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ABSTRACT To reduce waste and cost as well as to promote the efficient and sustainable use of resources
in supply chains, a common focus of practice and research is to integrate decisions of various operational
processes such as production, inventory, distribution, and routing. The question of which is more repre-
sentative of the production routing problem (PRP) then arises. In this paper, the focus is on uncertainty in
the PRP, and demand and cost uncertainty are considered simultaneously. According to different decision
criteria, three uncertain programming models are correspondingly formulated. Then, through researching
the crisp equivalence and conversion of the proposed uncertain models, a series of crisp equivalent models
are proposed under the assumptions of particular uncertainty distributions, such as linear, zigzag, and
normal distributions. To verify the accuracy and usefulness of the proposed models put forward in this
paper, a series of experiments are conducted. Finally, several interesting managerial aspects with respect
to the relationship between the confidence level and variance of uncertain variables that are gained from
the numerical experiments are highlighted. First, the overall cost of PRP grows as the confidence level
increases under uncertain environment. Second, the probability that the optimal total cost of the PRP is less
than or equal to a given threshold strictly increases as the threshold increases under uncertain environment.
Third, in circumstances such as higher confidence level that decision makers generally pay more attention
to, the growth of the variance of uncertain variables may lead to the increase of the total cost.

INDEX TERMS Integrated supply chain, production routing problem, uncertain variable, uncertain
programming.

I. INTRODUCTION
In this study, the PRP is explored with respect to the
integration and coordination of the production, inven-
tory, distribution, and routing operations in supply chains
under uncertain settings. It has been clear for some time
that the operations integration of a supply chain gener-
ates cost savings and greater efficiency. For example, the
Chandra and Fisher [1], [2] demonstrated that 3%−20% cost
savings could be achieved by solving the PRP compared to
sequentially and separately solving the problem.More impor-
tantly, efficient and sustainable use of resources can only be
achieved by explicitly considering the interdependencies of
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integrated supply-chain services [3]. Among all of the oper-
ation schedules and processes in a supply chain, production
and transportation activities are regarded as the major factors
having a larger impact on the supply chain’s sustainability
performance. The PRP, focusing on the integration of the
main operation schedules in a supply chain, including produc-
tion, inventory, distribution, and routing operations, initially
first investigated by Lei et al. [4], has been well studied by
both scholars and practitioners. Nananukul [5] presented the
definition of PRP systematically and introduced a simpler and
more efficient model with which to depict PRP soon after.

Owing to the characteristics of high degree of synergy and
distinctly competitive advantage, the PRP has been a research
hotspot at home and abroad, which has led to numerous
research results since it was founded. The literature on the
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PRP is analyzed and discussed, and can be divided into four
aspects: integrated optimization, algorithms research, rich
PRP, and the PRP in green supply chain.

With respect to integrated optimization, several schol-
ars carried out thorough research on the characteristics,
relevant elements, and degree of advantage brought by
the collaborative integration of production and transporta-
tion businesses [6]–[10]. In addition, based on the PRP,
Hein et al. [11], Absi et al. [12] and Darvish et al. [13]
made comparative studies of collaborative optimization and
traditionally separate and sequential decision-making in the
supply chain.

Since Lei et al. [4] adopted a two-phase heuristic algo-
rithm, scholars have proposed numerous more efficient algo-
rithms to solve the PRP, including exact solution algorithms
and heuristic algorithms. Regarding the exact solution algo-
rithms, branch-and-cut was introduced to the research of PRP
by Archetti et al. [14] and Adulyasak et al. [15], focusing
on vehicle scheduling with a single uncapacitated or capaci-
tated vehicle and multiple capacitated vehicles accordingly.
As the PRP can be viewed as the integration of VRP and
LSP, it is a complicated combinatorial optimization problem
and difficult to solve only with exact solution algorithms
on a large scale. To solve this model more efficiently, some
studies employing heuristic procedures appeared in recent
years, such as metaheuristics [16], brand and price [17], [18],
GRASP [19], the memetic algorithm [20], tabu search
[21], [22], the genetic algorithm [23], and ALNS [24], [25].

The optimization model proposed by Nananukul [5] is
also considered the benchmark model for solving the PRP,
in which case a single commodity is made available at a single
plant and then transported to multiple retailers by multiple
homogeneous vehicles in multiple periods. Compared with
the PRP solved by the generalized model, the rich PRPs refer
to the more complicated situations, such as multiple prod-
ucts, multiple manufacturers, and multiple heterogeneous
vehicles [26]–[29]. It is important that the vendor managed
inventory policy (VMI) is usually adopted in the rich PRPs,
in which the retailer’s inventory is managed uniformly by the
center supplier ormanufacturer, and, on the basis of the inven-
tory level, the follow-up production plans and replenishment
plans are made accordingly [14]. Compared with traditional
replenishment policy, the VMI policy has the advantages of
quicker response, lower inventory, and more efficient use of
resources.

Moreover, to promote green supply chain operations, some
studies focused on PRP from environmental aspects and
social impacts. Qiu et al. [30] introduced reverse logistics
and production remanufacturing into the PRP of closed-loop
supply-chain systems in 2018. Several scholars are interested
in the PRP’s integration with carbon emissions. Two carbon-
emission-control policies, the carbon cap-and-trade policy,
and carbon tax policy, are considered for the PRP in the
research of [31], [32]. The costs caused by carbon emis-
sions and energy consumption are also taken into account
in the overall cost consideration in some PRPs [33], [34].

Peng et al. [35] focused on the PRP from the social dimension
to make the integrated system more sustainable.

The above-cited work has typically focused on determin-
istic demands and costs. In fact, many indeterminate fac-
tors exist in the real world that cannot be ignored when
making decisions. Thus, one of the most important ten-
dencies of these studies is to explore the PRP under envi-
ronments with indeterminate factors, namely randomness,
fuzziness, and uncertainty, and, correspondingly, probability
theory, fuzzy-set theory, and uncertainty theory. For instance,
Adulyasak et al. [36] and Agra et al. [37] studied the PRP
from the visual angle of randomness in which demands of
retailers were described as random variables. Furthermore,
fuzzy-set theory, initiated by Zadeh [38], has been introduced
to the PRP by Moon et al. [33] with respect to fuzzy costs.
However, to the best of our knowledge, little research exists

on PRP with uncertain settings. In such multi-stage business
process integration in a supply chain, the costs and demands
are usually unavailable to the managers and may be sub-
ject to several inherent indeterministic factors, e.g., changes
of production costs, changes of market requirements, and
changes of traffic states. It is necessary to identify the distri-
butions of these parameters, which are essential for managers
in making decisions, e.g., deciding whether to produce in
each period, and then the amount of production, determining
the distribution quantities from the plant to each retailer to
satisfy the retailers’ demands in each period, and choosing
the most appropriate transportation routes. Theoretically, one
can collect enough samples to estimate the distributions of
these parameters beforemaking decisions. However, there are
many situations lacking historical data that can be referred
to, such as a new product entering the market, or product
promotion in a special period. Even if some data are avail-
able, an inability to obtain accurate statistics and parameter
estimations may be due to some dynamic factors, such as
the demand for products sold through online platforms [39].
In addition, merchants will participate in activities or adjust
advertising plans from time to time, which will change the
exposure rate and affect the expected sales of the product.

Practically, experience data (belief degrees) are often used
to estimate the distributions in cases without historical exam-
ples by experienced experts. Some surveys have shown that,
however, human beings (even the most experienced experts)
usually estimate a much wider range of values than is actu-
ally required. This makes the belief degrees behave quite
different from frequency, indicating that human belief degree
given by managers and experts should not be treated as
random or fuzzy variables [38]. Instead, uncertainty theory,
initiated by Liu [40], [41] based on normality, duality, sub-
additivity, and product axioms, can be introduced to deal with
variables estimated by human belief degrees. Uncertainty
theory is mainly used to characterize human belief degree
and deal with subjective uncertainty. It has been success-
fully used to solve many uncertain optimization decision-
making problems in supply chains, such as the pricing opti-
mization problem [42]–[44], facility location problem [45],
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project scheduling problem [46]–[48], and production control
problem [49].

In this study, uncertainty theory is employed to depict the
costs and demands estimated by expert experience data in
practice to build upon previous research on the PRP. Because
the situation with uncertainty existing in the PRP is not
uncommon in real industries, research into it is increasingly
important. How should the supply-chain managers choose
the most appropriate operation schedules by using experts’
estimations? What effects might the uncertain degrees of
the parameters have on the supply-chain operation schedules
decisions, and what, then, is the total cost? Additionally, how
do the confidence levels and variance of uncertain variables
influence the computational results?

To deal with these problems, three uncertain programming
models based on uncertainty theory and different decision
criteria under uncertain settings are built, and then the crisp
equilibrium conversion is correspondingly made. Addition-
ally, different decision criteria are considered to meet the
different needs of decision makers, while in most of the exist-
ing literature only the expectations criterion is considered.
Finally, numerical experiments are performed, and how the
confidence levels and variance of uncertain variables affect
the computational results is discussed.

The rest of this paper is organized as follows. In Section II,
the problem definition is described, which includes some nec-
essary indices and sets as well as parameters and variables of
the problem involved in the objective functions and constraint
conditions. Three uncertain models under different decision-
making scenarios are then proposed in III. Next, the pro-
cess of crisp equilibrium transformation for the above three
uncertain models is performed in Section IV. In Section V,
the computational results are presented and details of
a comparative analysis given. The paper is concluded
in Section VI.

II. PROBLEM DESCRIPTION
Given a single plant and a set of retailers geographically
dispersed on a grid, each retailer i has an uncertain demand
d̃it in period t of the planning horizon that must be satisfied
to a certain degree extent βi. The plant and retailers can be
regarded as a network defined on a complete directed graph
G = (N0,E) with N0 = N

⋃
{0}. N represents the set of

retailers indexed by i or j ∈ {1, 2, . . . , n} and 0 represents
the plant. E = {(i, j) : i, j ∈ N0, i 6= j} is the set of
arcs. Over a finite set of time periods T = {1, 2, . . . , τ },
a single product can be produced at the plant and delivered
by a set of homogeneous vehicles K = {1, 2, . . . ,m} to the
retailers. The goal is to simultaneously minimize production,
inventory, and routing costs under uncertainty so that the
uncertain demands of retailers are satisfied to a certain extent,
and the production constraints and inventory and transporta-
tion limits cannot be violated. We summarize the indices
and sets, parameters and decision variables respectively,
as follows.

A. INDICES AND SETS
• i, j: Indices for retailers, where 0 corresponds to the
plant.

• t: Index for periods or days, |T | = τ .
• N : Set of retailers, N0 = N

⋃
{0}.

B. PARAMETERS
• d̃it : Uncertain demand at retailer i in period t .
• f̃ : Uncertain fixed production setup cost.
• ũ: Uncertain unit production cost.
• h̃P: Uncertain unit inventory holding cost at the plant.
• h̃Ri : Uncertain unit inventory holding cost at retailer i.
• c̃ij: Uncertain transportation cost from node i to node j.
• C : Production capacity of the plant.
• bi: Initial inventory at retailer i, where 0 corresponds to
the plant.

• IPmax : Maximum inventory level at the plant.
• IRi,max : Maximum inventory level at retailer i.
• m: Number of available vehicles.
• Q: Capacity of each vehicle.
• α: Confidence level about uncertain cost.
• βi, γi: Confidence level of node i (satisfaction degree of
uncertain demands).

• γ : Confidence level (satisfaction degree of uncertain
demands).

C. DECISION VARIABLES
• zt : Equal to 1 if there is production at the plant in period
t; 0 otherwise.

• pt : Production quantity in period t .
• IPt : Inventory at the plant at end of period t .
• IRit : Inventory at retailer i at end of period t .
• xijt : Equal to 1 if a vehicle travels directly from node i to
node j in period t; 0 otherwise.

• yit : Load of a vehicle immediately before making a
delivery to retailer i in period t .

• wit : Quantity delivered to customer i in period t .

III. THREE UNCERTAIN PROGRAMMING MODELS
According to different decision criteria, three uncertain pro-
gramming models are proposed correspondingly, including
expected minimum cost model, (α, β)-minimum cost model,
and most minimum cost model.

A. EXPECTED MINIMUM COST MODEL (EMCM)
In its most general sense, the expectations criterion is the sim-
plest and most pervasive choice for the decision makers. The
EMCM is provided as follows, and the satisfaction degree
of uncertain demands is also depicted based on expectation
criteria.

Objective: min E [CTotal] (A1)

Subject to: IPt = IPt−1 + pt −
∑
i∈N

wit ∀t ∈ T (A2)
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E
[
d̃it
]
≤ wit + IRit−1 − I

R
it ∀i ∈ N ∀t ∈ T

(A3)

pt ≤ min

[
E

[
τ∑
l=t

∑
i∈N

d̃il

]
,C

]
zt ∀t ∈ T

(A4)

IPt ≤ I
P
max , I

R
it ≤ I

R
i,max , I

P
0 = b0, IRi0 = bi

∀i ∈ N ∀t ∈ T (A5)∑
i∈N0,i 6=j

xijt ≤ 1 ∀j ∈ N ∀t ∈ T (A6)

∑
i∈N0,i 6=j

xjit =
∑

i∈N0,i 6=j

xijt ∀j ∈ N ∀t ∈ T

(A7)∑
j∈N

x0jt ≤ m ∀t ∈ T (A8)

yjt ≤ yit − wit +M (1− xijt )

∀i ∈ N ∀j ∈ N0 ∀t ∈ T (A9)

wit ≤ E

[
τ∑
l=t

d̃il

]∑
j∈N0

xijt ∀i ∈ N ∀t ∈ T

(A10)

yit ≤ Q ∀i ∈ N ∀t ∈ T (A11)

pt , IPt , I
R
it ,wit , yit ≥ 0 ∀i ∈ N ∀t ∈ T (A12)

zt , xijt ∈ {0, 1} ∀i 6= j ∈ N0 ∀t ∈ T (A13)

where:

CTotal = CP + CI + CT (A14)

CP =
∑
t∈T

(
f̃ zt + ũpt

)
(A15)

CI =
∑
t∈T

(
h̃PIPt +

∑
i∈N

h̃Ri I
R
it

)
(A16)

CT =
∑
t∈T

∑
(i,j)∈E

c̃ijxijt (A17)

The objective function (A1) minimizes the expecta-
tion total production, setup, inventory, and routing costs.
Constraints (A2)–(A5) represent the lot-sizing part of the
problem. Constraints (A2) are the inventory flow balance
at the plant. The uncertain demand of retailer i at each
period must be satisfied to expectation level in (A3).
Constraints (A4) are the setup forcing and production capac-
ity constraints. The constraints force the setup variable to
be 1 if production takes place in a given period and limit
the production quantity that must be less than the production
capacity and the sum of the future expectation demands of all
the retailers. Constraints (A5) limit the maximum inventory
at the plant and customers, respectively, and give the initial
inventory level of the plant. The inventory part of this model
is controlled by the so-called maximum level (ML) policy,
in which the delivery quantity can be any positive number,
but the resulting inventory level cannot exceed the maximum
inventory level. The remaining constraints, i.e., (A6)–(A11),

are the vehicle loading and routing restrictions. Each retailer
can be visited by at most one vehicle (A6). Constraints (A7)
are the vehicle flow conservation. Constraints (A8) limit the
number of trucks that can be used. Constraints (A9) are the
vehicle loading restrictions and sub-tour elimination con-
straints in the form of the Miller-Tucker-Zemlin inequalities.
M is a maximum value. Constraints (A10) limit the qualities
delivered to retailer i, which must be less than the total expec-
tation demand of retailer i in the future. Constraints (A11)
limit the delivery qualities that must be less than the capacity
of a vehicle.

B. (α, β)-MINIMUM COST MODEL ((α, β)-MCM)
However, the EMCM based on the expectations criterion can
not satisfy all the needs in practical application. Decision
makers may be interested in the minimum cost W̄ with
confidence level α, and the parameters βi for retailer i can
meet various satisfaction levels of its demands. Thereupon,
we bring up the (α, β)-minimum cost model labeled as
(α, β)-MCM.

The (α, β)-MCM is broadly similar to the EMCM, except
for (B2), (B4), (B5), and (B11). The most important part of
the (α, β)-MCM is to introduce the pre-determined confi-
dence levels α in (B2), β series in (B4), and γ series in (B15)
and (B16). The objective function (B1) with constraints (B2)
is to minimizes the overall cost including production, setup,
inventory, and routing costs at the confidence level α under
uncertain environments. The uncertain demand of retailer i
at time period t must be at least satisfied at the confidence
level βi in (B4). Constraints (B5) force the setup variable to
be 1 if production takes place in a given period and limit
the production quantity that must be less than the production
capacity and Ut in (B15) which represents the sum of the
future demands of all the retailers at the confidence level γ .
Constraints (B11) limit the qualities delivered to retailer i at
time period t , which must be less than the total future demand
of retailer i at the confidence level γi labeled asUit in (B16).

Objective: min W̄ (B1)

Subject to: M
{
Ctotal ≤ W̄

}
≥ α (B2)

IPt = IPt−1 + pt −
∑
i∈N

wit ∀t ∈ T (B3)

M
{
wit + IRit−1 − I

R
it ≥ d̃it

}
≥ βi

∀i ∈ N ∀t ∈ T (B4)

pt ≤ Utzt ∀t ∈ T (B5)

IPt ≤ I
P
max , I

R
it ≤ I

R
i,max , I

P
0 = b0, IRi0 = bi

∀i ∈ N ∀t ∈ T (B6)∑
i∈N0,i 6=j

xijt ≤ 1 ∀j ∈ N ∀t ∈ T (B7)

∑
i∈N0,i 6=j

xjit =
∑

i∈N0,i 6=j

xijt ∀j ∈ N ∀t ∈ T

(B8)
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∑
j∈N

x0jt ≤ m ∀t ∈ T (B9)

yjt ≤ yit − wit +M (1− xijt )
∀i ∈ N ∀j ∈ N0 ∀t ∈ T (B10)
wit ≤ Uit

∑
j∈N0

xijt ∀i ∈ N ∀t ∈ T (B11)

yit ≤ Q ∀i ∈ N ∀t ∈ T (B12)
pt , IPt , I

R
it ,wit , yit ≥ 0 ∀i ∈ N ∀t ∈ T (B13)

zt , xijt ∈ {0, 1} ∀i 6= j ∈ N0 ∀t ∈ T (B14)

where:

Ut = min

{
min

{
Wt |M

{
τ∑
l=t

∑
i∈N

d̃il ≤ Wt } ≥ γ

}}
,C

}
(B15)

Ut = min

{
Wit |M

{
τ∑
l=t

d̃il ≤ Wit } ≥ γi

}}
(B16)

C. MOST MINIMUM COST MODEL (MMCM)
Sometimes, decisionmakersmay be interested inmaximizing
the confidence level of the event such that the total cost
does not exceed a pre-determined value W0, which can be
described as the MMCM.

Objective: max M {CTotal ≤ W0} (C1)
[8pt] Subject to: IPt = IPt−1 + pt −

∑
i∈N

wit ∀t ∈ T (C2)

M
{
wit + IRit−1 − I

R
it ≥ d̃it

}
≥ βi

∀i ∈ N ∀t ∈ T (C3)
pt ≤ Utzt ∀t ∈ T (C4)
IPt ≤ I

P
max , I

R
it ≤ I

R
i,max , I

P
0 = b0, IRi0 = bi

∀i ∈ N ∀t ∈ T (C5)∑
i∈N0,i 6=j

xijt ≤ 1 ∀j ∈ N ∀t ∈ T (C6)∑
i∈N0,i 6=j

xjit =
∑

i∈N0,i 6=j

xijt ∀j ∈ N ∀t ∈ T

(C7)∑
j∈N

x0jt ≤ m ∀t ∈ T (C8)

yjt ≤ yit − wit +M (1− xijt )
∀i ∈ N ∀j ∈ N0 ∀t ∈ T (C9)
wit ≤ Uit

∑
j∈N0

xijt ∀i ∈ N ∀t ∈ T (C10)

yit ≤ Q ∀i ∈ N ∀t ∈ T (C11)
pt , IPt , I

R
it ,wit , yit ≥ 0 ∀i ∈ N ∀t ∈ T

(C12)
zt , xijt ∈ {0, 1} ∀i 6= j ∈ N0 ∀t ∈ T(C13)

where:

Ut = min

{
min

{
Wt |M

{
τ∑
l=t

∑
i∈N

d̃il ≤ Wt } ≥ γ

}}
,C

}
(C14)

Ut = min

{
Wit |M

{
τ∑
l=t

d̃il ≤ Wit } ≥ γi

}}
(C15)

The MMCM is much the same as (α, β)-MCM, but only
in its decision objective. The objective function (C1) is to
maximize the the possibility of the overall cost being less
than or equal to W0, which is a pre-determined value reflect-
ing the safety margin of the total cost.

IV. CRISP EQUIVALENT TRANSFORMATION
Owing to the complexity of uncertainty settings, one should
transform the above uncertain models to an equivalent crisp
form based on uncertain theory.

A. CRISP EQUIVALENT TRANSFORMATION FOR EMCM
Let f̃ , ũ, h̃P, h̃Ri , c̃ij, and d̃it be independent uncertain vari-
ables, with the uncertainty inverse distributions 8−11 , 8−12 ,
8P−1,8R

i
−1,8−1ij , and ϒ−1it , respectively. Then, referring to

uncertainty theory by Liu et al. [50] and Yang [51],

E [CTotal] = E [CP]+ E [CI ]+ E [CT ] , (1)

E [CP] =
∑
t∈T

zt

∫ 1

0
8−11 (α)dα

+

∑
t∈T

pt

∫ 1

0
8−12 (α)dα, (2)

E [CI ] =
∑
t∈T

IPt

∫ 1

0
8P−1(α)dα

+

∑
t∈T

∑
i∈N

IRit

∫ 1

0
8R
i
−1
dα, (3)

E [CT ] =
∑
t∈T

∑
(i,j)∈E

xijt

∫ 1

0
8−1ij dα. (4)

According to Liu [41], the constraint (A3) can be converted
to the crisp form as follows:∫ 1

0
ϒ−1it dα ≤ wit + IRit−1 − I

R
it . (5)

In the same way, the constraint (A4) can be converted to
the crisp form as follows:

pt ≤ min

{
τ∑
l=t

∫ 1

0
ϒ−1il dα,C

}
zt . (6)

Similarly, the constraint (A10) can be converted to the crisp
form as follows:

wit ≤

{
τ∑
l=t

∫ 1

0
ϒ−1il dα

}∑
j∈N0

xijt . (7)

1) LINEAR UNCERTAIN SITUATION
According to Liu [40], who put forward the definitions
and properties of commonly used linear uncertain variables,
we can transform the above uncertain EMCM into a crisp
equivalence class. Let uncertain variables satisfy the follow-
ing distributions:

ũ ∼ L(a1, b1); f̃ ∼ L(a2, b2); h̃P ∼ L(aP, bP);
h̃Ri ∼ L(aRi , b

R
i ); c̃ij ∼ L(aij, bij); d̃it ∼ L(adit , b

d
it ).
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With the above assumptions and uncertainty theory by
Liu [41], the cost function in the EMCM is simplified as
follows:

E [CP] = 0.5
∑
t∈T

{(a1 + b1)zt + (a2 + b2)pt } , (8)

E [CI ] = 0.5
∑
t∈T

{
(aP + bP)IPt +

∑
i∈N

(aRi + b
R
i )I

R
it

}
, (9)

E [CT ] = 0.5
∑
t∈T

∑
(i,j)∈E

(
aij + bij

)
xijt . (10)

Then, the constraint (A3) can be converted to the linear
crisp form as follows:(

adit + b
d
it

)
≤ wit + IRit−1 − I

R
it . (11)

The constraint (A4) can be converted to the linear crisp
form as follows:

pt ≤ min

{
0.5

τ∑
l=t

∑
i∈N

(
adil + b

d
il

)
,C

}
zt . (12)

In a similar way, the constraint (A10) can be converted to
the linear crisp form as follows:

wit ≤ 0.5
τ∑
l=t

(
adil + b

d
il

)∑
j∈N0

xijt . (13)

2) ZIGZAG UNCERTAIN SITUATION
In a similar way, based on the zigzag uncertain variable that
Liu [40] put forward, the zigzag form of crisp equivalence
class can be obtained. Let uncertain variables satisfy the
following distributions:

ũ ∼ Z(a1, b1, c1); f̃ ∼ Z(a2, b2, c2);

h̃P ∼ Z(aP, bP, cP); h̃Ri ∼ Z(aRi , b
R
i , c

R
i );

c̃ij ∼ Z(aij, bij, cij); d̃it ∼ Z(adit , b
d
it , c

d
it ).

According to Liu [41], three parts of the cost function
E [CTotal] are simplified as follows:

E [CP] = 0.25
∑
t∈T

{(a1+2b1+c1)zt + (a2 + 2b2 + c2)pt } ,

(14)

E [CI ] = 0.25
∑
t∈T

(aP + 2bP + cP)IPt + 0.25
∑
t∈T

∑
i∈N

(aRi

+2bRi + c
R
i )I

R
it , (15)

E [CT ] = 0.25
∑
t∈T

∑
(i,j)∈E

(
aij + 2bij + cij

)
xijt . (16)

Then, the constraint (A3) can be converted to the zigzag
crisp form as follows:

0.25
(
adit + 2bdit + c

d
it

)
≤ wit + IRit−1 − I

R
it . (17)

The constraint (A4) can be converted to the zigzag crisp
form as follows:

pt ≤ min

{
0.25

τ∑
l=t

∑
i∈N

(adil + 2bdil + c
d
il),C

}
zt . (18)

In a similar way, (A10) can be converted to the zigzag crisp
form as follows:

wit ≤ 0.25
τ∑
l=t

(
adil + 2bdil + c

d
il

)∑
j∈N0

xijt . (19)

3) NORMAL UNCERTAIN SITUATION
In a similar way, according to the normal uncertain variable
in Liu [40], the normal form of the crisp equivalence class
can be obtained. Let uncertain variables satisfy the following
distributions:

ũ ∼ N (e1, σ1); f̃ ∼ N (e2, σ2); h̃P ∼ N (eP, σP);

h̃Ri ∼ N (eRi , σ
R
i ); c̃ij ∼ N (eij, σij); d̃it ∼ N (edit , σ

d
it ).

According to Liu [41], three parts of the cost function
E [CTotal] are expressed as follows:

E [CP] =
∑
t∈T

(e1zt + e2pt) , (20)

E [CI ] =
∑
t∈T

(
ePIPt +

∑
i∈N

eRi I
R
it

)
, (21)

E [CT ] =
∑
t∈T

∑
(i,j)∈E

eijxijt . (22)

Then, the constraint (A3) can be converted to the normal
crisp form as follows:

edit ≤ wit + I
R
it−1 − I

R
it . (23)

The constraint (A4) can be converted to the normal crisp
form as follows:

pt ≤ min

{
τ∑
l=t

∑
i∈N

edil,C

}
zt . (24)

In a similar way, the constraint (A10) can be converted to
the normal crisp form as follows:

wit ≤
τ∑
l=t

edil
∑
j∈N0

xijt . (25)

B. CRISP EQUIVALENT TRANSFORMATION
FOR (α, β)-MCM
In the same way, one can transform the additional uncertain
constraints (B2) to its crisp equivalent for the (α, β)-MCM,
and specify it in linear, zigzag, and normal uncertain envi-
ronments separately. With the above assumptions and uncer-
tainty theory by Liu [41] and Liu [52], (B2) in model
(α, β)-MCM is simplified as∑
t∈T

8−11 (α)zt +
∑
t∈T

8−12 (α)pt +
∑
t∈T

8P−1(α)IPt

+

∑
t∈T

∑
i∈N

8R
i
−1

(α)IRit +
∑
t∈T

∑
(i,j)∈E

8−1ij (α)xijt ≤ W̄ . (26)

Then, the crisp form of constraint (B4) can be obtained as
follows:

ϒ−1it (βi) ≤ wit + IRit−1 − I
R
it . (27)
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In a similar way, the crisp forms of (B15) and (B16) can be
correspondingly obtained as follows:

Ut =
τ∑
l=t

∑
i∈N

ϒ−1il (γ ), (28)

Uit =
τ∑
l=t

ϒ−1il (γi). (29)

1) LINEAR UNCERTAIN SITUATION
Let uncertain variables satisfy the following linear
distributions:

ũ ∼ L(a1, b1); f̃ ∼ L(a2, b2); h̃P ∼ L(aP, bP);
h̃Ri ∼ L(aRi , b

R
i ); c̃ij ∼ L(aij, bij); d̃it ∼ L(adit , b

d
it ).

For convenience, the mathematical formulas are defined as
follows:

a(X )

= a
(
zt , pt , IPt , I

R
it , xijt

)
=

a1zt + a2pt + aPIPt +∑
i∈N

aRi I
R
it +

∑
(i,j)∈E

aijxijt

 ,(30)
b(X )

= b
(
zt , pt , IPt , I

R
it , xijt

)
=

b1zt + b2pt + bPIPt +∑
i∈N

bRi I
R
it +

∑
(i,j)∈E

bijxijt

 . (31)
With the above assumptions and uncertainty theory by

Liu [52], (B2) in the (α, β)-MCM is simplified as follows:∑
t∈T

{(1− α)a(X )+ αb(X )} ≤ W̄ . (32)

Then, the linear crisp form of constraint (B4) can be
obtained as follows:

(1− βi) adil + βib
d
il ≤ wit + I

R
it−1 − I

R
it . (33)

In a similar way, the linear crisp forms of (B15) and (B16)
can be correspondingly obtained as follows:

Ut =
τ∑
l=t

∑
i∈N

(1− γ )adil + γ b
d
il, (34)

Uit =
τ∑
l=t

((1− γi)adil + γib
d
il . (35)

2) ZIGZAG UNCERTAIN SITUATION
Let uncertain variables satisfy the following zigzag distribu-
tions:

ũ ∼ L(a1, b1); f̃ ∼ L(a2, b2); h̃P ∼ L(aP, bP);
h̃Ri ∼ L(aRi , b

R
i ); c̃ij ∼ L(aij, bij); d̃it ∼ L(adit , b

d
it ).

Then, the mathematical formula is defined as follows:

c(X )

= c
(
zt , pt , IPt , I

R
it , xijt

)
=

c1zt + c2pt + cPIPt +∑
i∈N

cRi I
R
it +

∑
(i,j)∈E

cijxijt

. (36)
The chance constraint (B2) in the (α, β)-MCM is simpli-

fied as follows with the above assumptions and uncertainty
theory by Liu [52]:∑
t∈T

{(1− 2α)a(X )+ 2αb(X )} ≤ W̄ , if α < 0.5,∑
t∈T

{(2−2α)b(X )+(2α−1)c(X )}≤W̄ , if α ≥ 0.5. (37)

Then, the zigzag crisp form of constraint (B4) can be
obtained as follows:

(1− 2βi) fadil + 2f βibdil + (2− 2βi) gbdil + (2βi − 1) gcdil
≤ wit + IRit−1 − I

R
it , (38)

where

f =

{
1, if βi < 0.5,
0, if βi ≥ 0.5,

g =

{
0, if βi < 0.5,
1, if βi ≥ 0.5.

In a similar way, the zigzag crisp forms of (B15) and (B16)
can be correspondingly obtained as follows:

Ut =
τ∑
l=t

∑
i∈N

(1− 2γ ) adil + 2γ bdil, if γ < 0.5,

Ut =
τ∑
l=t

∑
i∈N

(2− 2γ )
∑
i∈N

bdil + (2γ − 1)cdil, if γ ≥ 0.5,

(39)

Uit =
τ∑
l=t

((1− 2γi)fadil + 2γifbdil + (2− 2γi)bgdil + (2γi

−1)gcdil), (40)

where

f =

{
1, if γi < 0.5,
0, if γi ≥ 0.5,

g =

{
0, if γi < 0.5,
1, if γi ≥ 0.5.

3) NORMAL UNCERTAIN SITUATION
Let uncertain variables satisfy the following normal
distributions:

ũ ∼ N (e1, σ1); f̃ ∼ N (e2, σ2); h̃P ∼ N (eP, σP);

h̃Ri ∼ N (eRi , σ
R
i ); c̃ij ∼ N (eij, σij); d̃it ∼ N (edit , σ

d
it ).
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Then, the mathematical formulas are defined as follows:

e(X )

= e
(
zt , pt , IPt , I

R
it , xijt

)
=

e1zt + e2pt + ePIPt +∑
i∈N

eRi I
R
it +

∑
(i,j)∈E

eijxijt

 , (41)
d(X )

= d
(
zt , pt , IPt , I

R
it , xijt

)
=

σ1zt + σ2pt+σPIPt +∑
i∈N

σRi I
R
it +

∑
(i,j)∈E

σijxijt

 . (42)

The chance constraint (B2) in the (α, β)-MCM is simpli-
fied as follows with the above assumptions and uncertainty
theory by Liu [52]:∑

t∈T

{
e(X )+

√
3
π
ln

α

1− α
d(X )

}
. (43)

Then, the normal crisp form of constraint (B4) can be
obtained as follows:

edit +

√
3σ dit
π

ln
βi

1− βi
≤ wit + IRit−1 − I

R
it . (44)

In a similar way, the normal crisp forms of (B15) and (B16)
can be correspondingly obtained as follows:

Ut =
τ∑
l=t

∑
i∈N

(
edil +

√
3σ dil
π

ln
γ

1− γ

)
, (45)

Uit =
l∑
l=t

(
edil +

√
3σ dil
π

ln
γi

1− γi

)
. (46)

C. CRISP EQUIVALENT TRANSFORMATION FOR MMCM
In the same way, one can transform the additional uncertain
constraints (C1) to their crisp equivalent for the MMCM,
and specify them in linear, zigzag, and normal uncertain
environments separately. Let ξ represent the left-hand side
of the mathematical formula in the inequality (C1), which is
also an uncertain variable based on uncertainty theory. 9(x)
represents the uncertain distribution of the uncertain variable
ξ . Then, the mathematical formula (C1) can be simplified as
follows:

M
{∑
t∈T

f̃ zt +
∑
t∈T

ũpt +
∑
t∈T

h̃PIPt +
∑
t∈T

∑
i∈N

h̃Ri I
R
it

+

∑
t∈T

∑
(i,j)∈E

c̃ijxijt ≤ W0

 = 9(W0). (47)

1) LINEAR UNCERTAIN SITUATION
Let uncertain variables satisfy the following linear
distributions:

ũ ∼ L(a1, b1); f̃ ∼ L(a2, b2); h̃P ∼ L(aP, bP);
h̃Ri ∼ L(aRi , b

R
i ); c̃ij ∼ L(aij, bij); d̃it ∼ L(adit , b

d
it ).

With the above assumptions and uncertainty theory by
Liu [40], we can draw the following conclusion:

ξ ∼ L
(∑
t∈T

a(X ),
∑
t∈T

b(X )

)
. (48)

Then, the following specific uncertainty distribution of
9(W0) in linear circumstances is provided as follows:

0, if W0 ≤ a(X ),
W0 −

∑
t∈T

a(X )∑
t∈T

(b(X )− a(X ))
, if

∑
t∈T

a(X ) ≤ W0 ≤
∑
t∈T

b(X ),

1, if W0 ≥
∑
t∈T

b(X ).

(49)

2) ZIGZAG UNCERTAIN SITUATION
Let uncertain variables satisfy the following zigzag distribu-
tions:

ũ ∼ Z(a1, b1, c1); f̃ ∼ Z(a2, b2, c2);

h̃P ∼ Z(aP, bP, cP); h̃Ri ∼ Z(aRi , b
R
i , c

R
i );

c̃ij ∼ Z(aij, bij, cij); d̃it ∼ Z(adit , b
d
it , c

d
it ).

With the above assumptions and uncertainty theory by
Liu [40], the following conclusion can be obtained:

ξ ∼ Z
(∑
t∈T

a(X ),
∑
t∈T

b(X ),
∑
t∈T

c(X )

)
. (50)

Then, the following specific uncertainty distribution of
9(W0) is provided as follows:

0, if W0 ≤ a(X ),
W0 −

∑
t∈T

a(X )

2
∑
t∈T

g(X )
, if

∑
t∈T

a(X ) ≤ W0 ≤
∑
t∈T

b(X ),

W0 +
∑
t∈T

n(X )

2
∑
t∈T

h(X )
, if

∑
t∈T

b(X ) ≤ W0 ≤
∑
t∈T

c(X ),

1, if W0 ≥
∑
t∈T

c(X ).

(51)

For convenience, the mathematical formulas are expressed
as follows:

g(X ) = b(X )− a(X ), (52)

h(X ) = c(X )− b(X ), (53)

n(X ) = c(X )− 2b(X ). (54)

3) NORMAL UNCERTAIN SITUATION
Let uncertain variables satisfy the following normal distribu-
tions:

ũ ∼ N (e1, σ1); f̃ ∼ N (e2, σ2); h̃P ∼ N (eP, σP);

h̃Ri ∼ N (eRi , σ
R
i ); c̃ij ∼ N (eij, σij); d̃it ∼ N (edit , σ

d
it ).
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Similarly, with the above assumptions and uncertainty the-
ory by Liu [40], it can be concluded that

ξ ∼ N
(∑
t∈T

e(X ),
∑
t∈T

d(X )

)
. (55)

The specific uncertainty distribution of 9(W0) can be
described as follows:

9(W0) =

1+ exp


∑
t∈T

πe(X )−W0∑
t∈T

√
3d(X )



−1

. (56)

V. NUMERICAL RESULTS
The crisp deterministic models have been implemented in
C++ using ILOG Concert and CPLEX 12.8. The goals of
these experiments are to solve the nine crisp equivalent mod-
els after crisp equivalent conversion from the three uncertain
models proposed in Section three, and to analyze how the
confidence levels and variance of uncertain variables influ-
ence the computational results.

Since much of the previous research on the PRP was done
only under deterministic circumstances, the uncertainties
may have gone undetected, being unsuitable for researching
the uncertain PRP. To solve these uncertain decision mod-
els, the uncertain instance is proposed based on the classic
instance from Archetti et al. [53], which has been considered
one classical instance used to solve the PRP with exact solu-
tion algorithms and heuristics.

TABLE 1. Distributions of uncertain linear variables.

TABLE 2. Distributions of uncertain zigzag variables.

This uncertain variables have been generated and are pre-
sented in Tables 1, 2, and 3, including uncertain demands
d̃it , uncertain production setup cost f̃ , uncertain unit pro-
duction cost p̃, uncertain inventory costs h̃0 for the plant
and h̃i for the retailer i, and uncertain translation cost c̃ij

TABLE 3. Distributions of uncertain normal variables.

between nodes i and j, with the series parameters values of
ε being between 0 and 1, ε1 greater than ε2, and σ greater
than 0, which represent the value of the variances of uncer-
tain variables. Furthermore, the pre-defined series confidence
levels of α and β always vary between 0 and 1. Because
the series parameter values of γ are always equivalent to
β, its parameter values are no longer listed in this section
for simplicity. Compared to the deterministic instance from
Archetti et al. [53], themajor differences are that the variables
(the costs of production, inventory, and transportation, as well
as the demands of retailers in each period) are uncertain, and,
correspondingly, confidence levels and correlation parame-
ters are introduced.

TABLE 4. Results of MMCM under linear circumstance.

TABLE 5. Results of MMCM under zigzag circumstance.

A. RESULTS OF BASIC EXPERIMENTS
For solving the EMCM, three series examples that separately
describe linear, zigzag, and normal distributions are pre-
sented, and calculation results are correspondingly obtained
by solving the deterministic forms of the EMCM on a com-
puter. The series parameter values of ε are set to 0.5 in the lin-
ear circumstance. In the zigzag circumstance, ε1 and ε2 series
parameter values are equivalent to 0.7 and 0.3, respectively.
All variances in the normal circumstance are 0.5. One can
learn by experiments that the EMCM under three situations
(linear, zigzag, and normal) has the same expectation total
cost being 29652, which is ascribed to their identical expec-
tations. Similarly, the experimental computing results of the
MMCM under linear, zigzag, and normal distributions are
shown in Tables 4, 5 and 6, respectively. Results show that
the probability that the optimal total cost of MMCM is less
than or equal to W0, strictly increases as the value of W0
increases in three uncertain distributions.
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TABLE 6. Results of MMCM under normal circumstance.

TABLE 7. (α, β)-MCM total cost under linear circumstance with ε = 0.5
and β ≤ 0.5.

TABLE 8. (α, β)-MCM total cost under linear circumstance with ε = 0.5
and β > 0.5.

B. CONFIDENCE-LEVEL ANALYSIS
The (α, β)-MCM focuses attention on the different
confidence levels compared with the EMCM. Through
changing test parameters, the effect of different level param-
eters on the (α, β)-MCM was studied. The results of experi-
ments on linear, zigzag, and normal distributions can be seen
in Tables 7-12, respectively. It is not difficult to find that the
(α, β)-MCM total costs increase with the series parameter
values of α and β. Specifically, the total cost of (α, β)-MCM
grows with the increase of the confidence level α in uncertain
cost environments, and also increases with the increase of
the confidence level β in uncertain demand environments.
The experimental result is mainly in accordance with the
prospective desire.

C. SENSITIVITY ANALYSIS
In this section, details of the comparison analysis of variance
are presented. The series parameters of ε used to solve the
proposed model under three common distributions, i.e., lin-
ear, zigzag, and normal, are in given in Tables 13-18, respec-
tively, reflect variations to some extent. And it is found that

TABLE 9. (α, β)-MCM total cost under zigzag circumstance with ε1 = 0.7,
ε2 = 0.3, and β ≤ 0.5.

TABLE 10. (α, β)-MCM total cost under zigzag circumstance with ε1 = 0.7,
ε2 = 0.3, and β > 0.5.

TABLE 11. (α, β)-MCM total cost under normal circumstance with σ = 0.5
and β ≤ 0.5.

TABLE 12. (α, β)-MCM total cost under normal circumstance with σ = 0.5
and β > 0.5.

the different variations give different results in the exper-
iments. By tweaking the series parameters of ε separately
about uncertain demand (UD), uncertain setup cost (US),
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TABLE 13. (α, β)-MCM under linear circumstance with α = 0.6, β = 0.8,
and ε ≤ 0.5.

TABLE 14. (α, β)-MCM under linear circumstance with α = 0.6, β = 0.8,
and ε > 0.5.

TABLE 15. (α, β)-MCM total cost under zigzag circumstance with α = 0.6,
β = 0.8, ε2 = 0.01, and ε1 ≤ 0.5.

TABLE 16. (α, β)-MCM total cost under zigzag circumstance with α = 0.6,
β = 0.8, ε2 = 0.01, and ε1 > 0.5.

TABLE 17. (α, β)-MCM total cost under normal circumstance with
α = 0.6, β = 0.8, and σ ≤ 5.

uncertain unit production cost (UP), uncertain inventory cost
(UI), and uncertain transportation cost (UT), the experimental
results presented are obtained. In the experiment, we observe
the influence of the variances of uncertain variables on the
total costs of (α, β)-MCM by adjusting the size of series
parameters, such as ε in linear distribution, ε1 and ε2 in zigzag
distribution, and σ in normal distribution. Because decision-
makers are usuallymost interested in higher confidence levels

TABLE 18. (α, β)-MCM total cost under normal circumstance with
α = 0.6, β = 0.8, and σ > 5.

in realistic applications, the confidence level of α is set to
0.6 and β is set to 0.8. Results show that the growth of
the variances of uncertain demands or costs both lead to the
increase of the total cost.

VI. CONCLUSION
In this paper, the PRP under uncertain circumstances with
lacking historical data is studied, to the best of our knowledge,
for the first time. Based on the uncertainty theory and three
uncertain decision criteria, three original uncertain models
are proposed, i.e., the EMCM, (α, β)-MCM, and MMCM.
In addition, the deterministic equivalents of the uncertain
decisions model are presented under the assumption that
all of the uncertain variables, which include cost series and
demand series, are considered as independent uncertain vari-
ables, which provides a general means for understanding
the PRP under uncertain settings. So these three common
uncertain distribution conditions (linear, zigzag, and normal)
can be understood more deeply and used more reasonably,
the models applied are designed. Moreover, an instance with
uncertain settings based on a classic instance is used to
solve the PRP to, in turn, solve these aforementioned models
more effectively. Finally, numerical experiments are shown
to reveal the application of the models and the effects of
confidence levels and variance. The conclusion shows that the
overall cost of the optimal solution of PRP grows with the
increase of the confidence levels in both uncertain demand
and cost environments and is simultaneously affected by the
variances of uncertain variables. Meanwhile, the probability
that the optimal total cost of the PRP is less than or equal to a
given threshold strictly increases as the threshold increases in
uncertain environments. When the confidence level is high,
as the variances of uncertain demands or costs increase,
it then causes the total cost of the PRP to increase.
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