Figure 4 only shows
the splitting suitable for four computational processing units.
Further stages of splitting can be performed to accommo-
date a computing hardware platform with a higher number
of processors. A significant advantage is that the number
of decompositions to be performed can be tailored to suit
the computational capability (e.g. number of processors or
cores) to achieve the meta-scalability information processing
required for the architecture and platform. The re-merging
mechanism takes the separate RQ local outputs from the RQ
splitting stages and together with the label of class vectors, C
combines the local outputs into a global output to obtain the
transformation matrix, G for the LDA.

B. DISCUSSIONS ON EXPERIMENTS AND DATA
ANALYTICS
This sub-section gives discussions on the experimental imple-
mentation and testing for the EML-SPDA and elaborates on
the datasets used, the computational setup and the results and
discussions.

Experiments: The first set of experiments demonstrates
the performance efficacy and the second set of experiments
demonstrates the speedup in computational times for EML-
SPDAwhich can be obtainedwith implementation on parallel
processing (in our case multicore) architectures. The exper-
iments aim to demonstrate the efficacy of the conquer-and-
divide mechanism for EML-SPDA on parallel architectures
using the binary tree row-based re-merging mechanisms.

Data: These set of experiments used the AVIRIS Indian
Pines dataset [70]. The Indian Pines dataset covers the
agricultural Indian Pines test site in Northwestern Indiana
and was collected by the AVIRIS sensor. This dataset con-
tains 16 classes or categories and is a cube size of 145 ×
145×220 with a spatial resolution of 20 m and a spectral
range from 0.2 to 2.4 µm. Table 6 shows the class categories
for the AVIRIS Indian Pines dataset.

Computational setup: These set of experiments used an
Intel i7 workstation with a 2.2-GHz CPU (4 cores) and 16 GB
of RAM.

Results & Discussion: Figure 5 shows the performance
accuracy of EML-SPDA for the binary tree row-based con-
quer and re-merging mechanisms using three different clas-
sifiers (SVM, k-NN and ensemble trees) for the Indian Pines
dataset. These classifiers were chosen to be representative of
the different classification approaches which are available.
Other classifiers (e.g. random forest classifiers, Bayesian
classifiers, logistic regression, etc.) could be used to perform
the classification task. The random forest classifier is an
example of an ensemble machine learning (EML) classifier.
Other examples of EML approaches are bagging, boosting
and stacking. The ensemble tree approach used in the experi-
ments employed adaptive boosted trees [82]. The SVM used
the Gaussian kernel, and the k-NN used a value of k = 10.
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FIGURE 6. Visual classification results for different samples/class.

FIGURE 7. Computational time on multicore architectures.

TABLE 6. AVIRIS Indian pines hyperspectral dataset and its class
categories for agriculture.

The classifiers were trained using a range of samples
from 10 to 50 for each class. Amongst the classifiers,
the highest accuracy was obtained using the SVM. Note

that the focus of the paper is more on the dimensionality
reduction using the conquer-and-divide EML-SPDA LDA
mechanism, and less on experimenting with improved clas-
sifiers to improve the recognition performance. However,
we note that the EML-SPDA LDA performed comparably
in terms of classification accuracy with the methods and
techniques discussed in [71]. Furthermore, the results showed
improved accuracy as the number of samples used for training
was increased with a classification accuracy of 77.8% for
SVM. The results also showed that for the classifiers trained
using 20 samples/class or higher, the k-NN classifiers per-
formed comparably with the SVM. Using the lower complex-
ity k-NN classifiers compared with the more complex SVM
classifiers can give advantages trade-offs to reduce the imple-
mentation complexity at a slight reduction in performance
accuracy. Figure 6 shows some visual classification results
for the Indian Pines dataset using the SVM classifier with a
Gaussian kernel. Only the visual classification results for the
SVM classifier are shown because it was the best performing
amongst the various classifiers. The leftmost columns show

36714 VOLUME 9, 2021



K. L.-M. Ang, J. K. P. Seng: Big Data and Machine Learning With Hyperspectral Information in Agriculture

FIGURE 8. Samples for ICONES hyperspectral dataset.

the ground truth results, and the columns moving towards the
right show the classification results for increasing number of
training samples/class.

An advantage of the EML-SPDA is the conquer-and-divide
mechanism for implementation speed-up on parallel com-
putational units. A further investigation was performed to
look at the computational time for the EML-SPDA algo-
rithm on multicore architectures for the different datasets.
The experiments were conducted on an Intel i7 workstation
with a 2.2-GHz CPU (4 cores) and 16 GB of RAM. The
comparison in Figure 7 shows the computational times for
different number of samples/class for the Indian Pines dataset
for running on one-core and four-core architectures. For the
dataset, the four-core splitting and re-merging architecture
gave a speedup of 1.22 times for the Indian Pines dataset and
demonstrating the usefulness of the proposed techniques. It is
expected that a higher speedup can be obtained on computa-
tional platforms with larger number of computational units
(e.g. GPU and massively parallel processors).

For a final investigation, we used a recently developed and
published large dataset termed as the ICONES Hyperspec-
tral Satellite Images Dataset (ICONES- HSI) [79]. To the
best of our knowledge, the ICONES-HSI dataset is the
largest hyperspectral (approximately 36GB) and most recent
(published in 2019) dataset available for researchers. This
dataset contains 486 remote sensing patches of dimensions
300 × 300 hyperspectral pixels which were generated from
the NASA JPL AVIRIS. The spectral radiance measure-
ment data is sampled in 224 contiguous spectral chan-
nels/bands between 365 and 2497 nm. The patches in the
dataset are classified into nine categories (Agriculture, Forest,
Desert, Urban, Snow, Mountain, Ocean, Wetland and Cloud).
Figure 8 shows some representative samples for the nine
categories. The spatial-spectral feature for a patch contains
300 × 300×224 pixel measurements. In our experiments,
we did not use the last six patches for the Cloud category

FIGURE 9. Future work and challenges for Big data and hyperspectral
information processing in agriculture.

resulting in a data matrix of 20,160, 000 × 480. The dimen-
sionality reduced data matrix was passed to two different
classifiers (SVM and ensemble tree) to perform the classi-
fication tasks which returned 98.8% and 94.4% recognition
rates respectively. Figure 9 shows a summary of future work
and challenges for Big data and hyperspectral information
processing in agriculture.

IV. CONCLUSION AND FUTURE WORK
Big data and machine learning in remote sensing for agri-
culture is very promising. This paper has provided a com-
prehensive review of the research efforts in remote sensing
in agriculture using Big data and machine learning. There
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are several challenges which need to be further addressed
to achieve the potential of Big data and hyperspectral infor-
mation processing in agriculture: (1) The need for efficient
machine learning algorithms and classifiers, and also to over-
come the shortage of high-quality and labeled training images
(e.g. semi-supervised or weakly supervised approaches);
(2) The need for efficient and scalable computational archi-
tectures for rapid information processing; (3) The need for
standardization and ease of use for remote sensing formats
and sensor resolutions particularly for non-expert users; and
(4) The need for data management systems to support the effi-
cient storing and indexing of geographical metadata. The lat-
ter part of the paper has proposed the EML-SPDA to address
Challenges (1) and (2) for Big hyperspectral data in agri-
cultural information processing. For Challenge (1), the LDA
EML-SPDA can perform comparably with other state-of-the-
art methods although these methods are not designed for
scalability and parallel processing for hyperspectral data. The
experimental results have validated the performance of the
approach. For Challenge (2), the EML-SPDA has addressed
the challenge of traditional conquer-and-divide mechanism
which breaks and recursively solves the subproblems of the
original, and finally combines the solutions to the subprob-
lems but does not guarantee the optimal solutions for discrim-
inative analytics. The ensemble parallelism machine learning
which can be used with many existing machine learning
techniques has also been proposed for applications involving
Big hyperspectral classification or prediction. In the future,
we plan to extend our work by incorporating and re-designing
other data analytics into our proposed framework to further
address the above challenges.
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