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ABSTRACT Recently, various deep learning models, which are mainly based on data-driven algorithms,
have received more and more attention in the field of intelligent fault diagnosis and prognostics. However,
there are two major assumptions accepted by default in the existing studies: 1) The training (source
domain) and testing (target domain) data sets obey the same feature distribution; 2) Sufficient labeled data
with fault information is available for model training. In real industrial scenarios, especially for different
machines, these assumptions are mostly invalid, which makes it a huge challenge to build reliable diagnostic
model. Motivated by transfer learning, we present a novel intelligent method named deep transfer network
(DTN) with multi-kernel dynamic distribution adaptation (MDDA) to address the problem of cross-machine
fault diagnosis. In the proposed approach, the DTN has wide first-layer convolutional kernel and several
small convolutional layers, which is utilized to extract transferable features across different machines and
suppress high frequency noise. Then, the MDDA method constructs a weighted mixed kernel function to
map different transferable features to a unified feature space, and the relative importance of the marginal
and conditional distributions are also evaluated dynamically. The proposed method is verified by three
transfer learning tasks of bearings, in which the health states of wind turbine bearings in real scenario are
identified by using diagnosis knowledge from two different bearings in laboratories. The results show that
the proposed method can achieve higher diagnosis accuracy and better transfer performance even under
different noisy environment conditions than many other state-of-the-art methods. The presented framework
offers a promising approach for cross-machine fault diagnosis.

INDEX TERMS Deep transfer network, multi-kernel dynamic distribution adaptation, cross-machine fault
diagnosis, transfer learning, bearings.

I. INTRODUCTION
Rolling element bearings are key components of the rotating
machinery, whose health states directly affect the perfor-
mance, stability and service life of the machinery. According
to statistics, in all rotating machine faults, bearing failure
accounts for about 30% [1], [2]. Therefore, it is of great
importance to accurately diagnose and identify the health sta-
tus of the bearings. In recent years, diverse data-driven intel-
ligent fault diagnosis methods have received more and more
attention due to their superior performances, such as low
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cost, high precision and fast response. With the continuous
development of deep learning, intelligent fault diagnosis of
bearings hasmademarvelous achievements [3]-[5]. However,
the main disadvantage of most existing methods is that they
are restricted by two assumptions. One is that the training and
testing data sets are taken from the same feature distribution;
the other is that there are sufficient labeled data with fault
information for model training. In real industrial scenarios,
on the one hand, due to different operating conditions, such
as varying loads and operating speeds, the domain shift
phenomenon of training and testing data sets is widespread,
which can greatly deteriorate the generalization ability of
the traditional machine learning methods. On the other hand,
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since it takes a long time for a machine to go from run to
failure, the fault data itself is difficult to obtain, not tomention
the labeled fault data. It is a time-consuming and expensive
task.

Transfer learning is a promising method to tackle the
aforementioned problems, and has proven its wide appli-
cability spanning through various fields [6]–[8]. In trans-
fer learning, the training data sets and the testing data sets
are defined as source domain and target domain respec-
tively. Compared with the source domain data, the target
domain data has relevant knowledge but different distribu-
tion. Different from traditional machine learning methods,
the goal of transfer learning is to enhance the performance
of the model and reduce the quantity of required sample in
the target domain using transferable features or diagnosis
knowledge from source domain [9]. In order to achieve this
goal, the feature-based approach has been widely studied
as one of the common used transfer learning methods [10].
This method focuses on learning a feature mapping, which
extracts transferable features from source domain and tar-
get domain to reduce cross-domain distribution discrepancy.
With the introduction of deep learning, deep structure models
are used to automatically extract transferable features from
different domains. Some scholars have begun to engage in
some studies by the feature-based transfer learning approach.
Yang et al. [11] used Convolution Neural Network (CNN)
to extract the transferable features of the raw vibration data
from the source and target domains, and then the regular-
ization terms are introduced, which are employed to impose
constraints on the parameters of CNN in order to reduce
the distribution divergence between domains and the among-
class distance of the learned features. Wang et al. [12] first
adopted the improved ResNet50 to extract low-level features,
then constructed a multi-scale feature learner to analyze these
features, and took the obtained high-level features as the
input of the classifier. Chatterjee and Dethlefs [13] utilized an
exponential linear activation function to improve the quality
of mapped vibration data, and adopted non-negative con-
straints to modify the loss function so as to improve the effect
of feature-based transfer learning. However, these methods
only minimize the distance between cross-domain feature
distributions, and do not realize the distribution alignment.
Thus, feature distribution alignment is still a challenge for
domain adaptation. Most of the existing methods try to align
the marginal distribution [14], [15], or the conditional dis-
tribution [16], or assume that both distributions are equally
important [17]. In the field of computer vision, the latest
research has shown that perform dynamic distribution adap-
tation (DDA) can obtain better transfer performance [18].
Wang et al. [19] first proposed Dynamic Distribution Adap-
tation Network (DDAN) to use the deep neural network
in learning end-to-end transfer classifier. Although DDAN
has achieved good results in image recognition, as for
bearing fault diagnosis, some cross-characteristics of dif-
ferent domains need to be obtained in advance. Moreover,
the DDAN model has poor anti-noise ability.

On the basis of absorbing and drawing upon informed
research, this paper presented a novel intelligent fault diag-
nosis framework, named deep transfer network (DTN) with
multi-kernel dynamic distribution adaptation (MDDA) for
cross-machine fault diagnosis. The contributions of this paper
are summarized as follows.

1) We present a MDDA method by introducing mixed
kernel functions. The proposed method can extract
richer features from cross-domain data without feature
transformation. By adjusting the balance factor of the
kernel function, different mapping effects of different
features are realized.

2) A novel DTN is developed to work directly on
raw vibration signals. Moreover, this model perform
well under noisy environment conditions with no
pre-denoising methods.

3) The DTNwithMDDAmethod can utilize the diagnosis
knowledge of labeled source domain data to realize
the prediction of unlabeled target domain data. Three
different transfer scenarios from different machines
were used to verify the effectiveness of the proposed
method. Compared with other state-of-the-art methods,
the presented framework obtains higher classification
accuracy and superior transfer performance.

The remainder of this paper is organized as below.
In Section 2, we describe the transfer learning tasks and intro-
duce the idea of the maximum mean discrepancy (MMD).
In Section 3, the proposed intelligent fault diagnosis frame-
work are explained including the architecture of the pro-
posed network, fully-connected layers domain adaptation
and training procedure. In Section 4, we conduct three
transfer learning tasks, and corresponding results are listed.
In Section 5, the analysis and discussion about the results of
the experiments are given. Finally, the conclusions are drawn
in Section 6.

II. PRELIMINARIES
A. PROBLEM DESCRIPTION
LetDs andDt represent the source and target domains respec-
tively. The sample spaces are denoted asXs ∈ Ds andXt ∈ Dt ,
then the data samples drawn from the source domain and
target domain are xs ∈ Xs and xt ∈ Xt respectively. We also
define that the label space Y = {1, 2, · · · ,C}, which contains
C kinds of health states. Here, we assume that the source and
target domains have the same health states categories.

In this paper, we are dedicated to studying the tasks of intel-
ligent fault diagnosis between different machines. Assume
that the data samples from the source domain and the target
domain are subject to the marginal probability distribution
P (Xs) and P (Xt), as well as conditional

probability distribution Q(Ys |Xs ) and Q(Yt |Xt ), P (Xs) 6=
P (Xt) ,Q(Ys |Xs ) 6= Q(Yt |Xt ). Therefore, the transfer learn-
ing from the source domain to the target domain has the
following definition.

1) The source domain contains ns labeled samples, ie.,
Xs =

{
xsi , y

s
i

}ns
i=1.
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2) The target domain contains nt unlabeled samples, ie.,
Xt =

{
x tj
}nt
j=1

.

3) The goal of domain adaptation is to learn a fea-
ture mapping and minimize the discrepancy between
marginal distribution and conditional distribution, i.e.,

min D(Ps(φ(Xs)),Pt (φ(Xt )) (1)

and min D(Qs(Ys|φ(Xs)),Qt (Yt |φ(Xt ))) (2)

whereD is the function to evaluate the domain discrep-
ancy, φ(·) is the mapping function.

In practical applications, the vibration data in the source
domain and the target domain are collected from different
bearings. Thus, the distribution discrepancy of these data
are serious. If the fault identification is imposed directly
on these data through the domain-shared classifier, it will
generate very poor diagnosis results. As shown in Fig. 1(a),
a domain-shared classifier f (·) has been just trained with
source domain samples using the structural risk minimization
theory [20], which means that it can complete the classi-
fication task based on the learned features. This classifier
is also expected to be well applied in the target domain.
However, in the target domain, we got very unsatisfactory
classification results, whose generalization error is enlarged.
In other words, the reason for the low classification accuracy
of the classifier f (·) is the serious distribution discrepancy
between the learned features from the source domain and the
target domain. Therefore, in order to improve the classifica-
tion accuracy, we need build an intelligent diagnosis model
that can extract transferable features to reduce cross-domain
distribution discrepancy. Thus, the domain-shared classifier
f (·) can alsominimize the structural risk on the target domain.
From Fig. 1(b), the intelligent diagnosis model is expected to
learn transferable features with similar distributions. Finally,
the domain-shared classifier f (·) can correctly distinguish
the target domain samples using the diagnosis knowledge
provided by the source domain.

FIGURE 1. The identification results of intelligent diagnosis model:
(a) without domain adaptation, and (b) with domain adaptation.

B. MAXIMUM MEAN DISCREPANCY
For two domains with independent and different distribu-
tions, the distance between domains is usually adapted to

measure the distribution divergence. Maximum mean dis-
crepancy (MMD) is widely used in domain adaptation, which
is a non-parametric measurement method [21]. If the data
sets obey the probability distribution p and q respectively,
theMMDbetween the two data sets can be defined as follows.

DH(Xs,Xt ) := sup
φ∈H

{
EXs∼p[φ(Xs)]− EXt∼q[φ(Xt )]

}
(3)

where D is the distance to evaluate domain deviation, H is
the reproduced kernel Hilbert space (RKHS), sup(·) is the
supremum of the input aggregate, φ(·) represents the nonlin-
ear mapping function from X → H, E(·) denotes the mean
of the embedded samples.

In statistics, it is called integral probability metric. To cal-
culate this discrepancy, a biased empirical estimate of
MMD is as follows:

D̂H(Xs,Xt ) =

∥∥∥∥∥∥ 1
ns

ns∑
i=1

φ(xsi )−
1
nt

nt∑
j=1

φ(x tj )

∥∥∥∥∥∥
2

H

(4)

It can be seen from (4) that the empirical estimation of
the deviation between the two distributions can be con-
sidered as the distance between the mean of the two
data sets in RKHS. When MMD is close to 0, it means
that the two distributions are aligned. In transfer learning,
MMD is usually used to construct constraints on feature
learning to make the distribution in different domains more
similar.

III. THE PROPOSED APPROACH
A. OVERVIEW OF THE METHODOLOGY
In this paper, our idea is to establish an intelligent diagno-
sis model inspired by transferable feature methods. Gener-
ally speaking, the proposed method consists of four stages:
domain partition, feature extraction, domain adaptation, and
fault diagnosis, as shown in Fig. 2. In the stage of domain par-
tition, the diagnosis knowledge is provided by source domain
data, while unlabeled target domain data is expected to be
correctly identified by using knowledge transfer methods.
As for feature extraction, the transferable features, which
are simultaneously extracted by the same nonlinear feature
mapping from samples in the source and target domains. For
domain adaptation, theMMDalgorithm is utilized tomeasure
the distribution divergence of learned features. After that,
a newmethod namedmulti-kernel dynamic distribution adap-
tation (MDDA) constructs a weighted mixed kernel function
to map the transferable features to a unified high-dimensional
feature space, and dynamically evaluates the relative impor-
tance of marginal probability distribution (MPD) and con-
ditional probability distribution (CPD), so as to minimize
the discrepancy between the two distributions, and finally
obtain a target classifier by the structural risk minimization
(SRM) principle. For fault diagnosis, by using the domain-
shared classifier, the unlabeled target domain samples can be
correctly classified.
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FIGURE 2. Overview of the methodology.

B. BASIC THEORY OF THE METHODOGY
1) DYNAMIC DISTRIBUTION ADAPTATION
According to (1) and (2), the objective of domain adaptation
is to minimize the MPD and the CPD of the two data sets in
RKHS. On one hand, we can applyMMD to handle theMPD.
The formula is described as

MMD2
H(Ps,Pt ) =

∥∥∥∥∥∥ 1
ns

ns∑
i=1

φ(xsi )−
1
nt

nt∑
j=1

φ(x tj )

∥∥∥∥∥∥
2

H

(5)

On the other hand, the conditional distribution in (2) is
intractable in the absence of classification labels. According
to Bayesian rule [22], we rewrite formula (2) into the follow-
ing form:

min D(
Qs(φ(Xs)|Ys) · Ps(Ys)

Ps(φ(Xs))
,
Qt (φ(Xt )|Yt )) · Pt (Yt )

Pt (φ(Xt ))
) (6)

In the paper, we have the assumption of Ps(Ys) = Pt (Yt ).
In other words, suppose that the labels of the source and the
target domains have the similar distributions. If the marginal
distribution satisfies the (1), the conditional distribution prob-
lem becomes

min D(Qs(φ(Xs)|Ys),Qt (φ(Xt )|Yt )) (7)

The objective function of (7) is noted as CDA. In domain
adaptation, this step is essential. However, it still can not
handle as Yt is unknown. To address the problem, we can use
the labeled source domain samples to train a simple classifier
to obtain pseudo-labels on the target domain, then the inter-
class MMD distance is expressed as

MMD2
H(Q(c)

s ,Q
(c)
t )

=

∥∥∥∥∥∥∥
1

n(c)s

∑
xsi ∈D

(c)
s

φ(xsi )−
1

n(c)t

∑
xtj ∈D

(c)
t

φ(x tj )

∥∥∥∥∥∥∥
2

H

(8)

where c ∈ {1, 2, · · · ,C} is the c-th category, D(c)
s =

{xi : xi ∈ Ds ∩ y (xi) = c}, y (xi) is the true label, and n(c)s
is the total number of all label c for the samples in the
source domain. D(c)

t =
{
xj : xj ∈ Dt ∩ ŷ

(
xj
)
= c

}
, ŷ
(
xj
)
is

the pseudo label, and n(c)t is the total number of all pseudo
label c for the samples in the target domain.

It is certain that, although there are probably large devia-
tions in the initial pseudo labels, we can iteratively update the
pseudo labels in the process of model training, the correctness
of the pseudo labels can be improved to ensure that the
divergence in conditional distribution becomes smaller and
smaller. Through (5) and (8), the marginal (P) and conditional
(Q) distributions can be aligned, but the two distributions are
not equally important in real-world applications. For instance,
when there is a large difference between data sets, the dis-
crepancy between Ps and Pt is more dominant. In contrast,
when the data sets are similar, the distribution divergence
in each class (Qs and Qt ) is more dominant. Therefore,
an adaptive factor is introduced to dynamically adjust the
importance of these two distributions, dynamic distribution
adaptation (DDA) can be written as

DH(Ds,Dt )

= (1− µ)MMD2
H(Ps,Pt )+ µ

C∑
c=1

MMD2
H(Q(c)

s ,Q
(c)
t ) (9)

where µ ∈ [0, 1] is the adaptive factor.
From (9), when µ → 0, it shows that the feature distri-

bution of the source domain and the target domain are very
different, therefore, the adaptation of the MPD is relatively
important. When µ → 1, it shows that the discrepancy in
feature distributions is small, and the sparsity between each
class needs to be adjusted. Therefore, the alignment of the
CPD is more important. When µ = 0.5, the two distributions
are treated equally, as in existing methods [23]. By learning
the optimal adaptation factor µopt , DDA can be used to
address different domain adaptation problems. Putting (5)
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and (8) into (9), the following formula can be obtained.

DH(Ds,Dt )

= (1− µ)

∥∥∥∥∥∥ 1
ns

ns∑
i=1

φ(xsi )−
1
nt

nt∑
j=1

φ(x tj )

∥∥∥∥∥∥
2

H

+µ

C∑
c=1

∥∥∥∥∥∥∥
1

n(c)s

∑
xsi ∈D

(c)
s

φ(xsi )−
1

n(c)t

∑
xtj ∈D

(c)
t

φ(x tj )

∥∥∥∥∥∥∥
2

H

(10)

By taking advantage of representer theorem and matrix
tricks [24], (10) can be written as

DH(Ds,Dt ) = tr(KM ) (11)

where K = φ([Xs,Xt ])Tφ([Xs,Xt ]) ∈ R(ns+nt )×(ns+nt ) is the
kernel matrix with kij = k(xi, xj) in RKHS, tr(·) denotes the

trace operation, M = (1 − µ)M0 + µ
C∑
c=1

Mc is the MMD

matrix with its element calculated by

(M0)ij =



1
n2s
, xi, xj ∈ Ds

1

n2t
, xi, xj ∈ Dt

−
1
nsnt

, otherwise

(12)

(Mc)ij =



1

(n(c)s )2
, xi, xj ∈ D

(c)
s

1

(n(c)t )2
, xi, xj ∈ D

(c)
t

−
1

n(c)s n(c)t
,

{
xi ∈ D

(c)
s , xj ∈ D

(c)
t

xi ∈ D
(c)
t , xj ∈ D

(c)
s

0, otherwise

(13)

The above non-convex optimization problem can be trans-
formed into a trace optimization problem by the Lagrange
multiplier method.

2) MULTI-KERNEL DYNAMIC DISTRIBUTION ADAPTATION
DDA has two problems that need to be solved: (1) how to
obtain the adaptive factor; (2) The convergence efficiency and
effect of the MMD criterion depend heavily on the choice of
kernel function. However, for a specific application, the opti-
mal kernel function cannot be determined in advance. In order
to deal with these problems, this paper presents multi-kernel
dynamic distributed adaptation (MDDA) method. By adding
a new parameter β, multiple kernel functions are given dif-
ferent weights, so as to better combine the advantages of
different kernel functions, which can extract richer features
without feature transformation. The formula of the weighted
mixed kernel functions is defined as follows:

k(xi, xj) = (1− β)kRbf (xi, xj)+ βkPloy(xi, xj)

= (1− β) exp(−

∥∥xi − xj∥∥2
2σ 2 )+ β[xTi xj + 1]d (14)

where kRbf and kPloy represent Gaussian radial basis kernel
function and polynomial kernel function respectively, and
β ∈ [0, 1] controls the weight of the two kernel functions,
which is called the balance factor.

MDDA uses A-distance to estimate empirically β.
A-distance is defined as the loss of constructing a linear
classifier for a binary classification problem [25]. Let e(h)
be the error of the linear classifier h distinguishing different
domains Ds and Dt , then A-distance can be defined as

A(Ds,Dt ) = 2(1− 2e(h)) (15)

Empirically estimate the balance factor β, the formula is as
follows:

β̂ =
APloy(Ds,Dt )

ARbf(Ds,Dt )+APloy(Ds,Dt )
(16)

where ARbf(Ds,Dt ) and APloy(Ds,Dt ) represent the cor-
responding A-distance after kernel mapping respectively.
The larger the value is, the greater difference between the
source and the target domains after the kernel mapping, thus,
the weight of the corresponding kernel function is smaller,
and vice versa.

Similarly, using A-distance to estimate the adaptive
factor µ, the formula can be described as follows:

µ̂ =

C∑
c=1

Ac(Ds,Dt )

AM (Ds,Dt )+
C∑
c=1

Ac(Ds,Dt )

(17)

where Ac(Ds,Dt ) represents the CPD for class c,
C∑
c=1

Ac(Ds,Dt ) represents the A-distance of the CPD for

all categories, AM (Ds,Dt ) represents the A-distance of the
MPD for source and target domains.

C. DEEP TRANSFER NETWORK WITH MDDA
Having introduced the basic theory of MDDA, we now turn
to establish DTN so as to address the domain adaptation
problem under deep learning framework. CNN is a net-
work structure widely used in the field of fault diagnosis.
It has excellent characteristics of local connection and weight
sharing, including convolutional layers, pooling layers and
fully-connected layers [26]. Nevertheless, CNN’s network
depth, convolution kernel width and appropriate domain
adaptationmethods etc, which greatly affect the classification
accuracy and computational complexity of transfer learning.
If the network structure is too shallow, for example, the model
used in [27] has a two-layer convolution structure and can
only learn low-level simple features. If the network structure
is too deep, a large amount of training data is required, and
over-fitting is prone to occur. Besides, when 1-D vibration
signals are fed into the network, the small convolution kernels
(usually 3 × 1) at the first layer are easily interfered by
industrial environment noise, most of which belongs to high
frequency noise. Therefore, to capture more useful informa-
tion of vibration signals in the intermediate and low frequency
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FIGURE 3. Architecture of the proposed DTN with MDDA model.

bands, the wide kernels should be used to extract features, and
then successive small kernels, which are utilized to obtain bet-
ter feature representation. In addition, we embed the MDDA
method into the fully-connected layers to align the feature
distributions of the source and target domains.

1) ARCHITECTURE OF THE PROPOSED NETWORK
The network structure of the proposed DTN is shown
in Fig. 3. According to Ref[10], We use a deep CNN model
to extract transferable features from the source and target
domains. The raw temporal signals without any artificial
processing are used as the input of the first convolutional
layer. Unlike the conventional CNN, the first convolutional
kernels are wide, while the subsequent convolution kernels
are small. By widening the receptive field of the first con-
volutional layer, the model can extract more features and
suppress high-frequency noise. The multi-layer small con-
volution kernels can build a deeper model, which helps to
improve network performance and obtain better feature repre-
sentation, the parameter set is shown in Table 1. The proposed
DTN ties the shared parameter set when the samples both
in source and target domains are processed simultaneously.
In the convolutional layer, the filter kernel convolves the
input local regions, and then generates output features by
the activation function. Each filter employs the same kernel
which is usually referred to as weight-sharing in the literature.

We adopt k li and b
l
i to denote the weight and bias of the

i-th filter kernel in layer l respectively, and use x l,Di to

represent the output feature in layer l, then the output features
of the layer l + 1 can be obtained as

x l+1,Di = σr (x
l,D
i ∗ k

l
i + b

l
i) (18)

where D = {s, t} denotes the indexes of the source and the
target domains, x l+1,Di =

{
x l+1,si , x l+1,ti

}
is the transferable

features learned from the features x l,Di =

{
x l,si , x

l,t
i

}
of the

previous layer l. ∗ represents the convolution operation, σr (·)
represents the activation function, generally, the rectified lin-
ear unit (ReLU) is employed to accelerate the convergence of
the network.

We add a pooling layer after each convolutional layer.
It functions as a down-sampling operation, which can reduce
the number of the trained parameters and avoid over-fitting.
In this study, we use the max pooling form, which can pre-
serve the edges and textures of the transferable features as
much as possible, and obtain local- invariant features. The
feature after the max-pooling transformation is described as
follows:

pl+1,Di (j) = max
(j−1)h+1≤t≤jh

{
x l,Di (t)

}
(19)

where x l,Di (t) denotes the value of t-th neuron in the i-th
frame of layer l, t ∈ [(j − 1)ω + 1, jω], ω is the width
of the pooling region, and pl+1,Di (j) represents the corre-
sponding value of the neuron in layer l + 1 of the pooling
operation.
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TABLE 1. Parameter set of proposed DTN model.

By stacking convolutional layers and pooling layers in turn,
we can extract high-level features, which need to be flattened
into a 1-D vector, and then are fed into the fully-connected
layer. For example, the output of the first fully-connected
layer F1 is obtained by flattening the feature pP5,Di of the
pooling layer P5 (as shown in Table 1) into a 1-D vector. The
output of the fully-connected layer F2 can be expressed as

xF2,Di = σr (wF2x
F1,D
i + bF2 ) (20)

where xF1,Di = flatten(pP5,Di ) is the flattened feature vector,
wF2 and bF2 are the weights and biases of the fully-connected
layer F2.
The third fully-connected layer F3 is employed for clas-

sification, which uses the softmax function to predict the
labels of the source domain samples xsi and the target domain
samples x ti . The output of the layer F3 denotes the probability
distribution of the labels for a sample. It can be expressed

as follows.

dF3,Di = [P(yDi = 1
∣∣∣xF2,Di ) · · ·P(yDi = k

∣∣∣xF2,Di )

· · ·P(yDi = n
∣∣∣xF2,Di )]T,

P(yDi = k
∣∣∣xF2,Di ) =

exp((wF3k )T · xF2,Di + bF3 )
n∑

k=1
exp((wF3k )T · xF2,Di + bF3 )

(21)

where dF3,Di =

{
dF3,si , dF3,ti

}
is the probability distribu-

tion of labels for the i-th couple of source-target samples.
n represents the number of labels,wF3k and bF3 are the weights
and biases of the fully-connected layer F3.

2) FULLY-CONNECTED LAYERS DOMAIN ADAPTATION
For a deep network, as the number of network layers deepens,
the network becomes more and more dependent on specific
tasks, while the shallow layers only learn the rough fea-
tures. For different tasks, the shallow features are basically
universal [28]. Inspired by this idea, we believe that it is
more important to conduct the high-layer domain adapta-
tion. Therefore, we perform domain adaptation on the three
fully-connected layers. By using the MDDAmethod, the dis-
tribution discrepancy of the learned transferable features can
be effectively reduced. Nevertheless, unlabeled samples in
the target domain cannot be used to train the parameters
of the fully-connected layer F3. Therefore, it is necessary
to introduce pseudo labels so as to solve this problem. The
so-called pseudo label of the sample is to select the label with
the maximum predicted probability as the approximate label.
In the fully-connected layer F3, we use the softmax function
to predict the probability distribution of labels for the samples
in the target domain. Combined with (21), the pseudo label
can be obtained by the following equation.

ŷti = [ŷtk · · · ŷ
t
k · · · ŷ

t
k ],

ŷtk =

1, if k = argmax
k

dF3,Di

0, otherwise
(22)

where ŷti is the pseudo label of the i− th sample in the target
domain.

3) TRAINING PROCEDURE
The proposed DTN with MDDA model is trained by jointly
minimizing three types of losses: 1) the error between the
predicted and true labels of the samples in the source domain,
2) the error between the predicted and pseudo labels of the
samples in the target domain, 3) the fully-connected lay-
ers domain adaptation of the learned transferable features
from cross-domain samples. In addition, we use mini-batch
stochastic gradient descent (SGD) for network optimization.
In other words, the MDDA is calculated between batches
rather than the whole domains, which makes the practical cal-
culation more easy and efficient. Therefore, the loss function
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including three regularization terms of the DTN with MDDA
model is expressed as

L(θ ) = min
θ

1
m

m∑
i=1

J (f (xsi ), y
s
i )

+α
1
m

m∑
i=1

J (f (x ti ), ŷ
t
i )+λDH(Ds,Dt ) (23)

where J (·, ·) is the cross-entropy loss function, θ = {w, b} is
the parameter collection of the network, f (·) is the prediction
function, DH(Ds,Dt ) represents the distribution discrepancy
of the proposed MDDA, α and λ are the trade-off parameters,
and m is the mini-batch number of the samples.
The gradient of the parameters can be calculated as:

1θ =
∂Js(·, ·)
∂θ

+ α
∂Jt (·, ·)
∂θ

+ λ
∂DH(·, ·)
∂θ

(24)

where 1θ is the mini-batch gradient operator to update
the parameters of the network, Js(·, ·) and Jt (·, ·) are the
cross-entropy loss functions from source domain and target
domain, respectively.

The flowchart of the training process for the DTN with
MDDA model is presented in Fig. 4. In the domain parti-
tion stage, the vibration data sets collected from different
machines are respectively considered as the source domain
and target domain. For feature extraction, mini-batch samples
from the source and target domains are fed into the DTN in
order to obtain high-level transferable features. As for domain
adaptation, the MMD of the learned transferable features is
computed by (11), and then the pseudo labels for the target
domain samples are predicted through (22). This process is
the forward propagation (FP) of the network. We use (24)
to calculate the minimum batch gradient so that the network
parameters can be updated. This process is the backward
propagation (BP) of the network. The proposed DTN with
MDDA model is finally trained until the terminal conditions
are satisfied. It should be noted that we propose to update µ
and β after each epoch of iteration to avoid gradient explosion
problems. In the fault diagnosis stage, the trained model is
employed to classify samples from the target machine and
output the diagnosis results.

IV. CASE STUDY
A. DATA DESCRIPTION
In this section, two laboratory bearing fault data sets and a
wind turbine bearing fault data set are conducted to demon-
strate the efficiency, superiority and practicability of the pro-
posed DTN with MDDA model. The laboratory bearing data
sets are labeled data, while the wind turbine bearing data
set is unlabeled data. We try to identify the health states of
wind turbine bearings by using the diagnosis knowledge from
the laboratory bearings. The three data sets are described as
below.

The first data set from the motor bearing are provided by
Case Western Reserve University [29], as shown in Fig. 5.
The vibration data from bearings (SKF6205) was collected

FIGURE 4. Flowchart of the training process for the proposed DTN with
MDDA model.

FIGURE 5. Motor driving mechanical system provided by CWRU.

using a accelerometer placed at the drive end of the motor,
single point faults were introduced to the test bearings using
electro-discharge machining, the health states of bearings
includes normal (N), inner race fault (IF), ball fault (BF) and
outer race fault (OF) (corresponding labels are 0∼3). In addi-
tion, it is worth noting that the fault diameter in each fault
state was 0.014 inches, the sampling frequency was 12kHz.
As shown in Table 2, the selected data set A was acquired
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TABLE 2. Details of the data sets.

with load of 0HP (the motor speed was about 1797r/min),
and the selected data set B with load of 3HP (the motor
speed was about 1730 r/min). The data set A and B contain
400 samples respectively, and each sample has 1200 sampling
points.

Another laboratory bearing data set was collected from
a test rig, as shown in Fig. 6. The test rig consists of
an AC drive motor, magnetic powder loader, test bear-
ing, accelerometer, test system and other auxiliary parts,
which can realize the vibration test of rolling bearings
under different working conditions. The bearing type was
N205, the driving speed was 1500rpm and the load was
set to 17.5N. The vibration signal was collected by the
accelerometer, the sampling frequency was set to 12.8kHz,
and man-made electrical cutting damages was conducted
in different positions of the testing bearing, i.e., N, IF,
BF, and OF, as shown in Table 2. There are 400 samples
in the data set C, and each sample has 1200 sampling
points.

The other data set was collected from a real-worldwind tur-
bine bearing, which was installed on the test bench, as shown
in Fig. 7. In the experiment, the rotation speed of the gener-
ator was 1590rpm. According to the experimental standard
of wind turbine [30], the fault signal of the testing bearing
was collected by a accelerometer, the sampling frequency
was 12.8kHz, as shown in Table 2. There are four fault types
and 400 samples in the data set D, and each sample has
1200 sampling points.

According to Table 2, we obtain three transfer learning
tasks, which are A → D, B → D and C → D. The data
sets A, B, and C are regarded as the source domain, which has
labeled samples, while the data set D is viewed as the target
domain, which requires us to label the samples, and the goal
of the tasks is to make the classification results close to the
true value as much as possible.

B. CASE 1: TRANSFER TASKS FROM A → D AND B → D
1) TRANSFER RESULTS OF THE PROPOSED METHOD
In the proposed method,µ and β are two important weighting
factors, and their different values will directly affect the trans-
fer learning results of the model. Therefore, it is necessary to
analyze the parameter selection. In order to verify our esti-
mation, we record the performance of MDDA by searching
different values of µ and β, that is, better values of µ and β
contribute better transfer performance. In the presented DTN,
the classification accuracy depends on the learned features
in the fully-connected layers F3, which is the highest-level
features before classification. Thus, the learned transferable
features in the layer F3 is utilized to analyze transfer results
of DTN after selecting different parameters. And then we
run MDDA by searching µ and β ∈ {0, 0.1, · · · , 0.9, 1.0}.
As shown in Fig. 8, we draw the results of MDDA under
different values of µ and β.

It can be seen from Fig. 8(a) and Fig. 8(b), on the
one hand, the classification accuracy obviously varies with
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FIGURE 6. The laboratory bearing test rig: (a) Schematic diagram of the
test rig; (b) The damaged positions.

FIGURE 7. The wind turbine bearing test bench in real-world.

different choices ofµ and β. This indicates that it is necessary
to consider both the different effects between marginal and
conditional distributions, and the effects of different kernel
functions in transfer learning. On the other hand, we can also
observe that the optimal values ofµ and β vary with different
transfer tasks. Thus, it is necessary to dynamically adjust the
two parameter values according to different tasks. Moreover,
for a given task, the optimal values of µ and β may not be
unique, that is, the classification results for different µ and β
may be the same.

Since the optimal µ and β are not unique, we can not
directly compare the optimal values with the estimated val-
ues. Instead, we compare the performances (classification
accuracy) achieved by the optimal values and the estimated
values, as shown in Table 3.

We list the classification results corresponding to the esti-
mated value and the true value. These results clearly show

FIGURE 8. Performance of the two tasks when searching the optimal
values of µ and β: (a) Transfer results of different µ; (b) Transfer
results of different β.

TABLE 3. Comparison of Model Parameters on Different Transfer Task.

that the classification accuracy of our quantitative evaluation
of the adaptive factor µ and the balance factor β is extremely
close to the results from grid search. In practical applications,
the two factors need to be recalculated after each iteration,
which means our estimation is more effective.

It is worth noting that α and λ are also two important
trade-off parameters that affect classification accuracy. Take
the task B→ D as an example, the parameter α is searched
from {0, 0.02, 0.05, 0.2, 0.5, 1}, and the parameter λ is
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chosen from {0.01, 0.5, 1, 5, 10, 15, 25, 50}. Each experi-
ment is performed 10 times and the average value is calcu-
lated, as shown in Fig. 9.

FIGURE 9. Transfer learning results with different trade-off parameters
for the task B → D: (a) MMD of the learned transferable features,
(b) Classification accuracy on the data set D.

It can be seen from Fig. 9(a), theMMDof the learned trans-
ferable features is significantly reduced when the parameters
α and λ are set as 0.02 and 10, respectively. After training
the DTN model with different trade-off parameters, the clas-
sification accuracy on the data set D is shown in Fig. 9(b).
When the parameter α is smaller than 0.05 and the parameter
λ exceeds 5, the classification accuracy ranges from 80%
to 90%. Specifically, the classification accuracy reaches its
maximum value when α and λ the classification accuracy
reaches the maximum value when α and λ are respectively
set as 0.02 and 10. It demonstrates that the classification
accuracy changes with the MMD of the transferable features.
The smaller the MMD value, the higher the accuracy.

2) COMPARISONS WITH OTHER METHODS
We compare the transfer results and transfer performances
of the presented method with those state-of-the-art machine
learning methods including CNN, transfer component analy-
sis (TCA), joint distribution adaptation (JDA) [31], geodesic
flow kernel (GFK) [32], deep domain confusion (DDC), deep
adaptation network (DAN) and DTN with DDA. For com-
parison, the structural parameters of CNN are the same as
DTN. TCA is a commonly used transfer learning method,
which introduces the idea of principal component analy-
sis into transfer learning and only adapts the marginal dis-
tribution without considering the conditional distribution.
JDA considers jointly adapting the marginal distribution and
conditional distribution, and assumes that both distributions
are equally important. GFK is a manifold feature extraction
method that replaces Euclidean distance with geodesic dis-
tance. DDC aims at the AlexNet network, adding an adap-
tation layer before the classification to reduce the MMD
distance between source and target domains. DAN is the
improved version of DDC, in which multi-layer adaptation
is performed in the fully connected layers, and multi-kernel
MMD is used to replace single-kernel MMD. The inputs of
TCA and JDA are frequency spectrum data, while the inputs
of other methods are raw vibration data. Note that the optimal
parameters are selected for each method in the experiments
(more details shown in the Appendix). Moreover, ten tri-
als are conducted, and the mean of each method is listed
in Table 4.

The average classification accuracy of the proposed
DTN with MDDA method is 88.9%, which is the highest
one among the eight methods. Due to the absence of domain
adaptation, the distribution discrepancy of the source and
target domains is large, the average accuracy of CNN only
reaches 66.4%, which is smaller than the accuracy achieved
by the proposed model. TCA, JDA, and GFK are shallow
transfer learning methods that can only extract lower-level
features, and conduct the unsupervised domain adaptation,
so their average accuracies are poorer than our model. This
indicates that they are not suitable for dealing with the
cross-machine tasks subject to serious distribution discrep-
ancy. DDC and DAN are deep transfer learning methods,
so their average accuracies are better than the previous meth-
ods. However, they only reduce the distribution discrepancy
by minimizing the average distance of the transferable fea-
tures, they reach lower accuracies than the proposed method.
DTN with DDA method evaluates the relative importance
of the marginal distribution and the conditional distribution,
but ignores the phenomenon that different kernel functions
have different geometric metrics for features. For cross-
machine transfer learning tasks, the mapping effect of a
single kernel function is not ideal. Although the average
accuracy of DTN with DDA reaches 80.9%, it is still lower
than our method. In addition, transfer ratio (TR) [33] is
introduced to compare the transfer performance of the pre-
sented method with that of other methods. It is defined
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TABLE 4. Classification accuracy (%) and transfer performance of different methods for different transfer task.

as follows:

TR =
1
p

p∑
i=1

[1− err(Si,Ti)]/[1− err(Ti,Ti)] (25)

where err(Si,Ti) denotes the transfer error between the
source and the target domains, err(Ti,Ti) represents the test-
ing error in the target domain, p is the number of transfer
learning tasks.

Transfer ratio is used to comprehensively evaluate the
transfer performance of a method for different transfer learn-
ing tasks. The higher the transfer ratio, the better the transfer
performance that a method obtains. As shown in Table 4,
the transfer ratio of the proposed DTN with MDDA method
is 0.88, which is the highest one among the eight methods.
It shows that our method has superior transfer performance.

In order to give a clear and intuitive understanding of the
transfer learning process, the t-distributed stochastic neigh-
bor embedding (t-SNE) algorithm [34] is used for network
visualization. This algorithm can reduce the dimension of the
transferable features so that the distribution of the features
can be illustrated in the form of 2-D image. Taking the
B→ D transfer learning task as an example, for comparison,
the transferable features learned by our method and other
methods via t-SNE are respectively shown in Fig. 10(a)∼(h).

From Fig. 10(a), we observe that the transferable features
learned by CNN exist serious distribution divergence, which
makes the features of the target domain get poor clustering
results and small inter-class distances. Therefore, when the
model is only trained by the source domain samples, CNN
cannot effectively classify unlabeled samples in the target
domain. From Fig. 10(b), (c) and (d), the distribution of
transferable features is not effectively aligned using TCA,
JDA and GFK. Moreover, the transferable features of the
samples under the normal state and outer race fault, and the
samples under inner race fault and ball fault are not clearly
separated, which shows that the distribution discrepancy is

still serious and the average diagnosis results of data set D
are listed in Table 5.

TABLE 5. Classification results and transfer performance for the transfer
learning task C → D.

For Fig. 10(e) and (f), DDC and DAN minimize the aver-
age distance of the extracted transferable features between
the source and target domains before classification, which
makes the cross-domain distribution discrepancy signifi-
cantly reduced by supervised learning. Thus, DDC and
DAN obtain higher diagnosis accuracy compared with CNN,
TCA, JDA and GFK. For Fig. 10(g), DDA can dynami-
cally align marginal distribution and conditional distribu-
tions of the learned features according to the specific sit-
uation, which enables the cross-domain distribution to be
effectively adapted, thereby greatly reducing the distribu-
tion divergence. Fig. 10(h) shows that the proposed DTN
with MDDA method not only can extract higher-level trans-
ferable features, but also dynamically adjust the feature
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FIGURE 10. The visualization of the learned features for the transfer learning task B → D: (a) CNN, (b) TCA,
(c) JDA, (d) GFK, (e) DDC, (f) DAN (g) DTN.w.DDA, and (h) DTN.w.MDDA.
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FIGURE 11. The visualization of the learned features for the transfer learning task C → D: (a) CNN, (b) DAN, (c) DTN.w.DDA, (d) DTN.w.MDDA.

representation ability of different kernel functions and dis-
tribution divergence between two domains simultaneously.
Therefore, the goal of maximize the between-class distance
and minimize the within-class distance is achieved, so that
the target domain samples are correctly classified. The visu-
alization of these results gives a good explanation why the
proposed method shows higher classification accuracy than
other methods.

C. CASE 2: TRANSFER TASK FROM C → D
The effectiveness of the presented method can also be vali-
dated by another case. In the case, the diagnosis knowledge
of data set C is utilized to identify the health states of the
wind turbine bearings, i.e., the transfer learning task C→ D.
Follow the previous approach, 10 trails are performed,

According to the results in Table 5, the proposed DTN
with MDDA model obtains the average accuracy of 81.8%.
The transfer performance of the model for the task C→ D
is also measured by the transfer rate, and its value is 0.82.
To compare the transfer results and transfer performance
of the proposed method with other seven methods adopted
in Case 1, for each method, the experiments are conducted
under the optimal parameter selection. From the results listed
in Table 5, for the transfer learning task C→D, the proposed
method still has the highest diagnosis accuracy and transfer
rate among the eight methods, which shows that the DTN
with MDDA method has superior performance compared
with other methods.

The learned transferable features using CNN, DAN, DTN
with DDA, DTN with MDDA are illustrated in Fig. 11 via
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FIGURE 12. The confusion matrix for the transfer learning task C → D: (a) CNN; (b) DAN; (c) DTN.w.DDA; (d) DTN.w.MDDA.

t-SNE algorithm. According to the visualization results,
we also discussed the confusion matrix for classification
results of the data set D under the four methods, as shown
in Fig. 12.

From Fig. 11(a), the transferable features learned by the
CNN exist serious distribution divergence. Consequently,
when the diagnosis knowledge of data set C is transferred to
data set D, the classification accuracy of CNN for data set D
only reaches 48.5%, as shown in Fig. 12. (a). As for DAN,
due to the multi-layer domain adaptation before classifica-
tion, as a result, the cross-domain distribution discrepancy is
reduced to some extend by minimizing MMD of the learned
high-level transferable features, as shown in Fig. 11(b). Addi-
tionally, the classification result of DAN is higher than that
of CNN for data set D, as shown in Fig. 12(b). For DTN
with DDA, the relative importance of the marginal and con-
ditional distributions is evaluated, the distribution discrep-
ancy of cross-machine samples is further reduced, as shown
in Fig. 11(c). Thus, the classification result of DTN with
DDA is also improved for data set D, as shown in Fig. 12(c).
From Fig. 11(d), the proposed DTN with MDDA method

not only dynamically adapts the distribution discrepancy, but
also obtains the suitable feature mapping kernel function, and
more comprehensively demonstrates the information of dif-
ferent transferable features. Therefore, the proposed method
still has higher classification accuracy and better transfer
performance than other methods. Furthermore, although the
transferability of different sub-category is different, the clas-
sification result of each sub-category is able to be corrected
by our model, as shown in Fig. 12(d).

D. DISCUSSION UNDER NOISE ENVIRONMENT
In real industries, environmental noise is inevitable, and these
noises may greatly affect the results of transfer learning fault
diagnosis. In this section, the transfer performance of the
proposed method is estimated when the target machine is
under additional environmental noise. Gaussian white noise
is added to the original vibration data. The signal-to-noise
(SNR) of the noise data is defined as follows:

SNR(dB) = 10log10(Psignal/Pnoise) (26)
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FIGURE 13. Diagnosis results with different levels of additional noises for
the transfer learning task C → D.

where Psignal and Pnoise represent the powers of the origi-
nal vibration signal and the additional Gaussian white noise
respectively. Next, select the SNR of −4∼10dB for evalua-
tion, and then test the model with noisy data.

The classification accuracy of the transfer learning
task C → D after adding white noise is demonstrated
in Fig. 13. It can be observed that the classification accuracy
of each method declines to some extent, which indicates that
the performance of cross-machine fault diagnosis is obvi-
ously affected by environmental noise. However, comparing
the eight methods, the classification accuracy of our model
is significantly higher than the other methods (DTN with
DDA reaches 60∼75%,DTNwithMDDA reaches 70∼82%).
This is because the proposed network structure has the wide
first-layer convolution kernel and the deep small convo-
lutional layers, which can more effectively suppress high-
frequency noise. Thus, the proposed model can remain robust
within a certain range even working under noisy signals.
It can be seen from Fig. 13, the classification accuracy and
robustness of the DTN with MDDA model are superior com-
pared with other methods. The results shows that our model
performs well under noisy environment conditions without
any denoising pre-processing.

V. ANALYSIS AND DISCUSSTION
(1) In the training process of the DTN with MDDA model,
the available data collected from the wind turbine bearing
is unlabeled. Such scenario tallies with the actual situation,
in which insufficient labeled data or even no labeled data used
to adequately train an intelligent diagnosis model. The DTN
withMDDAmodel can extract transferable features to reduce
the distribution discrepancy between data sets from different
machines.

The similarity of feature distribution greatly affects the
accuracy of cross-machine fault recognition. Therefore,
the proposed model is a promising method to complete
cross-machine fault diagnosis. When there is no label avail-
able in the real world, according to the results shown
in Table 4 and Table 5, the proposedmethod can obtain higher
diagnosis accuracy and better transfer performance than other
commonly used methods. In fact, the fault diagnosis of bear-
ings is just a case study, and the presented method can also be
employed for fault diagnosis of other machine components,
such as gearboxes, motors and ball screws.

(2) It is noted that, as shown in Fig. 10 and 11, although
the CNN model performs well in traditional fault diagnosis,
it has lower accuracy in transfer learning. The reason for this
phenomenon is that there are large domain shift in the source
and target domains.

Therefore, domain adaptation must be carried out in trans-
fer learning. In addition, shallow transfer learning methods,
such as TCA, JDA, and GFK, are easier to adjust hyper-
parameters than deep transfer learning methods. However,
due to in absent of supervised learning, the diagnosis accu-
racy of shallow transfer learning methods is not as good
as deep transfer learning methods. Moreover, the traditional
deep transfer learning methods such as DDC and DAN only
use the loss function to minimize the distribution distance,
but do not consider the relative importance of the marginal
and conditional distributions in different data sets, which
leads to the unsatisfactory classification accuracy obtained
for cross-machine diagnosis. The DDA method dynamically
evaluates the relative importance of the two distributions in
different data sets. However, for different transferable fea-
tures, DDA method does not consider the mapping capabil-
ities of different kernel functions. The above analysis shows
that the proposed MDDA method is an domain adaptation
method with relatively strong comprehensive ability. When
we embed MDDA into a deep learning model, the novel
framework can effectively solve the problems of low accu-
racy and poor transfer performance for cross-machine fault
diagnosis.

(3) The proposed DTN model has a special architecture
with wide first-layer convolution kernel and several deep
small convolutional layers, so that the learning ability of
the model is very excellent even under noisy environment
conditions, as shown in Fig. 13. This indicates that the pro-
posed model is more suitable for real data under different
background noises than the conventional CNN model. The
model is worth popularizing in real industrial application.

VI. CONCLUSION
In this paper, a new intelligent fault diagnosis method based
on transfer learning named DTN with MDDA is presented.
The potential relationship between different but related
mechanical components is mined, and cross-domain trans-
ferable diagnosis knowledge is developed. In the proposed
method, a deep transfer network (DTN) is used to simultane-
ously extract transferable features from the source and target
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TABLE 6. Detailed parameter settings for comparison experiments
in Table 4.

domains. Additionally, the multi-kernel dynamic distribution
adaptation (MDDA) method constructs a weighted mixed
kernel function, which combines the advantages of different
kernel functions to map the transferable features to a unified
feature space. It also can dynamically evaluate the relative
importance of marginal distribution and conditional distribu-
tion, which effectively reduces the distribution discrepancy
of the source and target domains. The proposed method
improves the transfer ability of diagnosis knowledge between
different machines. Three transfer learning tasks are used
to verify the proposed method. The results show that when
unlabeled data in the target domain is acquired, the proposed
DTN with MDDA method can identify the health states of
real wind turbine bearings and maintain good robustness
under noisy data.

In addition, compared with other state-of-the-art methods,
the proposed method achieves higher classification accuracy
and better transfer performance, and has a promising indus-
trial application prospect in cross-machine fault diagnosis.

In the future, we plan to expand the DTN with MDDA
method to more realistic scenarios, such as online trans-
fer learning, and apply it to more complex fault diagnosis,
such as cross-component fault diagnosis from bearings to
gearboxes.

APPENDIX
Adam optimizer is used to train all the deep models (CNN,
DDC, DAN, DTN), batch size is 64, learning rate is 0.0001,
the number of iterations is 20000. The parameter settings can
be shown in Table 6.
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