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ABSTRACT Vehicle path planning is a key issue for car navigation systems. When path planning,
considering the time spent at intersections is more in line with the actual situation, so it is of practical
significance to study the path planning problem take account intersection attributes. In this article, we study
the problem in a deterministic network, taking the minimization of travel time from the origin to the
destination as the optimization goal. For this purpose, we construct a mathematical model for the problem.
This paper proposes a reverse labeling Dijkstra algorithm (RLDA) based on traditional Dijkstra algorithm
to solve the problem, it is proved that the correctness of the RLDA algorithm theoretically, and analyze that
the RLDA algorithm has a lower polynomial time complexity. Finally, we selected the actual road network
as the simulation experiment object to verify the effectiveness of the algorithm searching for the optimal
path. And select 10 groups of networks of different sizes and conduct extensive experiments to compare the
convergence efficiency and calculation speed between RLDA and PSO, GA, ACO, NNA, OPABRL. The
statistical results show that the convergence rate of the RLDA algorithm is better than that of ACO, NNA,
and GA. When the number of network nodes is less than 350, the algorithm has the smallest running time.

INDEX TERMS Path planning, intersection attribute, reverse labeling Dijkstra algorithm, deterministic
network.

I. INTRODUCTION
Urban traffic is closely related to people’s production and
life, with the progress of society, the pressure on transporta-
tion is increasing, and the problems of traffic jams, traffic
accidents and environmental pollution caused by traffic are
also becoming more and more serious. In order to solve the
problems faced by the current transportation, the Intelligent
Transportation System (ITS) came into being. Intelligent
transportation system effectively integrates advanced infor-
mation technology, data communication transmission tech-
nology, electronic control technology, sensor technology and
computer processing technology to the entire transportation
system, thus establishing a real-time, accurate, and efficient
comprehensive transportation management system [1]. Intel-
ligent transportation systems use modern science and tech-
nology to establish intelligent connections between roads,
vehicles, and drivers and passengers. Greatly improve trans-
portation efficiency, fully guarantee traffic safety, improve
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environmental quality, and increase energy efficiency. It is
currently internationally recognized as the best way to solve
urban and highway traffic congestion, improve driving safety,
increase operating efficiency, and reduce air pollution. It is
also a frontier subject in the field of transportation research
around the world [2], [3].

The concept of intelligent transportation system was put
forward by the American Intelligent Transportation Society
in the 1990s, and it was vigorously promoted in countries all
over the world. However, the germination of intelligent trans-
portation system thought can be traced back to the 1960s [4].
The static route guidance and computer traffic control tech-
nology that appeared in the 1960s can be regarded as embry-
onic forms. The importance at that time has not been highly
valued. After entering the 1990s, it has developed at an alarm-
ing speed. In order to solve the common traffic problems,
many developed countries have rushed to invest a lot of funds
and manpower to conduct large-scale research experiments
on intelligent road transportation [5]. Japan began to pay
attention to ITS in the 1970s, and the Japanese government
has invested a lot of funds and policies in the field of ITS
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in order to form an industry to promote Japan’s economic
development. In the past few years, nearly ten thousand
in-car navigation systems have been applied in the market.
ITS applications in Japan are mainly in traffic information
provision, electronic toll collection, public transportation,
commercial vehicle management, and emergency vehicle pri-
ority [6]. The progress of ITS application in Europe lies
between Japan and the United States. Due to the decentralized
investment of European governments and the inconsistency
of the needs of various countries, it is difficult to establish a
unified traffic information service system throughout Europe.
However, in the development of advanced travel information
systems (ATIS), advanced vehicle control systems (AVCS),
advanced commercial vehicle operating systems (ACVOS),
and advanced electronic toll collection systems (AETCS),
the prospects are very attractive [7].

The Dynamic Route Guidance System (DRGS) is an
important branch and one of the key technologies of the
ITS [8]. It uses modern technologies such as Global Posi-
tioning System (GPS), computers and communications to
obtain a large number of timely and accurate traffic network
data, and plans the corresponding optimal route for drivers to
choose. The route optimization algorithm is the key technol-
ogy of DRGS. The optimization algorithm can improve the
efficiency of the route guidance system to meet the real-time
traffic environment. In the massive and rapidly changing
traffic information, whether the dynamic guidance can be
completed in time after the traffic information is updated in
the traffic system, and whether the effective information can
be quickly extracted and efficiently fed back to the pedestrian
is crucial [9]. Therefore, optimization algorithms become the
key to solving the problem.

In the existing research on the path planning of the car
navigation, usually only consider the time spent on the arc,
and the time spent at the node is usually attributed to the
corresponding arc or ignored. In the urban road network,
there are a large number of intersections and road sections.
The length of the road section between two intersections
is usually short. In addition, due to the influence of traffic
lights and traffic rules, the time spent at the intersection
may be longer than pass through a road segment, the time
it takes for vehicles to go straight, turn right, turn left or
U-turn through the intersection also varies, so the time spent
at the intersection can no longer be ignored. Therefore, when
planning a route for vehicles in urban traffic, it is necessary to
consider both the time spent passing through the road section
and the intersection [27].

In this paper, we focus on the path planning problem of
car navigation systems considering intersection attributes,
taking the minimum total travel time as the optimization goal,
a reverse labeling dijkstra algorithm (RLDA) is proposed
to solve this problem. The rest of this paper is organized
as follows: In section II, we will provide a survey of the
relevant literature. In Section III, we will give a detailed
description of the issues discussed, the mathematical mod-
els. And present our optimization algorithm in Section IV.

Section V will perform a large number of experiments on
the algorithm (RLDA) proposed in this paper and other five
commonly used algorithms. Section VI will summarize the
work of this paper.

II. RELATED WORKS
The optimization algorithms studied and applied in DRGS
mainly include traditional graph theory shortest path algo-
rithm and intelligent optimization algorithm [10]. The former
includes: Dijkstra [11], [12], A∗ algorithm [13], Floyd algo-
rithm [14], and hierarchical heuristic search algorithm, etc.;
the latter includes: genetic algorithm, ant colony algorithm,
neural network algorithm, particle swarm optimization algo-
rithm and simulated annealing algorithm, machine learning
algorithm, etc..

The shortest path problem (SP) is a classic algorithm prob-
lem in graph theory research, which aims to find the shortest
path between two nodes in a graph (composed of nodes
and paths). Many practical problems can be transformed
into shortest path problems [15]. Dijkstra algorithm was first
proposed in 1959 to solve the shortest path problem. Dijkstra
algorithm is a common algorithm for solving single source
shortest path problems. It uses an adjacency matrix stor-
age structure to store the relationship between vertices and
vertices, and traverses all vertices one by one. The time
complexity of the algorithm is O

(
n2
)
[16]. In order to solve

the problem of poor availability of the traditional Dijk-
stra algorithm in expressway emergency evacuation planning
paths, Liu et al. considered the characteristics of nodes and
sections in the expressway network with traffic capacity
and conditional restrictions, and improved the dijkstra algo-
rithm [17]. A∗ algorithm is also an earlier traditional shortest
path optimization algorithm, which was first put forward
by Raphael et al. in 1968 [18]. The A∗ algorithm is the
most effective direct search method for solving the shortest
path in a static road network, it is also a common heuristic
algorithm for many other problems. The A∗ algorithm is a
complete algorithm, its advantage lies in its ability to capture
the solution completely, but its disadvantage is that the algo-
rithm ismore complex. Therefore, the improvedA∗ algorithm
has been extensively studied. For the robot path planning
problem, Song et al. proposed a hybrid algorithm of particle
swarm optimization algorithm (PSO) and A∗ algorithm to
obtain the solution [19].

The application research of intelligent optimization algo-
rithm in solving the shortest path problem has also received
extensive attention from researchers. Liu et al. improved
the machine learning algorithm to solve the path planning
problem of intelligent driving vehicles with restricted road
sections [4]. Ant colony optimization (ACO) has the char-
acteristics of parallelism, robustness, and positive feedback,
and has been widely used to solve combinatorial optimiza-
tion problems, such as the famous traveling salesman prob-
lem (TSP), secondary allocation problems (QAP), job shop
scheduling problems (JSP) and many other complex combi-
natorial optimization problems. Due to the huge number of
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intersections and road sections in the urban road network,
the ant colony algorithm is easy to fall into the local optimum
when solving the path planning problem, and has the disad-
vantages of high number of iterations and high time com-
plexity. Aiming at the above shortcomings of the ant colony
algorithm, Chen et al. combined with the A∗ algorithm to
propose an efficient and fast improved algorithm to improve
the efficiency and accuracy of the search [20]. In order to
solve the Capacitated Vehicle Routing Problem (CVRP),
Shang et al. aimed to develop a multi-constraint path opti-
mization method with simple structure, strong versatility, and
easy coupling and nesting, and proposed a path optimization
method with specific capacity constraints. They proposed an
improved simulated annealing algorithm (ISA) with temper-
ing operation. An overall optimization framework based on
simulated annealing operations was constructed, and for the
improvement of global search capabilities, initial solution
generation, better solution acceptance rules and neighbor-
hood transformation strategies were designed respectively.
Afterwards, through comparative experiments, the effective-
ness and robustness of ISA were verified [21]. For the Capac-
itated Vehicle Routing Problem (CVRP), Mohammed et al.
proposed an improved genetic algorithm [22], Yang put for-
ward a hybrid algorithm of genetic algorithm and particle
swarm optimization (PSO) [23], and Chen et al. put forward a
hybrid algorithm of ant colony optimization (ACO) and par-
ticle swarm optimization (PSO) [24]. Regarding the pick-up
and delivery vehicle routing problem with time windows,
Yan et al. put forward an improved particle swarm optimiza-
tion algorithm [25]. Zhang et al. put forward a new discrete
particle swarm optimization based on route-segment to solve
the vehicle routing problem with time windows (VRPTW),
they setting the route-segment as the velocity of particles and
in which the velocity and position updating rules are designed
based on the concept of ‘‘ruin and recreate’’ [26].

III. MATHMATICAL FORMULATIONS
A. PROBLEM STATEMENT
In this paper, we conduct research on vehicle path planning
considering intersections time consumption in a deterministic
network. In such a network, we assumed that the travel time
along an arc and the waiting time at a node that has different
subsequent arcs do not vary with time. In Figure 1, nodes
and arcs correspond respectively to intersections and road
sections in the actual road network, S is the starting node
and D is the destination. The number marked on a directed
arc is the time required to pass through the arc. The number
marked next to the node i respectively represent the time
spent at the node i when turning from the node i to different
subsequent node. When only considering the time spent on
arcs, the minimum time path from the starting node S to
the destination D is S → A → C → D with the time
spent 2+ 3+ 2 = 7. When the time cost of the node and
the arc are considered at the same time, the time cost of
the path S → A → C → D is 2+ 4+ 3+ 4+ 2 = 15.
However, the time spent on path S → B → G → D is

FIGURE 1. Network graph considering node cost.

3+ 2+ 2+ 2+ 3 = 12, which becomes the minimum time
path from the starting node S to the destination D instead of
the path S → A → C → D. It can be seen that we can
get different paths under the two conditions, and considering
the time spent at the intersection is more realistic, so it is
necessary to study the optimization algorithm of vehicle path
planning considering node attributes in this paper.

B. PROBLEM ASSUMPTIONS
Combining the characteristics of the problem addressed in
this paper, give the following assumptions:

• Assume that the road network is a deterministic directed
graph network in which the attribute values of nodes and
edges do not change over time, and follow the first-in
first-out (FIFO) rule.

• Within a certain time period, the time it takes for a
vehicle to pass through any section and intersection of
the road network does not rely on the departure time.

• Within the same time period, the time it takes for a
vehicle to pass the intersection in any way (including left
turn, right turn, go straight, and U-turn) is independent
and is independent of the time it arrive at the intersection.

• Assume that the time spent by the vehicle traveling on
any segment of the road network is a fixed constant.

• Assumed that the time it takes a vehicle to go through an
intersection in any given way is a fixed constant.

C. MATHEMATICAL MODEL
We adopt the four-tuple directed graph G = (V,E, �,8) to
describe the road network we are studying.

E : The collection of all road segments between intersec-
tions in the road network (corresponding to the arcs in the
directed graph).
|E| : The number of arcs in the directed graph.
V : The collection of all intersections in the road network

(corresponding to the nodes in the directed graph).
|V| : The number of node in the directed graph.
S+(i) = {j|(i, j) ∈ E : The successor nodes collection of

node i(i ∈ V).
S+n (i) : The subset of S+(i), for ∀j ∈ S+n (i), arc (i, j) is not

labeled B.
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P−(i) = {j|(i, j) ∈ E : The predecessor nodes collection of
node i(i ∈ V).
P−n (i) : The subset of P−(i), for ∀h ∈ P−n (i), arc (h, i) is not

labeled B.
� = {L(i, j)|i, j ∈ V, (i, j) ∈ E : The collection of each

arc attribute values, where, L(i, j) is the attribute value of the
arc segment (i, j), i.e., the time it takes for a vehicle to pass
through road segment (i, j).
8 =

{
3(i, j, k) | j ∈ V, i ∈ P− (j) , k ∈ S+ (j)

}
: Node

attribute values collection in the directed graph, where
3(i, j, k) is the attribute value of node j (weight or time cost),
it represents the time it takes for the vehicle to travel from
road segment (i, j) to road segment (j, k) at intersection j.

Assuming that D is a certain intersection in the road net-
work, find the path {j0, j1, j2, · · · , jn−1, jn} (j0 = S and
jn = D) with the smallest sum of attribute values from any
other intersection S toD in the network. That is, the path with
the smallest sum of the time spent by the vehicle traveling
on the road segment and the time spent passing through the
intersection, which is called the shortest path problem in
deterministic network considering the intersection attributes.
There are the following assumptions:
• When the vehicle travels along the path

{
j0, j1, j2, · · · ,

jn−1, jn
}
, the vehicle departs from intersection jk or the

vehicle arrives at intersection jk means that the vehicle
is at the starting node of road segment (jk , jk+1).

• When the vehicle arrives at the destination node
D, we assume that vehicle passes the road segment
(jn−1, jn) and, through the node jn = D, arrives at
the starting node of the road segment (jn, jn+1), where
jn+1 = D, (jn, jn+1) = (D,D) is a virtual road segment,
and 3(jn−1,D,D) = 0.

The mathematical model of the problem can be described
as follows, where 0 (S,D) is the minimum travel time from
starting node S to the destination D.

0 (S,D)

= min
(j0,··· ,jn−1,jn)

∑n

k=1
[L(jk−1, jk )+3(jk−1, jk , jk+1)]

(1)

D. ANALYSIS OF MATHEMATICAL MODEL
Theorem 1: Assume the path (j0, j1, j2, j3 . . . , jn−1, jn) is
the optimal solution of the shortest path problem in
the time-invariant network from the starting node j0 =
S to the destination node jn = D considering the
attributes of the intersection, it is easy to obtain that
any sub-path (jk+1, jk+2, jk+3, . . . , jk+l−1, jk+l) of the path
(j0, j1, j2, j3 . . . , jn−1, jn) is the optimal path from node jk+1
to node jk+l . In other words, in the time-invariant network,
there is an optimal substructure for the optimal solution of the
shortest path problem that considering the time consumption
of the intersection.

Proof: We use the cut-and-paste method to prove
the correctness of the theorem. Suppose the sub-path
(jk+1, jk+2, jk+3, . . . , jk+s−1, jk+s) is not the shortest path

from the starting node jk+1 to destination node jk+s in
the directed graph. Then there must exist another sub-path
(jk+1, jk+2, j′k+3, . . . , j

′
k+q−1, j

′
k+q) that satisfies:

β(jk+1, jk+2, j
′

k+3, . . . , j
′

k+q−1, j
′
k+q)

< β(jk+1, jk+2, jk+3, . . . , jk+s−1, jk+s) (2)

where:

β(jk+1, jk+2, j
′

k+3, . . . , j
′

k+q−1, j
′
k+q)

=

∑q−1

t=1
[L(j′k+t , j

′

k+t+1)+3(j
′
k+t , j

′

k+t+1, j
′

k+t+2)]

(3)

where j′k+1 is the beginning of road segment (jk+1, jk+2),
j′k+2 is the beginning of road segment (jk+2, j′k+3), j

′
k+q is the

beginning of road segment (j′k+q, jk+s+1), and node j
′

k+q+1 is
the beginning of road segment (jk+s+1, jk+s+2); and:

β(jk+1, jk+2, jk+3, . . . , jk+s)

=

∑s−1

t=1
[L(jk+t , jk+t+1)+3(jk+t , jk+t+1, jk+t+2)]

(4)

where jk+1 is the beginning of road segment (jk+1, jk+2), jk+s
is the beginning of road segment (jk+s, jk+s+1). Therefore,
we have:

β (j0, j0, j0 . . . , jk)+ β
(
jk+1, jk+2, j′k+3, j

′

k+4, . . . , j
′
k+s
)

+β (jk+s+1, jk+s+2 . . . , jn) < β (j0, j0, j0 . . . , jk)

+β (jk+1, jk+2, jk+3, jk+4 . . . , jk+s)

+β(jk+s+1, jk+s+2, . . . , jn) (5)

This is incompatible with the assumption that path
(j0, j1, j2, j3 . . . , jn−1, jn) is the shortest path from the starting
node j0 = S to the destination node jn = D in the directed
graph, so the assumption does not hold. Therefore, theorem
1 is correct.
Theorem 2: There is optimal substructure for the optimal

solution of the shortest path problem in the time-invariant
network considering intersection attributes.
Theorem 3: There is repeated sub-problems for the

shortest-path problem in the time-invariant network consid-
ering intersection attributes, so recursive algorithms can be
used to solve the problem.

IV. RLDA ALGORITHM DESIGN
Based on the previous analysis, we can use the dynamic
programming method to design the solving algorithm. Next,
we will introduce the basic formulas involved in the algo-
rithm.

A. BASIC FORMULA
0(j, k, l) is the minimum travel time starting from the first
node j of the road segment (j, k) and passing through this
segment, then through intersection k and the segment (k, l)
to the end point D. Then, there is the following recursion
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formula:

0 (j, k, l) = min
m∈S+(l)

{L (j, k)+3(j, k, l)+ 0 (k, l,m)} (6)

where

0 (j,D,D) = L (j,D) , ∀j ∈ P−(D) (7)

From the above analysis and Theorem 1 and Theorem 2,
there are the following equations:

0(j,D) = min
m∈S+(j),l∈S+(k)

0(j, k, l)} (8)

ρ(j, k) is the minimum travel time from the first node i of
the road section (i, j) passing through this section (i, j) and
through intersection j to the destinationD. Then: ρ(j, k) is the
shortest travel time from the starting node of the road segment
(j, k) through the road segment (j, k) and the intersection k to
the end node D, obtain the following formula:

ρ(j, k) = min
l∈S+(k)

0(j, k, l)} (9)

or

ρ (j, k) = min
l∈S+(k)

{L (j, k)+3(j, k, l)+ ρ (k, l)} (10)

where

L (j, k) ∈ �, 3 (j, k, l) ∈ 8, k ∈ S+ (j) , l ∈ S+ (k)
(11)

ρ (j,D) = L (j,D) , (12)

Let (k,5ρ(j, k)) as the succeeding road segment of road
segment (j, k) on the minimum travel time path via road
segment (j, k) to end point D:

5ρ(j, k) = argmin
l∈S+(k)

{L (j, k)+3(j, k, l)+ ρ (k, l)} (13)

We denote the minimum travel time from the starting point
S to the end point D by ψ(S,D), and we record 5ψ (j) as
the successor node of node i for this path. From the above
analysis, it follows that: Define ψ(S,D) as the shortest travel
time from the starting node S to the destination D, define
5ψ (i) as the successor node of node j in the shortest path.

ψ(S,D) = argmin
k∈S+(S)

{µ(S, k)} (14)

5ψ (j) = argmin
k∈S+(S)

{ρ (j, k)} (15)

B. OVERVIEW OF RLDA ALGORITHM
For the solution of the discussed problem, we propose a
Reverse Labeling Dijkstra Algorithm (RLDA) based on tra-
ditional Dijkstra. Its basic idea is: Beginning with the desti-
nation, gradually explore the shortest path that through one
road segment (j, k) (with node j as its starting node) to the
destination D in the directed graph. In the process, after
the minimum travel time ρ (j, k) from the given arc (j, k) to
the end node D is calculated, mark the arc (j, k) with B label
(Black arc). Then calculate the minimum travel time from all
arcs (i, j)with the node j as the end node to the destinationD.

FIGURE 2. Case 1.

FIGURE 3. Case 2.

During this process, if all arcs with j as the starting node
have the B label (that is, the minimum travel time through
the arc to the destinationD already be obtained), the recursive
equation (5) can be used to calculate the minimum travel time
from the arc (i, j) to the end D. If an arc starting at node j
does not have a label B, then node j is taken as the tree root,
arc segments without label B are taken as the search objects.
Find out all the arcs that start from node j and connected
with node j without the B label, and construct a breadth-first
search tree (BFS-tree), all arcs in this tree are marked with
G label (green arcs). Then, the minimum travel time from
any arc in the tree to the destination D is calculated, and the
arcs with label G in the tree are changed to B label. At the
end, calculate the minimum travel time from the arc (i, j) the
destinationD. It can be seen that each step of the algorithm is
to change a certain (or some) road segment without B label to
B label, as a result, the number of arcs marked with B in the
directed graph G increases. In this way, at most |V| iterations,
the shortest path from any road segments to the destination
can be found, the shortest path from the starting node S to the
destination D is also found. In each iterative process, divide
the road segments set in the directed graph into three subsets:
the set of road sections marked with B (EB), the set of road
sections marked with G (EG), and the complement set EO
(marked by Orange) of sets EB and EG, EO = E− (EB∪EG).
Because the RLDA algorithm is executed in reverse, it will
first calculate the optimal path from the arc segment that is
close to the end point to the end point. The obtained data for
the current arc segment can be used in the next iteration to
calculate the optimal path from its predecessor arc segment
to the end point, making full use of existing data to reduce
the calculation time of the algorithm.

We use an example to show the performed process.
As shown in Figure 2 and Figure 3, the black arc (j, k)
indicates that the minimum travel time ρ(j, k) from the arc
(j, k) to the end point has been calculated, that is, arc (j, k)
already marked by B. In Figure 2, select node A as the
current node, we need to calculate the minimum travel time
ρ(S,A) from arc (S,A) (orange dotted line) to the destination
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FIGURE 4. Breadth-first search tree.

node D. Since the arc segments (A, k)(∀k ∈ S+(A)) are
already marked by B, ρ(S,A) can be computed directly by
equation (5). In Figure 3, calculate the minimum travel time
ρ(S,A) from the arc (S,A) to the destination node D, since
the arc segments (A,B) and (A,C) that take A as starting node
are not marked by B, a breadth-first search tree with node A
as the root node need to be constructed, then put all the arcs
with nodeA as the starting node that are notmarkedwith the B
label on the tree andmark with the G label (green dotted line),
as shown in FIGURE 4. After ρ(A,B),ρ(A,C), and ρ(C,B)
are all calculated, then the minimum travel time ρ(S,A) from
the arc (S,A) to the destination node D can be obtained.

C. SPECIFIC STEPS OF RLDA ALGORITHM
Given a directed graph G = (V,E, �,8), node collection
V, arc collection E, node attribute value collection 8, arc
attribute value collection �, and destination D:
Step0. Initialization: EB = Ø, EG = Ø, VG = {w|w ∈ D; for

any j ∈ V, let S+n (j) = S+(j),P−n (j) = P−(j); n = 1.
Step 1. If EB = E, jump to Step 5; or else, jump to Step 2.
Step 2. Select one node w ∈ VG. If S+n (w) = ∅, jump to

Step 3; Else if S+n (w) 6= ∅, that is, at least one node
k ∈ S+(w), make (w, k) /∈EB [it means the arc (w, k) is
not marked by B], do:
Step 2.1 Let w be the root node, take the arc segment

that do not have the B label as the search target,
build a BFS-tree. Select the arcs (j, k) that satisfy
k ∈ S+n (j) and not in the tree [that is, arcs (j, k)
don’t have B or G label], and put them into the
constructed BFS-tree, and insert such arcs into
the stack EG in order, remove the node k from
the collection S+n (j), until the search process no
longer able to find an arc segment that doesn’t
have B or G label.

Step2.2 Take arcs (j, k) from the stack EG in turn, put
each node from the node set P−n (k)−VG into the
queue VG (the node is labeled G), and for each
arc (j, k), calculate:

ρ (j, k) = min
l∈S+(k)

{L (j, k)+3(j, k, l)+ρ (k, l)}

and record

5ρ (j, k)

= argmin
l∈S+(k)

{L (j, k)+3(j, k, l)+ ρ (k, l)}

γ ((j, k))

= ((k,5ρ (j, k))

Insert (j, k) into EB and delete node j from P−n (k).
Repeat the above operation until EG = Ø, then
jump to Step 3.

Step3. If P−n (w) = ∅, then remove node w from queue VG,
jump to Step 4; Else if P−n (w) 6= ∅, for arbitrary j ∈
P−n (w), if j /∈ VG, insert node j into queue VG, insert
arc (j,w) into stack EB, remove w from S+n (j), remove
j from P−n (w), remove w from VG, calculate:

ρ (j,w) = min {L (j,w)+3(j,w, z)+ ρ (w, z)}

Record:

5ρ (j,w)

= argmin
z∈S+(w)

{L (j,w)+3(j,w, z)+ ρ (w, z)}

γ ((j,w))

= ((w,5ρ (j,w))

Jump to Step 4.
Step4. n = n+ 1, jump to Step 1.
Step5. Calculate

ψ(S,D) = argmin
k∈S+(s)

{µ(S, k)}

Obtain the shortest time from the starting node S to the
end point D.
Step6. Construct the optimal path from the start node
S to the end node D by 5ρ (j,w),

5ψ (S) = argmin
k∈S+(s)

{µ(s, k)}, and γ ((j,w)) END.

The steps for building BFS-tree in the above subroutine
(step 2.1 to step 2.2) as follows:
Step0. BEGIN. EY = {(w,w)}.
Step1. If EY = Ø jump to Step 3; Else if, EY 6= Ø, take arc

(k, l) ∈ EY , when S+n (l) 6= Ø, take out m ∈ S+n (l) in
turn, insert arc segments (l,m) into the stack EG, and
record F(l,m) = (k, l) [ means that the sub-arc of the
arc (k, l) on the BFS-tree is (l,m), until S+n (j) = Ø.
Jump to Step 2.

Step2. Delete (k, l) from EY , jump to Step 1.
Step3. Output stack EG. END.

D. MODULAR PSEUDOCODE OF RLDA ALGORITHM
The operation of the proposed RLDA algorithm mainly
include: build the breadth-first search tree (BFS-tree), queue,
and stack. The BFS algorithm is one of the basic graph
search algorithms and the prototype of many important graph
search algorithms. Dijkstra algorithm adopted the similar
idea to BFS. It is a blind search method that systematically
checks all nodes in the graph to find the optimal solution.
Stacks and queues are widely used in program design, they
are both linear data structures, stack obeys the rule ‘‘last
in first out’’ [Insert(L, m+1, y), Delete(L, m)], and queue
obeys the rule ‘‘first in first out’’ rule [Insert (L, m+1, y),
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Algorithm 1: BFS-Tree(Module1)

1 BFS(G,w)
% Given directed graph G = (V,E, �,8),w is root
node of the tree, build a BFS-Tree using arcs without the
B label.

2 for each (j,m) /∈ EB ∪ EG do
3 Color [(j,m)]←green
4 end

Algorithm 2: Stack Operation(Module2)

1 Push (stack EG, (j,m));
2 do
3 EB = EG ∪ {(j,m)};
4 S+n (j) = S+n (j)− {m};

// Delete node m from successor nodes collection of j.
5 Until (j,m) /∈ EB&& (j,m) /∈ EG;
// BFS-tree completed

6 Pop(stack, EG);
7 While EG 6= ∅ do
8 Color[(j,m)]←Black;
9 EG = EG − {(j,m)};
10 ρ (j,m) =

min
s∈S+(m)

{L (j,m)+3(j,m, s)+ ρ (m, s)}

11 5ρ (j,m) =
argmin
s∈S+(m)

{L (j,m)+3(j,m, s)+ ρ (m, s)}

12 γ ((j,m)) = ((m,5ρ (j,m))
//Compute the shortest time from each arc segment
on the BFS-tree to the end point according to the
stacking order.

13 then
14 P−n (m) = P−n (m)− {j}

//Remove j from the predecessor node collection of
node m

15 End

Delete (L, 1)]. According to the above operations with differ-
ent characteristics, we can decompose the RLDA algorithm
into four modules that can be called mutually: build BFS-tree
operation (Module 1), stacking and popping operation for
arcs (Module 2), enqueue and dequeue operation for nodes
(Module 3), optimal solution output operation (Module 4).
Pseudo code corresponding to each module shown in the
Algorithm 1 to 4.

There is mutual calling relationship between the four mod-
ules, we use Algorithm 5 to describe. It can be seen that each
module has interface connected with other modules. After
initialization, according to EB = E or EB 6= E respectively
perform module 1 or module 4. Module 2 follows module
1 means that Module 2 is performed after Module 1 finished.
In the same way, Module 3 follows Module 2. After Module
3 has been executed, according to whether EB = E or EB 6=
E, the algorithm decides to go to the next iteration or to exit
the program after executing Module 4.

Algorithm 3: Queue Operation(Module3)

1 DeQueue(VG)
// Select each arc (j,m) that meets the condition
m ∈ S+n (j) and is not on the BFS-tree, put it into the
BFS-tree, and put arcs (j,m) into EG.

2 for w ∈VG&&S+n (w) = ∅ do
3 if P−n (w)= ∅
4 VG = VG − {w};

// If w is isolated, remove node w from VG
5 else
6 for each j ∈ P−n (w);

// For each predecessor node of w, do the
following.

7 if j /∈ VG do
8 EnQueue (VG, j);
9 VG = VG ∪ {j}; // put node j into VG.

10 EB = EB ∪ (j,w) ;
// Put (j,w) into the collection EB and give it B
label.

11 ρ (j,w) =
min

x∈S+(w)
{L (j,w)+3(j,w, x)+ ρ (w, x)}

12 5ρ (j,w) =
argmin
x∈S+(w)

{L (j,w)+3(j,w, x)+ ρ (w, x)}

13 γ ((j,w)) = ((w,5ρ (j,w))
14 then
15 S+n (j) = S+n (j)− {w} ; //Remove w from S+n (j).
16 P−n (w) = P−n (w)− {j} ; //Delete j from P−n (w)
17 VG = VG − {w};% Delete w from VG
18 Update EB
19 end

E. THEORETICAL ANALYSIS OF RLDA ALGORITHM
1) CORRECTNESS OF RLDA ALGORITHM
Proposition 1: Before the nth iteration of reverse label Dijk-
stra algorithm (RLDA), if a certain node w already in the
queue VG, then in the nth iteration, it is impossible for the
node w to be put into the queue VG again.
Proof: From the above execution process of the algorithm,

the proposition is obviously correct.
Proposition 2: If a certain nodej in the queue VG (j ∈ VG)

is removed from the queue VG in the nth iteration, there must
be S+n (i) = Ø after the n-th iteration of the RLDA algorithm,
so for any m-th iteration (m>n), it is impossible for the node
j to be put into the queue VG.
Proof: In the n-th iteration, assume one node j that in the

queue VG is removed from the queue VG, it can be known
from the above perform process of RADA algorithm, when
the Step2 and Step3 finished, S+n (i)must be empty (S+n (i) =
Ø), then before the m-th (m>n) iteration performed, S+n (i) =
Ø is also established. However, in the m-th iteration, before
a certain node j is put into the queue VG, S+n (i) 6= Ø must
be established, which contradicts with S+n (i) = Ø. So it is
impossible for the node j to be put into the queue VG, and the
proposition 2 is set up.
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Algorithm 4: Optimal Path Output(Module4)

1 Output ( )
2 ψ (S,D) = min

k∈S+(S)
{ρ (S, k)};

//Got the minimum time from starting node S to target
node D.

3 5ψ (S) = argmin
k∈S+(S)

{ρ (S, k)};

// Got the subsequent node of S on the minimum time
path from the starting node S to the target node D.

4 5ρ(j,w) = argmin
x∈S+(w)

{L (j,w)+3(j,w, x)+ ρ (w, x)};

// Got the subsequent arc (w, x) of arc (j,w) on the
minimum time path from arc (j,w) to the target node D.

5 γ ((j,w))=(w,5ρ(j,w));
// Record the subsequent arc of arc (j,w) on the optimal
path from starting node S to target node D as
(w,5ρ(j,w)).

6 (S,5ρ(S)→ γ ((S,5ρ (S))→
γ (γ (((S,5ρ (S))), · · · , (D,D);
// Output the optimal path from starting node S to target
node D.

7 End

Algorithm 5: Call Relationship Among Modules
Initialization: G = (V,E, �,8), n = 1,EG = ∅,VG =

{w |w = D} ,EB = ∅, for ∀j ∈ V,S+n (j) =
S+(j),P−n (j) = P−(j)
Result:A Sequence λ := (S, j) , (j, k) , · · · , (D,D)
Main procedure

1 if EB 6= E
2 for ∀w ∈ VR
3 if S+n (w)= ∅
4 perform Module3;
5 if EB 6= E
6 perform Module1;
7 else
8 perform Module4;
9 else
10 perform Module1;

// build BFS-tree
11 perform Module2;
12 perform Module3
13 if EB 6= E
14 perform Module1;
15 else
16 perform Module4;
17 else perform Module4;
18 End

Proposition 3:When a certain iteration of the RLDA algo-
rithm is completed, if EB 6= E, then VG 6= Ø must hold.
Proof: When a certain iteration of the RLDA algorithm

is completed, if EB 6= E, then there must exist a certain
arc segment (k, l) that is not marked by B, and m ∈ S+(l),
(l,m) ∈ EB, S+n (k) = Ø and P− (l) = Ø are also hold. From

Proposition 2, there are two possibilities: node k is in the
queueVG or is out of the queueVG and has never entered into
VG. Assuming the latter holds, since the arc (l,m) has been
marked by B, when the arc (l,m) is inserted into EB, the node
k must be inserted into the queue VG, which is contradictory,
so the hypothesis does not hold. Therefore, proposition 3 is
proved.
Theorem 4: In the iterative process of the RLDA algorithm,

for any node j ∈ V, it enters and exits the queue VG at most
once, so the number of iterations of the algorithm does not
exceed |V| times at most.
Proposition 4: The proposed reverse labeling Dijkstra

algorithm (RLDA) has cycle invariance: before the start of
the n-th iteration, if all the arcs in the set EB have label B,
then all the arcs in EB still have label B before the start of the
(n+1)-th iteration.

The theorem 5 can be derived by the above Theorem 4,
Proposition 3, and Proposition 4.
Theorem 5: When the algorithm is iterated at most |V|

times, EB 6= E holds, that is, for any arc (j, k) ∈ E,
the minimum travel time ρ (j, k) from the arc (j, k) to the
target node D has been obtained.
Proposition 5: In the iterative process of the RLDA algo-

rithm that does not exceed |V| times at most, for any (j, k) ∈
E, it enters the built BFS-tree at most once, and therefore it
enters and exits the set EG at most once.

Proof: If a certain arc segment (j, k) appears in the
BFS-tree in a certain iteration, after the iteration is completed,
the arc segment (j, k) must already be marked by B (means
that (j, k) entered into EB), and in each subsequent iteration,
any arc (j, k) inserted into the BFS tree was not marked by B
before it is inserted, it is impossible that arc (j, k) be inserted
into the BFS-tree again. Proposition 5 is corrected.

2) TIME COMPLEXITY OF RLDA ALGORITHM
The previous analysis shows that RLDA algorithm has at
most |V| iterations, and the time complexity cost in the algo-
rithm iteration process is mainly composed of three parts:

1) The computational time complexity cost of all nodes
entering and leaving the queue VG.
2) The computational time complexity cost of all arc seg-

ment entering and leaving the stack EG when building the
BFS tree.

3) The computational time complexity cost to compute the
least travel time ρ (j, k) through each arcs segment (j, k) to
the target node.

Let:

N = max
j
{|S+(j)|, |P−(j)|} (16)

Theorem 6: In the whole iterative process of the RLDA
algorithm, in the process of building the BFS-tree, the compu-
tational time complexity cost of all nodes entering and leaving
the queue VG and all arcs entering and leaving the collection
stack EG is O( |V| +N · |E|).

Proof: The proof of the theorem consists of three steps.
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Firstly, prove that the computational time complexity cost
of all arc segments entering and leaving the stack EG is
O(N · |E|) in the entire iteration of the RLDA algorithm
when building the BFS-tree. Based on Proposition 5, each
arc (j, k) ∈ E in the directed graph entering and leaving the
stack EG at most one time. From the specific steps of the
RLDA algorithm, the time complexity cost for each arc to
enter the collection stackEG is O(1). Therefore, the total time
complexity cost for all arcs to enter the stack EG is O(|E|).
For each arc segment (j, k)∈ EG that already in the stack EG,
the process of it is deleted from the stack EG includes two
operations: 1) Moving the one arc segment (j, k) from the
stack EG to the set EB, the corresponding time complexity
cost is O(1); 2) Finding a node j in set P−n (k) and removing
the node j from P−n (k), the corresponding time complexity
cost is O(N). So the time complexity cost of all arc (j, k)
being deleted from the stack EG is O(N · |E|). To sum up,
the computational time complexity cost of all arc segments
entering and leaving the stack EG is O(N · |E|).
In the second step, we prove that the time complexity cost

of removing all the nodes j ∈ VG from the queue VG is
O( |V|). From Theorem 4, that in the entire iteration of the
RLDA algorithm, in the entire iteration of the algorithm, for
any node j ∈ V, the node j enters and exits the queue VG at
most one time. Based on the specific steps of the RLDA algo-
rithm, the time complexity cost of each node being removed
from the queue VG is O(1).So the time complexity cost for
all nodes to be removed from the queue VG is O( |V|).

The third step is to prove that the time complexity cost for
all nodes enter into the queue VG is O( |E|). For any node
j that enters and exits queue VG, it is either the predecessor
node ((j ∈ P−n (w)) of a certain node w that will be deleted
from the queue VG, or it is the predecessor node ((j ∈ P−n (l))
of the tail node l of the arc (k, l) in the BFS tree. (1) If it is
the former, when node j enters into the queue VG, all nodes
v ∈ P−n (w) and are not in queue VG will enter into the queue
VG, that is starting from node w, find all arc segments (j,w)
(j ∈ P−n (w), j /∈ VG), then all the starting node j of arc (j,w)
will enter into the queue VG, so in the entire iteration of the
algorithm, the corresponding time complexity in this case is
O( |E|). (2) If it is the latter case, when node j enters into enter
into the queue VG, all nodes v ∈ P−n (l) and are not in queue
VG will enter into the queue VG, that is starting from node l,
find all arc segments (j, l) (j ∈ P−n (l), j /∈ VG), then all the
starting node j of arc (j,w) will enter into the queue VG, then
P−n (l) = Ø established. Therefore, in later iterations, if an
arc segment (h, l) with the same tail node as the arc segment
(k, l) is found in EG, since P−n (l), there is no need to scan
the previous founded arc (j, l) again; and it can be seen from
Proposition 5 that in no more than |V| iterations of the RLDA
algorithm, for any arc (k, l) ∈ E, the arc (k, l) entering and
leaving the BFS tree at most once. So, for any node l ∈ V , arc
(j, l) (j ∈ P−n (l)) needs to be scanned at most once, and the
founded starting node j of the arc (j, l) enters into the queue
VG. The corresponding time complexity in this case is also
O( |E|).

TABLE 1. Arc attribute value.

To sum up, in the entire iterative process of the RLDA
algorithm, in the process of building the BFS-tree, the compu-
tational time complexity cost of all nodes entering and leaving
the queue VG and all arcs entering and leaving the collection
stack EG is O( |V| + N · |E|). Theorem 6 is correct.
Theorem 7: In the iterative process of the RLDA algorithm,

the time complexity cost required to computed the least time
from all arc segments ((j, k) ∈ E) in the directed graph to the
target node D is O(N · |E|).

Proof: For any (j, k) ∈ E), when compute the minimum
time ρ (j, k) from arc (j, k) to the destination node D based
on the equation (10), the equation (17) need to be computed
|S+ (k) | times, and do

∣∣S+ (k)∣∣ − 1 times comparison. Each
computation of this formula requires 2 addition operations,
so computed the minimum time ρ (j, k) from an arc (j, k)
to the destination, the cost of time complexity is O(N). So,
compute the minimum time from all arcs to the target node,
the required time complexity cost is O(N · |E|). Theorem 7 is
correct.

L (j, k)+3(j, k, l)+ ρ (k, l) (17)

From Theorem 6 and Theorem 7, the Theorem 8 can
obviously be obtained.
Theorem 8: The time complexity of the proposed RLDA

algorithm in the deterministic network considering node
attributes is O( |V| + N · |E|).
The above theoretical analysis shows that the RLDA algo-

rithm proposed in this paper has lower time complexity.

F. COMPUTATIONAL EXAMPLE
In this section, we give a computational example to verify
the algorithm proposed in this article. Use directed graph
(Figure 5) to represent the road network graph, which con-
tains 11 intersections and 18 directed arcs. The starting node
is S and the destination node is D. Travel time of each road
segment As shown in Table 1 (arc attribute L (j, k)), the time
spent on different turns at all intersections is shown in Table 2
(node attribute 3(i, j, k)). The goal is to find the minimum
time path from intersection S to destination node D.

When the node attribute (weight or time cost) is not consid-
ered, obtain the minimum time path from the start node S to
the destination node D is S→ A→ I→ J→ D by Dijkstra
algorithm, and the corresponding minimum time is 15.

When considering the node attribute, using the proposed
RLDA algorithm proposed in this paper to compute the min-
imum time path from node S to destination node D. Omit
the computation process, 9 iterations is 9 is required, the data
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TABLE 2. Node attribute value.

TABLE 3. Computation result.

FIGURE 5. Directed graph for computational example.

obtained is shown in Table 3. Based on equation (14), themin-
imum time from node S to destination node D is obtained,
as following equation:

ψ (S,D) = min
k∈S+(S)

{µ (1, S)} = ρ (S,A) = 23 (18)

According to γ ((k, l)), the minimum travel time path from
node S to destination node D is S→ A→ B→ C→ D, and
the corresponding time is 23.

V. EXPERIMENT
A. SIMULATION OF ROLA APPLIED IN URBAN NETWORK
This section provide a simulation of applying the proposed
Reserve Labeling Dijkstra algorithm (RLDA) to obtain the
optimal path in an actual urban road network. We perform the
proposed RLDA algorithm inMATLABon an Intel Core(TN)
i7-6700HQ processor at 3.20 GHz with 16 GB RAM on a
Windows 10 64-bit operating system. The data of the travel
time of each road section and the times spent for different
turns at the intersections in the selected area is randomly
generated by the simulation software.

FIGURE 6. Target road network.

FIGURE 7. The simulation directed graph for the selected network.

1) ROAD NETWORK SELECTION AND SIMULATION
DIAGRAM
Intercept the road network in a certain area of Tianjin map as
the simulation object, shown in Figure 6. Circle the main road
sections and intersections with red solid line, and generate
the corresponding simulated directed graph in MATLAB,
as shown in Figure 7. There are 49 road sections (arcs) and
31 intersections (node N1 to N31). Let the time L(i, j) to pass
through each road segment (i, j) and the time 3(i, j, k) spent
on different turning at each intersection j obey uniform distri-
bution U[1, 20]. Among them, node N1 is the starting node,
and node N31 is the destination node, and the optimization
goal is to obtain the least travel time path from node N1 to
node N31 in the network.
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FIGURE 8. The connections relationship of all.m file.

2) SIMULATION PROGRAM DESIGN
The experiment program menu is the entrance to the pro-
gram and calls other.m files according to different com-
mands entered, includes five parts: (1) Input interface of
arcs attribute values; (2) Input interface of node attribute
values; (3) The output interface of the adjacency matrix of
the inputted node and arc attribute values; (4) The main
program file of the RLDA algorithm; (5) Exit the program.
The connections between them are illustrated in Figure 8.

In the simulation procedure, the travel time of road
segment (k, l) represented by arc_data(k, l), the turn-
ing time spent of road segment (k, l) at junction l to
road segment (l,m) is represented by node_data(k, l,m).
Because the simulated road network is a directed
graph, generally: nodedata (k, l,m) 6= node_data(m, l, k),
arc_data(k, l) 6=arc_data(l, k), if there is no road segment
between node k and node l, then arc_data(k, l) = ∞,
node_data(j, k, l) = ∞. For the road networkwith n intersec-
tions, arc_data is a n ∗ n two-dimensional matrix, node_data
is a n ∗ n ∗ n three-dimensional matrix. The pseudo code of
the simulation program shown in Algorithm 6

3) RESULT
Because there are 31 nodes in the network, according to
proposition 5, the RLDA algorithm iterates at most 31 times
to get the optimal path from the start node N1 to the destina-
tion node N31 is N1→ N2→ N8→ N14→ N15→ N16
→ N17→ N23→ N26→ N31, as shown in Figure 9, and
the path on the selected map is shown in Figure10, with the
least travel time is 81.5, and the CPU running time of the
simulation is 0.0347s..

If the time cost of the intersection is not considered, for the
same starting node and destination node, the corresponding
optimal path is N1→ N2→ N8→ N9→ N15→ N21→
N25→N29→N31 by traditional Dijkstra algorithm, and the
shortest time is 58.8, which is different from the path obtained
by RLDA algorithm under considering intersection.

B. COMPARATIVE SIMULATION EXPERIMENT
1) EXPERIMENT ENVIRONMENT AND FACTOR SETTINGS
In this section, we will conduct simulation comparison exper-
iments between the proposed RLDA algorithm and several

Algorithm 6: Pseudo of Simulation Program
Function menu()

1 command = 1;
2 arc_data=[ ];
3 node_data= [] ;
4 while command ∼=5
5 command -input(’Welcome to the RLDA system for

finding the shortest path! \n Please select: \n 1. Enter
arc data \n 2. Enter turn data at the node \n 3. View
data \n 4. Find the path \n5. Exit the program \n′)

6 ifcommand ==1
7 arc_data=input_dat();
8 elseif command == 2
9 node_data=input_dat2()
10 elseifcommand == 3
11 disp (arc_data);
12 disp (node_data);
13 elseif command == 4
14 arc = input(‘Please enter the target arc:’);
15 sta = input(‘Please enter the starting node:’);
16 dst = input(‘Please enter destination:’);
17 if sta == dst
18 fprintf (’The starting node and the

destination node cannot be the same! \r\n′);
19 else
20 [Leng_arc, path_arc, Leng_sta, path_sta] =

RLDA ( arc_data, node_data, arc, sta, dst);
21 fprintf (’The minimum expected dst time

from arc ‘‘arc’’to destination ‘‘dst’’is:
%d \n’,leng_arc);

22 k = length(path_arc);
23 fprintf(’The passing path is:’);
24 for i = 1:1:k−1
25 fprintf(‘%d→

′

, path_arc(i));
26 end
27 fprintf(‘%d\n

′

, path_arc(k));
28 fprintf( ’The minimum travel time from

starting node ‘‘sta’’ to destination
‘‘dst’’is: %d\n’,leng_sta);

29 m = length(path_sta);
30 fprintf(’The passing path is:’);
31 for i =1:1:m-1
32 fprintf(‘%d→

′

, path_arc(i));
33 end
34 fprintf(‘%d\n′, path_sta(m));
35 end
36 end
37 end

commonly used and latest path planning algorithms [28],
including particle swarm optimization (PSO), ant colony
algorithm (ACO), genetic algorithm (GA), neural network
algorithm (NNA), OPABRL [4]. Analyze the performance
and advantages of the RLDA algorithm compared with other
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FIGURE 9. The outputted optimal path of simulation program.

FIGURE 10. Optimal path on the selected map.

five algorithm. The parameter settings of each algorithm are
shown in Table 4. Perform these simulation experiments on
the MATLAB platform (he simulation environment config-
uration is the same as the previous first experiment). The
comparative performance mainly verified by the simula-
tion experiment includes: (1) Algorithm convergence rate;
(2) Algorithm running time.

We select 10 sets of networks with different numbers of
nodes and arcs, as shown in Table 5. The connection between
nodes in each set of networks is similar to Figure 7. Assuming
that each node has one or more other nodes connected to
it, no more than six nodes. Randomly select a node as the
starting node as the starting node, each node is numbered
from near to far, and the node with the highest number as the

TABLE 4. Parameters setting.

TABLE 5. Network scale of simulation experiment.

destination node. Same as before, for the network with
n nodes, the attribute values node_data (k, l,m) of all
nodes form a three-dimensional matrix of n ∗ n ∗ n, and the
attribute values arc_data(k, l) of all arc segments form a
two-dimensional matrix of n ∗ n. Let the time L(i, j) to pass
through each road segment (i, j) and the time 3(i, j, k) spent
on different turning at each intersection j obey uniform dis-
tribution U[1, 5]. For the simulation experiment of each scale
of road network, we need to run each algorithm to find
the minimum time route from the selected starting node to
the destination node, each algorithm runs ten times, and the
average of the results is taken as the statistics.

2) COMPARATIVE EXPERIMENT RESULTS AND ANALYSIS
Experiment Result 1:Running the proposed RLDA algorithm,
PSO algorithm,ACO algorithm,GA algorithm,OPABRL [4],
and NNA, to find the optimal path between the same starting
node and destination node in each scale network. Each algo-
rithm runs ten times, the average number of iterations, path
length, running time used for statistical analysis of algorithm
performance are shown in Table 6.

Experiment Result 2: For the convergence rate of the algo-
rithms involved in the experiment, taking a network with
100 nodes as an example, Figure 11-16 shows the aver-
age convergence rate of each algorithm running ten times.
The x-axis is the number of iterations, and the y-axis is
the optimal path time change obtained during the operation
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TABLE 6. Statistics of experimental results.

FIGURE 11. Convergence rate of RLDA (NODE_NUMBER = 100).

FIGURE 12. Convergence rate of PSO (NODE_ NUMBER = 100.

of the algorithm that varies with the number of iterations.
It can be found that all the compared algorithms have similar
convergence trends. Although the optimal path obtained by
each algorithm fluctuates in the previous iteration process,

FIGURE 13. Convergence rate of ACO (NODE_ NUMBER = 100).

FIGURE 14. Convergence rate of GA (NODE_ NUMBER = 100).

as the number of iterations increases, the optimal path of all
algorithms gradually stabilizes. In terms of the number of
iterations to reach convergence, compared with other algo-
rithms, the RLDA algorithm proposed in this paper is close

VOLUME 9, 2021 19773



D.-D. Zhu, J.-Q. Sun: New Algorithm Based on Dijkstra for Vehicle Path Planning Considering Intersection Attribute

FIGURE 15. Convergence rate of NNA (NODE_ NUMBER = 100).

FIGURE 16. Convergence rate of OPABRL (NODE_ NUMBER = 100).

FIGURE 17. Running time of different algorithms.

to the particle swarm optimization (PSO) and the OPABRL
algorithm based on machine learning methods [4], but signif-
icantly smaller than the other three algorithms. In addition,
the ant colony optimization shows a transient fluctuation
after convergence. Therefore, under the same experimental

configuration, the RLDA algorithm can converge to the opti-
mal path earlier and has better stability.

Experiment Result 3: In terms of the computational time
of these algorithms, the average running time (in millisec-
ond) of each algorithm under each network scale, as shown
in Figure 17, it is observed that: 1) As the network scale
increases, the growth rate of the running time of all con-
sidered algorithms all show a trend of fast first and then
slow, and finally tend to stay the same. 2) After the net-
work scale reaches 300, the running time of the other
five algorithms (PSO, ACO, NNA, GA, OPABRL) changes
little with the growth of the network scale, while the
calculation time of RLDA algorithm changes very little
after the network size reaches 450. 3) When the num-
ber of network nodes is less than 350, the RLDA algo-
rithm proposed in this paper has the smallest running time
among all algorithms. When the network size is greater
than 350, the OPABAL algorithm is outperform other algo-
rithms. So, in terms of computation effort, the proposed
RLDA algorithm in this paper is obviously better than other
five compared algorithms when the network size is less
than 350.

VI. CONCLUSION
There are many intersections and road segment in the urban
traffic network. The time spent at intersections accounts for
a large proportion of the entire travel time from the starting
node to the destination, and should not be ignored. In this
paper, we discuss the vehicle path planning problem consid-
ering the attributes of the intersection for the car navigation
system. The consideration of node attributes is the main inno-
vation of this paper. For the addressed problem, this paper
proposes the reverse labeling Dijkstra algorithm (RLDA) to
solve this problem based on the traditional Dijkstra algo-
rithm, combined with breadth first search, stack and queue
data structures. Regarding the RLDA algorithm, we give the
specific steps of the algorithm, the modular pseudo-code of
the algorithm, and conduct a lot of theoretical analysis, and
analyze that the RLDAalgorithm has a lower polynomial time
complexity. Finally, we conducted two kinds of experiments.
One is to intercept the actual traffic network to verify the
effectiveness of the algorithm in searching for the optimal
path. The other is to select ten groups of networks of differ-
ent sizes and conduct extensive experiments to compare the
convergence efficiency and calculation speed between RLDA
and PSO, GA, ACO, NNA, OPABRL. The statistical results
show that the convergence rate of the RLDA algorithm is
better than that of ACO, NNA, and GA. When the number of
network nodes is less than 350, the algorithm has the smallest
running time.
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