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ABSTRACT With rapid advancements in renewable energy sources, billing mechanism (AMI), and latest
communication technologies, the traditional control networks are evolving towards wise, versatile and
collaborative Smart Grids (SG). The short term power load forecasting of individual as well as group
of similar energy customers is critical for effective operation and management of SG. Forecasting power
load of individual as well as group of similar energy customers is challenging compared to aggregate load
forecasting of a residential community. The main reason is the high volatility and uncertainty involved for
the case of individual and group of similar energy customers. Several machine/deep learning models have
been developed in the recent past for forecasting load of individual energy customers, but such explorations
are ineffective due to the requirement of one trained model for every energy customer, which is practically
not feasible. We plan to build a deep learning model using convolutional neural network (CNN) layers in
pyramidal architecture for effective load forecasting for a group of similar energy-profile customers. Initially,
we grouped a subset of energy customers from database of Smart Grid Smart City (SGSC) into clusters
using DBSCAN approach. The CNN layers are used for extracting feature from historical load of each
cluster. The extracted feature of similar energy-profile customers (grouped based on clustering) is combined
to make training-databases for each cluster. We have used the power load data from SGSC project, which
contain thousands of individual household energy customers data. The developed Pyramid-CNN model is
trained based on these sets of databases. The trained model is evaluated on randomly selected customers
from few clusters. We obtained significantly improved forecasting results for randomly selected user from
different clusters. Our adapted strategy of clustering based model training resulted in upto 10 percent MAPE
improvement for the energy customers. The essence of our work is that energy customers can be grouped
into clusters and then representative model could be developed/trained, which can accurately forecast power
load for individual energy-customer. This approach is highly feasible, as we do not need to train a model per
energy customer and still achieve competitive forecasting results.

INDEX TERMS Smart homes, smart grids, power load forecasting, CNN, low energy consumers, high
energy consumers, clusters.

I. INTRODUCTION
The forecasting of short-term electricity loads is an important
part of the energy market. The maintenance, processes, and
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administration of the power system can be greatly helped
by accurate load forecasting. Energy can not be stored in
vast amounts, which necessitates that generation and demand
must have a fair balance. [1].

For correct and effective scheduling of power activities,
it is necessary to accurately predict the power generated and
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the power load. The strategies for efficient use of available
power are essential to design, planning and operation of the
grid. In addition, predictive errors have a notable impact on
safety checks, dynamic state estimates, and power grid load
transmission [2], [3]. To help run and plan the system, power
transmission company develop and apply accurate forecast-
ing models for both production and demand of the power.

The advancement in information and communication tech-
nology (ICT), modern measurement infrastructure (MMI)
helped in the transition from conventional grid (also known
as typical power grid or TPG) to the smart grid (SG). The
advantages of this transition is in the form of seamless con-
nection between energy customers and utilities, which allow
for two-way communication. Power production, power divi-
sion, and power usage can be monitored and improved by
integrating ICT into power grid. Thanks to intelligent tech-
nologies and ICT, SG empowers its clients with reliable, sus-
tainable, economical, safe, and efficient energy. The demand
side management (DSM) technologies used in SG allows
efficient load usage by switching the loads to off-peak slots
(hours) from on-peak slots (hours), helping to reduce costs
and monitor the capacity of the power grid. The utilization of
energy can be increased by creating an opportunity for a two-
way contact stream between utilities and consumers, which
helps to enhance power system management process and
optimization [4]-[8].

Accurate prediction of power load of energy customers
enable them to gauge their energy usage and, wherever pos-
sible (maintaining user comfort), shift their appliance usage
across day/night. Accurate load forecasting based on deep
learning models provides an opportunity for energy users to
relate their current energy costs to their future usage patterns.
As a result, these customers can take benefit from predictive
algorithms by being aware of their energy usage and future
estimates, and they can manage their energy consumption
costs more efficiently.

Energy consumers play a key role in responding to the
demand and nicking of the SGs. They can be categorized
into; residential, business and industrial classes. A big portion
of energy from the total produced is consumed by residen-
tial sector. In the residential sector, the MMI installed is
very useful in projection of the short-term electricity load of
energy-users [9].

Statistical and machine learning (ML) models were devel-
oped in the past to predict the output of renewable energy
resources (RERs) as well as the prediction of individual
and aggregated load. The performance of these models are
heavily dependent on the load data and can be classified as
data driven models [10], [11].

The authors in [12], [13] and [14] applied Memris-
tive neural networks for various problems including peri-
odic sampling, global exponential synchronization and cyber
physical.

The authors in [15] and [16] evaluated the perfor-
mance of hybrid artificial neural network model and vari-
ous artificial intelligence model for time series forecasting
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problems, which are similar in nature to our adapted strategy.
They compared the performance of several artificial intelli-
gence models including ELM, ANFIS, ANN, SVM and GPR
for daily stream-flow time series forecasting.

The authors of the work in [17], argued that the detailed
technical procedures are supportive to replicate them. Keep-
ing this in mind, we have added more details to both technical
sections and the description of the used datasets.

In the literature for dealing with short-term electric load
predictions, several methods have been published. However,
very few of them have addressed families and individuals.
For short-term individual power load prediction, an LSTM
based model was developed and assessed by the authors
in [18]. But the main problem with their approach is the
development and training of model for each and every indi-
vidual of the residential community, which practically is not
feasible.

Therefore, the aim in current work is to group the energy
customers in a residential community based on their load
pattern using DBSCAN clustering. In this way, energy users
with similar energy consumption patterns will be grouped
together. The historical load data of individual customers can
then be combined into separate databases for each cluster.
Then, convolutional layers can be employed in the deep
learning model for extracting features from the database of
the target cluster. One model will be trained based on the data
of each cluster, which can be used for forecasting the energy
consumption for every individual member of the cluster with
high accuracy. In this way, few representative models would
be developed and trained for each cluster of the residential
community, compared to the case of having a trained model
for each and every individual user.

We have used real world power load data of individual
customers collected during Australian Government project
known as Smart Grid Smart City (SGSC) [19]. It must be
noted that the convolution layers of CNN learn the inter-
nal representation of the given time series data and obtain
the significant features. The performance of the developed
pyramidal-CNN deep learning model remain unchanged even
if the parameter combinations changes. So, the performance
of the proposed deep learning model is independent of the
parameter combination. Our achieved results indicate com-
petitive forecasting values for the individual household load
of various clusters. Instead of having trained model for every
individual user, we adopted a clustering based strategy, where
one model for a group of energy customer (cluster) is trained,
which achieved competitive forecasting results for various
members of clusters.

This article ’s main contributions are:

1) Developed a deep learning model (Pyramid-CNN),
which can benefit from convolutional layers for feature
extraction and pyramidal architecture for complexity
reduction.

2) Applied DBSCAN algorithm for determining major
clusters, minor clusters and outliers in power consump-
tion behavior of 69 customers over a period of 92 days.
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3) Applied K-means clustering for grouping energy cus-
tomers into categories of ‘lec’ and ‘hec’ coressponding
to low and high energy customers respectively.

4) Developed and trained separate models for categories
of ‘lec’ and ‘hec’ based on the real-world historical
power load data.

5) The trained models are used for forecasting power
load of few individual customers from each category.
It helped in proving usefulness of the group based
training strategy for effective power load forecasting of
similar-profile energy customers.

The structure of the remaining paper is as follows. Next
section, i.e., II describes the related work. Details of the
proposed model are unfolded in Section III. Section IV
uncovers the data analysis and clustering based on DBSCAN
approach. The results and discussion are provided in
Section V. Finally, Section VI conclude the research work.

II. LITERATURE REVIEW

The short term electricity forecasting is a hot research
topic which attracted significant attentions from researchers.
Previously, conventional data analysis methods have been
applied load forecasting based on time-series historical data.
Recently, researchers have developed several different deep
neural network (DNN) models for load prediction problems.
The attention of the researchers towards this area increased
duw to various reasons including tremendous developments
in the fields of artificial intelligence (AI) and machine/deep
learning and availability large amount of data from smart
meter.

Due to their non-linear mapping properties, the artificial
neural networks (ANNs) have been employed for short term
load forecasting [20]. But, these forecasting models could
easily be trapped in local minima, which is their main lim-
itation. In addition, the convergence rate of these models is
slow [21].

The generic neural network regression (GRNN) [22], [23],
support vector machines (SVM) [24], extreme learning
machines neural network [24] and kernel-based quantile
regression [25] can also be used for forecasting purposes.
Poor generalization is caused by irregularly chosen activation
function [26]. Additionally, forecasting problems that involve
in-depth extraction of features is not suitable because the
sequence of layers cannot be encoded. The GRNN model
is unsuitable for predictive matters due to its computation
complexity [27]. The features of all of these models make
them an unsuitable choice for prediction problems. Their
main limitation are wide specifications for memory, high
computational complexity and a variety of kernels [28].

So far, most of the focus of researchers has been on
aggregate power load forecasting [29]-[36]. These model
achieved excellent performance for system-level power load
forecasting. But for the effective planning and management
of the SGs, individual household level power load forecasting
is needed. Predicting the short-term power usage of individ-
ual energy users of smart grid is gaining growing attention,
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throughout the modern history. In [37], the authors have taken
into account the expediency of a time series to check individ-
ual predictions of the load of households. Their estimation is
based on the root mean square error, (RMSE).

To estimate total housing loads over multiple time horizons
and sampling intervals, about the writers in [38] applied
Kalman filter based approach. They claim that a balance
between accuracy and computational complexity is given by
the sampling rate of selected samples.

In [39], the authors adopted SVM and ANN models for
data with high resolution obtained from three homes over a
period of 30 days. These authors investigated the possible
impact of automatic meter reading (AMR) for short-term
power load forecasting of household level energy consumer.
They modeled the real-time measured data from the energy
user’s smart meters as the sum of the Gaussian noise signal
and the deterministic component. Their obtained results indi-
cate that the availability of the vast amount of collected data
significantly increases the accuracy of the power load fore-
cast. They argued that better prediction accuracy is accom-
plished at the expense of high computational difficulty. The
authors explored different methods for forecasting the peak
electricity demand of individual households. They concluded
that, at the household level, the occupancy and historic peak
electricity load are significantly better features for peak load
prediction than season and temperature.

The authors in [40], devised a technique based activity
sequencing and used the support vector regression for fore-
casting. They concluded that the variable of the operation
sequence is an important component which could increase
the prediction accuracy of power load of individual house-
hold. The authors explored several predictive models in [41]
including neural networks (NN), ARIMA, etc for time hori-
zon of 15-minute to 24-hour. Using two data sets, they evalu-
ated the developed model. One of these data sets belonged to
Six families in the USA, while the second belonged to a single
household in Germany. For data sets from United States, they
achieved average mean absolute percentage error (MAPE)
of 85 percent, while for data sets from Germany 30 percent
MAPE is achieved.

Various models, including SVM, classification and regres-
sion trees, and neural networks with multilayer perceptrons
(MPNN) were used by the researchers in [42]. They con-
cluded that the accuracy of the forecast could be significantly
improved by a blend of household activity and historical
electricity usage data from individual households. For neural
networks and SVM, they obtained MAPE of 51 percent and
48 percent, respectively. Several other researchers proposed
and evaluated several different effective models for prediction
of electric loads [43]- [47]. Specifically, in [47], we proposed
a Hybrid deep learning model which, is composed of convo-
lutional layers and LSTM layers, where the focus has been on
power load forecasting of individual energy customer.

Among all these model exploration for power load fore-
casting of individual household, one of the innovative work
was published by the authors of [18]. They implemented an
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FIGURE 1. The proposed Pyramid-CNN based deep learning model.

LSTM-based deep learning model to forecast a short-term
residential load of individual energy customer. They com-
pared their model to the newest model of machine learning,
as well as with the experimental model. In order to forecast
the short-term residential load of 69 consumers, their devel-
oped model achieved an average MAPE of 44.06 percent.

There is a diverse research trend by valuable researchers
that looks at behavioral and other factors that influence the
energy usage of a single household. The goal is to analyze
and obtain feedback on each individual household energy
user’s electricity consumption patterns and to determine the
important fundamental relationship between contexts such as
time of use, day of the week (day of the week or weekends),
season, etc. The insights can increase understanding and
awareness of domestic energy usage through such studies,
that will lead us to effective use of energy.

The main problem with the idea and exploration in [18]
is the development/training of models for each and every
individual household in a residential community, which is
practically not feasible. A more practical approach would be
to group the energy customers of a residential community
into several clusters based on their energy consumption pat-
terns/profiles. The main challenge is to achieve competitive
load forecast for the individual user of each clusters, by adopt-
ing a strategy of training only one model for each cluster. This
approach will be more practical, feasible as well as reliable if
the developed model achieve better or competitive forecasting
accuracy based on the model trained on the data of the specific
cluster.

Ill. PROPOSED MODEL

Our proposed Pyramid-CNN model is unfolded in this
section. The feature vector which is feed into the model
contains several information about the power consumption of
the electricity users. It include the energy consumption from
previous instances of the time. Additionally, it also contain
information about the hour of the day and the day of the
week information, which is provided in the form of one-hot
encoding. The output from the trained model represents the
predicted energy consumption for the specific time instance
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in future. The developed model is significantly enhanced
from the previous conference version both in terms of kernel
of CNN for feature extraction and the receptive fields. Addi-
tionally, some dropout layers are added for better training
of the developed model. The specific architecture of the
developed Pyramid-CNN models is presented in Fig. 1. Three
feature extraction blocks in the form of 1D convolutional
layers with decreasing kernels size can be seen in Fig. 1.
In the revised model, the MaxPooling layer is added before
the Rectified Linear Unit (ReLU) layer, which decreases the
spatial dimension (feature maps) with a factor of 2. This
aids in reducing the computational complexity of the model.
On the other hand, for reducing the impact of gradient van-
ishing problem, the ReLU layer are added in the developed
model. The dropout layer is added for preventing the over-
fitting issue. The output of the dropout layer is connected to
the fully connected layer for producing output.

Adopting the coarse-to-fine framework is a common
approach developing CNN based deep learning models. The
coarse-to-fine framework exhibits significantly high com-
putational cost due to the involvement of large proportions
of trainable parameters. For our implementation, we have
selected the well-known pyramid architecture from the work
in [48]. In this pyramid architecture, the number of kernels are
large in the initial stage and are reduced with a constant factor
as we go deeper in the network. For the developed Pyramid-
CNN model, the parameter settings is unfolded in Table 1.
We selected the ‘Adam’ optimizer and mean absolute error.

The training flow for our developed Pyramid-CNN model
is shown in Fig. 2. The prepared input data in the form of
feature vector is divided into three sets: training; 70%, valida-
tion; 20%, test ;10%. At the beginning, the validation and the
training data are loaded for initializing the training process.
The validation loss is calculated/evaluated to see whether it is
decreasing or not. Our adopted strategy is to check validation
loss for continuous decrements. If it is decremented in every
next step, then the trained model till that time is stored with
its weights. But, if it is not decremented and stays constant
for 15 consecutive epochs, then we reduced the learning rate.
The model is trained for 200 epochs. The last stored model
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TABLE 1. Configuration of the developed model.

The Parameters Setting
Optimization Function Adam optimizer
Loss Function MAE

Learning Rate 0.001

Changing learning Rate if stuck

Batch Size 64

Epoch 200

Load Training Data

Epoch=1

B o e
. e Compute Output Absolute Error
Training Initialization (MAE)

A

The validation loss is monitored for 15 Epochs and changed with a factor of 0.80, where minimum allowable is 1e-5

Decrease the
learning rate

Validation loss
MAE decreasing

Ten consecutive
epochs

Epoch = Epoch + 1

Save model with
updated weights

False

Epoch > 150

FIGURE 2. The flow chart for the training of the developed deep learning model.

is our best model and is loaded for forecasting the power
consumption of the electricity users.

A. THE PYRAMID-CNN MODEL

The different layers employed in the developed deep learning
model such as MaxPooling, 1D convolution, ReLU, dropout,
and FC are elaborated briefly below.

R tive Field Ii’s are the inputs
eceptive e Wi’s are the weights

FM'’s are the feature maps

Kernel Size =3

Feature Map

FIGURE 3. The 1D convolution process.

1) 1D CONVOLUTION LAYER

This is the most important layer in our feature extraction
block, for which the operational model is shown in Fig. 3.
It consists of learnable filters, which are used to perform
the convolution with the input signal. In the learnable filters
of CNN layer, all the receptive field are similar. The ker-
nel weights are wy, wp, w3 which are convolved with inputs
i1, i, i3, i4, i5 in a sliding fashion for attaining the feature
maps FMi, FM,, FM3. It is evident from Fig. 3 that the
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feature map FM2 is obtained in the following way using
Equation 1.

FMy = wi*I; + w13 + w3*1y €))

The learnable filters in the CNN layers of our developed
model are applied to the inputs for obtaining the feature
maps. The convolutional layer is very effective and stacking
suitable number of convolutional layers in the developed deep
learning model enable to learn the features at the early stage
in the input data. The produced feature maps keep tracking
the exact location of different features of the input signal.
It is highly important to note that minor changes in location
of various features of the input data will produce a totally
different feature map.

2) MAXPOOLING LAYER

Normally, the convolutional layer is followed by a pooling
layer in order to mitigate the invariance of feature map.
It affects all the produced feature map differently for creating
new pooled feature maps. Normally, the pooling filter size
is significantly lower than size of the produced feature map.
Incorporating the pooling layer in a deep model produces fea-
ture map (pooled) that shows summary of the features in the
input signal. Pooling have different types in which we have
selected the MaxPooling that is a down sampling scheme.
According to the scheme of MaxPooling, a filter slide across
the input signal and the maximum value in the overlapped
region is chosen as the output. We added a MaxPooling layer
after the convolution layer in the proposed Pyramid-CNN
model. The operational example of 1D MaxPooling is shown
in Fig. 4
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Example of MaxPooling operation:
filter size = 1x3, stride = 3

FIGURE 4. The 1D MaxPooling with kernel size 1 x 3 and stride of 3.

3) RELU

The Rectified Linear Unit (ReLLU) is an activation function,
which is added in the deep learning models for augmenting
its capability to learn the complex structures. In our devel-
oped deep learning model, the ReLU is added after every
MaxPooling layer and also the fully connected layer. The
mathematical operation of ReLU is thresholding, which is
given in Equation 2.

f(2) = max(0, z) @

4) DROPOUT

The overfitting of a deep learning model is a major issue,
which can be relieved with the help of adding a dropout
layer. It randomly select some neurons and deactivate them
during the training of the deep learning model. The result of
deactivated neurons is zero.

5) FULLY CONNECTED LAYER

The fully connected (FC) layer is added in any deep learn-
ing model for the nonlinear mapping to output from input.
Usually, the FC layer is added at end of deep learning model.

IV. DATA ANALYSIS

For the current research work, we selected smart meter data
from the SGSC project [19] of the Australian Government.
For power consumption analysis of individual households,
the data gathered in SGSC project could be used as it have
the load data for ten thousands of energy customers from
Austalia.

Our focus in this research work is analysis of power con-
sumption of a set of individual electricity customers from the
whole database of 10,000 customer of SGSC project. It is
not realistic approach to analyze all the customers, so for
demonstration purpose, we have chosen the customers having
installed the hot water system. This criterion is applied as
it will enable us to compare our obtained results with best
model previously published in IEEE Transaction on Smart
Grid [18]. With the restriction of customers having hot water
system, we divided the set of 10,000 customers and selected
a pool of 69 customers for our analysis. The process for
extraction of pool of 69 energy customers from the whole set
of 10000 customers is shown graphically in Fig. 5.

For a residential customer in a community, the power load
at a specific instance can be forecasted with reasonable accu-
racy [34]. Normally, the variety in the power consumption at
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Algorithm 1 The Pseudocode of Our Proposed Approach
Input: The power load database from SGSC project
Procedure: Selecting customers having hot water system
while The whole database is not searched do

for each customer do

o Check whether the hot water system is installed;
« Maintain a new database for the customers having hot
water system,

The Pool of 69 Customers:The pool of 69 customers
who have installed the hot water system;
New Database:For pool of 69 customers, extract the data for
three months and impute the missing values;
Model Development:

o Design and Develop the pyramid-CNN deep learning

model;
Customers-Grouping, Training and Testing:

o The customers having similar power consumption pro-
file are grouped using KNN;

o The dataset for each group is separated;

o Train, validate and test separate model for each group

o Use the MAPE metric for evaluating the model

Smart Grid Smart
City (SGSC)
Dataset

Subset of SGSC dataset
(households with hot
water system).

69 households

Extract three months
electricity consumption data
of each household.

01 June 2013 to 31 Aug 2013

Check and Impute missing
values

Clean electricity
consumption data of
each household

FIGURE 5. The data extracted for the 69 household from the whole
database of 10000 customers of SRSG project.

community level stabilize the day-to-day load profiles which
makes it relatively easier to forecast the substation power con-
sumption. On the other hand, the power load of the individual
household lacks the obvious patterns, which makes it difficult
to achieve high forecasting accuracy. The power load of
the individual residential customer varies with the variations
in the weather condition. For individual energy customer
different parameters including affordability, lifestyle, and
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Clean electricity
—>| consumption data of
each household

Sequf:nce of Ené.:rgy Normalization
Consumption past k time steps

Input Matrix

S} 8

b B Day of the Week Sequence of Day of the Week
@ % = Indicator Indicator past k time steps
o= g

£ >

= 8 g : -

% @ sl Holiday Indicator Sequence of Hohday Indicator
3 -5 past k time steps

1 One Hot Encoder

> Hour Indicator

Sequence of Hour Indicator past
k time steps

FIGURE 6. Data extracted for the 69 household from whole database of SCSG project.

work-home hours ratio affect the power consumption
behavior. These different factors make it difficult to accu-
rately forecast the power consumption behavior of the indi-
vidual household. The different features which play role in
the power consumption behavior of individual household and
how we combined them to a make the feature vector for our
model are shown in Fig. 6

We have selected the well known clustering method
(density-based) called DBSCAN [34]. The plus point of
applying the DBSCAN for clustering analysis of power
demand of individual customers is that the cluster informa-
tion is not needed in advance. Furthermore, DBSCAN also
determines the outliers of the analyzed dataset. Normally,
the power demand of end user is similar in the weekdays and
in the weekend days. Due to this characteristics of the power
demand of the individual customers, the DBSCAN is the
most suitable approach for clustering in order to determine
the outliers in the data set. The lower number of outliers in
the results of DBSCAN will indicate that the consistency of
individual customer is high.

TABLE 2. The proportion of outliers, minor and major clusters in the
selected subset of 69 energy users.

S.No Customers Major Minor Outliers
1 8459427 1 0 0
2 8198319 1 0 1
4 8196671 1 0 6
3 8342852 2 2 1

5 8196669 1 1 12
6 8487285 1 4 35
7 8568209 2 2 37
8 8540084 1 1 69
9 9012348 0 4 83
10 8282282 0 0 92

Table 2 presents the number of minor and major clusters
as well as outliers for ten randomly chosen electricity users
from the whole set of 69 user over a period of 92 days.
It can be easily observed in this table that there is significant
variations in the number clusters (minor and major) and the
number of outliers. It is evident from this table that customer
with ID 8342852 has two major clusters, two minor clusters
and one outlier. It is also evident that customer with ID
8198319 has one major cluster, no minor clusters and one
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outlier, which indicate that the power consumption profile
of this user can be predicted easily. On the other hand, cus-
tomer with IDs 8282282 and 9012348 have no major cluster.
Furthermore, customer 9012348 has four minor clusters
along with 83 outliers. Also, customer 8282282 has no major
and minor cluster and has 92 outliers. This indicate that power
consumption behavior of the customer with ID 8282282 and
9012348 is significantly volatile and hence is difficult to
forecast precisely.

The power consumption (half-hourly) of one randomly
chosen energy customer from the dataset (customer ID
8523058) over a period of three months is presented in Fig. 7.
It can be observed in this figure that power consumption
profile of this user has minor variation due to which it makes
a single major cluster for all the 92 days without having any
outlier.

Customer 8523058 daily profiles

— Single Major Cluster \

Energy Consumption (KWh)

13 5 7 911131517192123252729313335373941434547
Time Index (Half Hourly)

FIGURE 7. Case (Customer 8523058) with no outliers and only one major
cluster.

The histogram representing number of outliers in the whole
pool of selected 69 customers is shown in Fig. 8. It can be
observed in this figure that 29 customers (first bar) have
outliers in the range of 0 to 20. Similarly, 22 customers have
outliers in the range of 20 to 40, which means that 22 out
of 69 customers have outliers in range of 20 to 40 (huge
range). This is a critical results and it (higher number of
outliers) implies that a single trained model will not be able
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Outliers analysis for the pool of selected 69 customers
35

30

NUmber of customers

[0, 20) (20, 40 (40, 60] (60, 80) (80, 100]

Range of Outliers

FIGURE 8. The histogram representing the number of outliers for the pool
of 69 customers.

to accurately predict the power consumption for the whole
community. At the other extreme developing 69 different
models (the strategy adapted in [18]) and their training and
testing for each individual customer is also impractical and
not feasible.

The outlier’s analysis in the consumption behavior of the
electricity users is shown in Fig. 9.

Outliess analysis for the pool of 69 customers

of outliers in the consumption behavior

[ “ r W

Customers [Ds for the pool of 69 selected energy users

Number

FIGURE 9. The outlier's analysis in the consumption behavior
of 69 customers over a period of 92 days.

So, a good solution is the approach based on clustering:
To develop and train one model for each cluster and use
it for forecasting power load of various customers within
the selected cluster only. In this way, several representative
models for clusters in a residential community will be needed,
which is feasible. The promising solution for this problem
is the clustering. By grouping the customers into various
clusters based on some criterion, few representative models
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could be developed and training, which will be able to predict
reasonably better compared to the single model solution.
Furthermore, such an approach is feasible and practical.

V. RESULTS AND DISCUSSIONS

We have used the power load data from SGSC project, which
contain thousands of individual household energy customers
data. At every time instance, the data consists of 57 different
features representing useful information such as time of the
day, day of the week, week day or week end day etc. For one
time instance, the data contains 57 different values, which
is recorded every half hour. In total, for one day we have
24*2 = 48 samples, where each sample have 57 different
values representing valuable information. In total, the training
data is huge and require an efficient deep learning model for
effective and accurate forecasting.

= Customer 1
90 = Customer 2
Customer 3
Customer 4

W Customer 5

Average power consumption (kWH)

Daily power consumption of five customers for a week

FIGURE 10. Average daily power consumption of five customers for a
week.

The daily accumulated power consumption of five individ-
ual customer (randomly selected from the pool of 69 cus-
tomers) for a week is presented in Fig. 10. It is evident
from this figure that accumulated power consumption of the
individual customers even in a period of a week is highly
dissimilar. It is also evident that the power spans over a range
from approximately 3 kwh to 79 kwh. Significantly dissimilar
power consumption of individual energy customer consis-
tently over a period of a week advocate that developing and
training one deep learning model for 69 different customers
cannot precisely predict the power consumption even in a sin-
gle residential community. The residential customers could
be grouped into various clusters based on various clustering
strategies and then representative deep learning models could
be developed and trained for relatively better forecasting.

We can observe in Fig. 10 that the day power consumption
of customer 5 remains lower than 9kWH with an average
of 3 kWH. There are many other customers with similar
power consumption behavior in a residential community.
These energy consumers are low energy consumers and are
represented with “lec”. It should also be observed in the
same figure that the power consumption of customer 2 is
significantly higher and reaches up to 80kWH in some days.
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Power consumption analysis for representative lec and hec
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Power consumption behavior of lec and hec over a period of 92 days

FIGURE 11. The power consumption analysis of representative lec and
hec over a period of 92 days.

Many other customers in the residential community also have
power consumption in similar range and we term them higher
energy consumers represented by ‘“hec”. For demonstration
purpose, the power consumption behavior of lec and hec over
a period of 92 days shown in Fig. 11.

Using the same database, the performance of differ-
ent notable machine learning methods such as ELM [33],
KNN [49], back propagation (BP) and Artificial Neural Net-
work (ANN) is compared with the performance of our pro-
posed deep pyramid-CNN based on the evaluation metrics of
MAPE and the results are provided in Table 3.

TABLE 3. Comparison of proposed model with different machine learning
models.

Machine learning model Achieved MAPE (%)
ELM 122

KNN 71

BPNN 49

ANN 47

LSTM 44
Pyramid-CNN (Proposed) 39

The MAPE values in Table 3 show that the general machine
learning models including BP, ANN, ELM, KNN and LSTM
could be used for simple time series forecasting with very few
attributes, but when the time series involves multiple features
such as in our case, then high forecasting accuracy cannot
be ensured with simple models, necessitating the use of deep
learning approach.

The CNNs are perhaps the most commonly used efficient
deep learning approaches. Our main motivation for applying
CNN model on the time series data is that it is highly useful
for extracting the useful hidden features from the input data
as well as it will help in removing the noise from the data.
So, the main aim of using CNN layers in our proposed
pyramid-CNN deep learning model is to extract patterns of
local tendency and same local-pattern found in other region
of the given time series data. Hence, we proposed to develop
pyramidal-architecture based deep learning model which,
uses convolution layers of CNN for learning the internal
representation of the given time series data and obtain the
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significant features. The pyramidal architecture is selected for
reducing the computational complexity of the overall deep
learning model.

As mentioned earlier, we have used the publicly available
power load data from Australian project named Smart Grid
Smart City (SGSC). In this database, at every time instance,
the data consists of 57 different features representing useful
information such as time of the day, day of the week, week
day or week end day etc. For one time instance, the data
contains 57 different values, which is recorded every half
hour. In total, for one day we have 24*2 = 48 samples, where
each sample have 57 different values representing valuable
information. In total, the training data is huge and require
an efficient deep learning model for effective and accurate
forecasting.

We applied the k-means clustering for grouping the energy
users having identical power consumption patterns. The pool
of 69 customers are divided into 15 groups of varying number
of energy users in each group which is shown in Fig. 12.

Proportion of custommers in each of the 15 clusters

FIGURE 12. The grouping of 69 customers in to 15 groups using k-means
clustering.

The developed Pyramid-CNN model is trained based on
the historical consumption data of users of Cluster 2. This
trained model is used for predicting the power consumption
of the four energy users of Cluster 2 and the result is shown
in Fig. 13. It is evident from Fig. 13 that even in the same
cluster, the power consumption behavior is somewhat differ-
ent. But still, the developed and trained model quite accu-
rately predicted the power consumption for the four different
customer of one cluster, i.e., Cluster 2.

Another model is trained based on the historical power
consumption data of the three energy customers of Cluster 14.
This newly trained model is used for predicting the power
consumption of the three energy users of Cluster 14 and the
prediction analysis is shown in Fig. 14. It can be observed
in this figure that in this cluster, the power consumption
behavior is quite similar due to which the newly trained
model efficiently predicted the power consumption of the
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The actual and predicted power consumption for four
customer in cluster 2
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TABLE 5. Comparison of MAPE for three customers of Cluster 6.

Customer ID | MAPE achieved in [18] | Our achieved MAPE
Customer 1 56 52
Customer 2 57 55
Customer 3 49 48
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FIGURE 13. The prediction of power consumption behavior of four energy
users of Cluster 2.
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FIGURE 14. The prediction of power consumption behavior of three
energy users of Cluster 14.

three different customer of this cluster. Based on the accurate
prediction results of the two differently trained models proved
both the efficiency of the developed deep learning model as
well as the efficiency of our adapted strategy of ““grouping
similar energy customers into clusters”.

TABLE 4. Comparison of MAPE for four customers of Cluster 2.

Customer ID | MAPE achieved in [18] | Our achieved MAPE
Customer 1 35 34
Customer 2 24 22
Customer 3 47 37
Customer 4 135 129

Customer IDs in the database of SGSC project for four
members of Cluster 2, i.e., Customer 1, 2, 3 and 4 are
11462018, 8196669, 10692972 and 9012348 respectively.
Similarly, customer IDs in the database of SGSC project for
three members of Cluster 6, i.e., Customer 1, 2 and 3 are
8149711, 8568209 and 8145135 respectively. The compar-
ison of forecasting result for customers of Cluster 2 and
Cluster 6 are shown in Table 4 and Table 5 respectively. It can
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be observed in these two tables that the trained model for each
cluster produced significantly better MAPE score.

So, based on the obtained results and observation
in Fig. 13, Fig. 14, Table 4 and Table 5, we can say that
our adapted strategy of clustering based model training is
highly useful both in terms of number of models to be trained
and obtaining significantly better forecasting accuracy. The
number of models to be trained are reduced because we pro-
posed to train a single model for each cluster compared to per
customer model training approach adopted previously [18].
The forecasting results are improved due to improved perfor-
mance of our developed model, which we adopted from the
work in [48] (they used it for healthcare application). Based
on the observation for various energy customers of Cluster 2
and Cluster 6 in Table 4 and Table 5, we can say that our
adapted strategy of clustering based model training resulted
in upto 10 percent MAPE improvement.

VI. CONCLUSION

The energy management and planning of Smart Grids is
a challenging issue due to unpredictable energy consump-
tion behavior of energy customers. Accurate load forecast-
ing of individual and group of similar-profile energy user
is highly important for successful operation of SG. Power
load forecasting of individual energy customers has been
studied by some researchers but it is unfeasible practically
due to requirement of trained-model per energy user. We have
developed Pyramid-CNN based deep learning model for fore-
casting load of a group of similar-profile energy user. Initially,
DBSCAN based clustering is performed for grouping the
energy customers into low energy customers (LEC) and high
energy customers (HEC). Then, the CNN layers are used for
extracting feature from historical load date of the cluster of
energy customer. The extracted features are used for training
the developed Pyramid-CNN model for the two clusters of
customers. We obtained comparative forecasting results even
for randomly selected customers from the group of both
LECs and HECs. This proved the efficiency of our proposed
approach of grouping similar-profile energy customers and
then developing/training a representative model for each clus-
ter. It eliminate the need for developing and training models
for individual household, which is practically not feasible.
Compared to the result of the basic LSTM model, we have
obtained improved MAPE of 34, 22, 37, 129 from 35, 24,
47, 135 for low energy customers and of 52, 55, 48 from 56,
57, 49 for high energy customers. Based on the observation
for various energy customers of two clusters representing low
and high energy customers, we achieved an average MAPE
improvement of 10 percent.
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